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Abstract. In this paper we consider the problem of simultaneously elic-
iting the preferences of a group of users in an interactive way. We focus
on constructive recommendation tasks, where the instance to be recom-
mended should be synthesized by searching in a constrained configuration
space rather than choosing among a set of pre-determined options. We
adopt a setwise max-margin optimization method, that can be viewed as
a generalization of max-margin learning to sets, supporting the identifica-
tion of informative questions and encouraging sparsity in the parameter
space. We extend setwise max-margin to multiple users and we provide
strategies for choosing the user to be queried next and identifying an
informative query to ask. At each stage of the interaction, each user
is associated with a set of parameter weights (a sort of alternative op-
tions for the unknown user utility) that can be used to identify “similar”
users and to propagate preference information between them. We present
simulation results evaluating the effectiveness of our procedure, showing
that our approach compares favorably with respect to straightforward
adaptations in a multi-user setting of elicitation methods conceived for
single users.

1 Introduction

Preferences are a widely studied concept in artificial intelligence [17]; the design
of effective methods for preference elicitation is a particularly important topic in
order to support the development of personalized systems such as recommender
systems, electronic commerce applications and personal agents.

Recently, a number of techniques have been proposed allowing to incremen-
tally elicit the preferences of a user by asking specifically chosen questions. These
methods include Bayesian elicitation techniques [4,12,23] and regret-based meth-
ods [5,24]. The advantage of the Bayesian approaches is that they can identify
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informative queries in a principled manner and as well handle inconsistencies
in preference feedback, but they require computationally intensive Bayesian up-
dates; on the other hand regret-based methods can efficiently deal with larger
configuration spaces but assume that all preference information is “noiseless”.

Recently, setwise max-margin optimization has been proposed [22] as a paradigm
for elicitation that has the following distinctive characteristics: 1) it allows to
determine informative queries, 2) it can efficiently deal with large configuration
spaces, 3) it is robust to user inconsistencies in preference feedback, and 4) it
can be coupled with regularization terms if sparsity is required.

The focus of works in preference elicitation has been so far on acquiring
the preferences of a single user. However, we claim that real systems - such as
electronic commerce websites - do not usually interact with a user in isolation,
but may be accessed by several users at the same time. Moreover, typical users
of a web application may only provide very little information to the system. This
means that it is crucial to exploit as much as possible the available preference
information and to leverage the knowledge about the preferences of similar users.

In this paper we consider the problem of preference elicitation in the case
that a number of users are simultaneously present. We focus on constructive rec-
ommendation problems, where the task is that of arranging novel configurations
subject to feasibility constraints and user preferences, rather than selecting an
item among a set of candidates. This setting rules out standard collaborative
filtering techniques [21], where recommendations are propagated between users
based on shared ratings over the same or similar objects. We instead rely on a
notion of similarity in model space, i.e. similar users have similar utility func-
tions, and propagate information while simultaneously learning user utilities. We
extend setwise max-margin preference elicitation to the multi-user setting, by: i)
defining a user similarity as a kernel over user utility models; ii) measuring the
reliability of the learned model for each user; iii) defining for each user an aggre-
gate utility function combining her utility model with those of the other users,
weighted by their respective reliability and similarity to the user being recom-
mended. We show how to incorporate these aspects in the setwise max-margin
optimization problem, while retaining the formulation as mixed integer-linear
problem (MILP) which allows for efficient computation.

Our experimental evaluation on both syntetic and real datasets shows how a
simple procedure iteratively querying the least elicited user succeeds in improving
recommendation quality with respect to independent elicitation of users.

2 Related Work

The basic idea of max-margin is as follows. The utility (often assumed to be
linear) is determined by a set of parameter weights (unknown to the system).
The currently known preferences of the user are encoded by a set of inequalities
(typically stating the preference for an alternative over another one) on the
feasible parameters; a shared non-negative margin is introduced as a decision
variable that is maximized in the objective function. Noisy feedback can be



addressed by relaxing the constraints using slack variables and adding a penalty
term in the objective for violated constraints.

This intuition has been adopted for preference learning by different authors
in essentially the same way. In particular, Gajos and Weld [10] proposed the
use of maxmargin optimization for learning preferences in the context of person-
alized user interfaces using a volumetric heuristic to choose the next question
to ask. More recently, maxmargin methods have been used to assess preferences
expressed in terms of Choquet capacities [1]. These works are limited by the lack
of a principled way to determine informative queries and offer low scalability.

In our work we follow the ideas of [22] that extends maxmargin to produce
a set of solutions (instead of a single one); in this way we can use such a set to
devise a query to ask to user. Setwise maxmargin can then provide an efficient
method for interactive preference elicitation handling user inconsistencies (the
preference reported by the user may not be always true) and particularly suited
to large configuration spaces. One main advantage is that determination of the
next question (that is conflated into the problem of generating a set of diverse
recommendations as in [24,23] in different paradigms) is the output of an opti-
mization problem and therefore much more scalable that ad-hoc heurstics that
need to iterate over available items.

While preference elicitation is a well studied topic in the community of ar-
tificial intelligence and algorithmic decision theory, the elicitation of preferences
in a multi user setting is still underexplored, with the exception of [13]. However
some recent works in the computational social choice community [8,25,15,3] have
considered the problem of eliciting interactively the preferences of several users
(agents) in order to determine a choice for the group. The difference with our
work is that these approaches aim at establishing a best choice for the whole
community (according to a voting rule that is fixed in advance); instead we
wish to make recommendations that are personalized to each user while exploit-
ing similarity between users’ preferences. Some authors have instead considered
how to combine interactive elicitation with collaborative filtering for predicting
ratings given to items [9]; however this differs form our setting as we consider
multi attribute utilities.

The idea of pooling together information about related learning tasks is not
new. Our work is related to multi-task approaches (see for instance [2]), where
information (data or parameters) is transferred beteween similar tasks to reduce
the labelling effort required to achieve good generalization. Like in our work, task
similarities are often expressed with a kernel function [20]. The multi-task active
learning approach of Saha et al. [19] is perhaps the most closely related: in both
methods the task similarity is estimated during the learning process. However,
Saha et al. assume that labelled examples are received from some external source,
and therefore do not propose any query selection strategy. On the contrary, we
rely on the proven setwise max-margin approach for selecting informative queries
especially designed for interaction with human decision makers.



3 Background

Notation. We indicate scalars x in italics, column vectors x in bold, and sets X
in calligraphic letters. Important scalar constants N,M,K are upper-case. The
inner product between vectors is written as 〈w,x〉 =

∑
i wixi, the Euclidean (`2)

norm as ‖x‖ :=
√∑

i x
2
i , and the `1 norm as ‖x‖1 :=

∑
i |xi|. We abbreviate the

set {wu
i }Ki=1 as {wu

i } whenever the range for index i is clear from the context, and
the set {1, . . . , n} as [n]. Table 1 summarizes the most frequently used symbols.

N,M ∈ N Number of attributes and users, respectively
K ∈ N Cardinality of the query sets
X ⊆ {0, 1}N Set of feasible configurations
wu

∗ ∈ RN
+ True preferences of user u ∈ [M ]

xu
∗ ∈ X One of the configurations most preferred by user u
wu

1 , . . . ,w
u
K ∈ RN

+ Estimated preferences of user u
xu

1 , . . . ,x
u
K ∈ X Query set made to user u

xu ∈ X Recommendation made to user u
v(u) ≥ 0 Variability within {wu

i }
k(u, y) ≥ 0 Similarity between {wu

i } and {wy
i }

α := (α, β, γ) ∈ R3
+ Hyperparameters of the mu-swmm algorithm

Table 1. Notation used throughout the paper.

Constructive setting. We consider a feasible set of products X populated by
multi-attribute configurations x = (x1, . . . , xN ) over N attributes. In this pre-
sentation we will concentrate on 0-1 attributes only, a common choice in the
preference elicitation literature [12,23]. Categorical attributes can be handled by
using a one-hot encoding. Linearly dependent numerical attributes can be dealt
with too; we refer the reader to the detailed discussion in [22] for space con-
straints. In contrast to standard recommendation, the set of products X is not
explicitly provided, but rather defined by a set of hard (feasibility) constraints.
These are assumed to be linear in the attributes. This setup is rather general,
and naturally allows to encode both arithmetical and logical constraints. For in-
stance, under the usual mapping true 7→ 1 and false 7→ 0, the logical disjunction
between two 0-1 attributes x1 ∨ x2 can be written as x1 + x2 ≥ 1. Similarly,
logical implication x1 ⇒ x2 can be translated to (1− x1) + x2 ≥ 1.

Following previous work on preference elicitation [12,23], user preferences
are modeled as additive utility functions [14]. The true user preferences are
represented by a non-negative weight vector w∗ ∈ RN

+ , and the utility (i.e.
subjective quality) of a feasible configuration x is given by the inner product
〈w∗,x〉. The true most preferred configurations, i.e. with maximal true utility,
are analogously indicated as x∗. In the remainder all weight vectors (both true
and estimated) will be assumed to be non-negative and bounded, i.e. for every



Algorithm 1 The swmm single-user algorithm. T is the maximum number of
iterations, K the query set size, and α the hyperparameters.

1: procedure swmm (M , K, T , α)
2: D ← ∅
3: for t = 1, . . . , T do
4: {wi}, {xi} ← Solve OP1(D,K,α)
5: the user selects x+ from {xi}
6: D ← D ∪ {x+ < x− : x− was not selected}
7: w,x← Solve OP1(D, 1,α)

attribute z ∈ [N ] there exist two finite non-negative constants w>z and w⊥z
that bound wz from above and below, respectively. Bipolar preferences, i.e. user
dislikes, can be modeled by negated attributes 1−xz, z∈ [N ], if needed.

The single-user swmm algorithm. The true user preferences w∗ are not directly
observed, and must be estimated. The swmm algorithm tracks an estimate of
the preferences at all times, iteratively improving it through user interaction.

The pseudocode of swmm is reported in Algorithm 1. At every iteration, the
algorithm selectsK query configurations x1, . . . ,xK ∈ X based on the previously
collected user feedback D (line 4). The query set {xi} is presented to the user,
who is invited to select a most preferred configuration x+ from theK alternatives
(line 5). The cases where the user selects a sub-par item are accounted for in the
mathematical formulation, as discussed later on. The user choice is interpreted
as a set of pairwise ranking constraints {x+ < x− : x− was not selected}, and
added to D4 (line 6). At this point, a recommendation x is computed by lever-
aging all user feedback and presented to the user (line 7). If the user is satisfied
with the suggested product, the procedure ends. Otherwise it is repeated, up to
a maximum number of rounds T .

The primary goal of any preference elicitation system is to recover a satisfac-
tory recommendation with minimal user effort. The choice of queries is crucial
for reaching this goal [4]: the number of queries that can be afforded is small,
thus every query should be chosen to be as “informative” as possible. Bayesian
approaches to preference elicitation [12,23] model uncertainty about user prefer-
ences as a probability distribution over utility weights w, and select queries that
maximize expected informativeness, as measured by expected value of informa-
tion (EVOI) [7] or its approximations. However, even the approximate strategies
for EVOI maximization [23] are extremely time consuming and cannot scale to
fully constructive scenarios as the ones we are dealing with here [22].

The swmm query selection strategy addresses this problem by taking a space
decomposition perspective inspired by max-margin ideas. The algorithm jointly
learns a set of weight vectors, each representing a candidate utility function, and

4 In [22], the authors convert user choices to pairwise ranking constraints using a cus-
tom procedure. Here we opted for a straightforward winner-vs-others representation,
as described in the main text. This modification did not appear to significantly alter
the performance of the swmm algorithm in our simulations (data not show).



a set of candidate configurations, one for each weight vector, maximizing diver-
sity between the vectors, consistency with the available feedback, and quality of
each configuration according to its corresponding weight vector.

More formally, user preferences are estimated by a set of K weight vectors
w1, . . . ,wK ∈ RN

+ . Each weight vector wi is required to agree with all collected
feedback D. More precisely, the weights {wi} are chosen as to provide the largest
possible separation margin, i.e. for all i ∈ [K] and (x+ < x−) ∈ D the utility
difference 〈wi,x

+ − x−〉 should be as large as possible. Mistakes are absorbed
by slack variables ε, as customary. Query configurations x1, . . . ,xK are chosen
according to two criteria: each xi should have maximal utility with respect to the
associated weight vectorwi, and the K products should be as diverse as possible.
Diversity is encouraged by requiring that each weight vector wi separates its
associated configuration xi from all the others configurations in the query set
with a high margin, i.e. for all i, j ∈ [K] with i 6= j, 〈wi,xi − xj〉 should be
larger than the margin.

The previous discussion leads directly to the quadratic version of the swmm
optimization problem over the variables µ, {wi,xi, εi}:

max µ− α
∑k

i=1 ‖εi‖1 − β
∑k

i=1 ‖wi‖1 + γ
∑k

i=1〈wi,xi〉 (1)

s.t. 〈wi,x
+
s − x−s 〉 ≥ µ− εis ∀i ∈ [k],x+

s < x−s ∈ D (2)

〈wi,xi − xj〉 ≥ µ ∀i, j ∈ [k], i 6= j (3)

µ ≥ 0, w⊥ ≤ wi ≤ w>, xi ∈ X , εi ≥ 0 ∀i ∈ [k] (4)

The non-negative variable µ ∈ R+ is the separation margin. The objective has
four parts: the first part drives the maximization of the margin µ; the second
minimizes the total sum of the ranking errors {εi}; the third one introduces
an `1 regularizer encouraging sparsity of the learned weights; finally, the last
part requires the configurations {xi} to have high utility with respect to the
associated {wi}. The hyperparameters α, β, γ ≥ 0 modulate the contributions
of the various parts. We refer to this optimization problem as OP1.

Constraint 2 encourages consistency of the learned weights with respect to
the collected user feedback; ranking mistakes are absorbed by the slack variables
{εi}. Constraint 3 enforces the generated configurations to be as diverse as
possible with respect to the corresponding weight vectors. Finally, Constraint 4
ensures that all variables lie in the corresponding feasible sets.

Unfortunately the above optimization problem is quadratic (due to Con-
straint 3) and difficult to optimize directly. Here we use the tight mixed-integer
linear formulation proposed in [22], which can be solved using off-the-shelf MILP
solvers. In that paper, the MILP formulation was shown to perform well empir-
ically, reaching or outperforming two state-of-the-art Bayesian approaches.

4 Multi-user setwise max-margin

Now we generalize the swmm algorithm to simultaneously elicit the preferences of
M users. Our goal is to exploit preferences shared by similar users for computing



Algorithm 2 The mu-swmm algorithm. M is the number of users; T , K and
α are as in Algorithm 1.

1: procedure mu-swmm (M , K, T , α)
2: v(u)← 1, k(u, y)← I(u = y)
3: for u = 1, . . . ,K do
4: {wu

i } ← Solve OP2(u, 0, k,∅,K,α)
5: Du ← ∅
6: for t = 1, . . . , T do
7: select u ∈ argminu |Du| uniformly at random
8: {wu

i }, {xi} ← Solve OP2(u, v, k,Du,K,α)
9: user u selects x+ from {xi}

10: Du ← Du ∪ {x+ < x− : x− was not selected}
11: update v(·) and k(·, ·) based on {w1

i }, . . . , {wM
i } using Eq. 5 and 6

12: wu,xu ← Solve OP2(u, v, k,Du, 1,α)

queries and recommendations. As a consequence, the cognitive effort of query
answering can be distributed (fairly) among users, while maintaining the same
or better recommendation quality.

Our strategy, dubbed mu-swmm, is outlined in Algorithm 2. At every itera-
tion, mu-swmm picks a user u to be queried, based on some criterion (discussed
later on). Then it proceeds like swmm, by selecting a query set {xu

i } for user
u, adding the feedback to Du, and suggesting a recommendation xu. Once a
user has received a satisfactory recommendation, it is removed from the pool of
selectable users and skipped at later iterations5. The algorithm iterates until all
users are satisfied, or T iterations are reached.

We remark that only one user is queried at every iteration. The mu-swmm
algorithm relies on OP2, a modification of OP1 where the utility of configu-
rations is determined both by the estimated preferences of the selected user u,
as well as those of similar (non-selected) users y 6= u. This “aggregate utility”
takes into consideration both the degree of similarity of u to the other users y
and how good their preference estimates are. This avoids interferences due to
similar users with unreliable preference estimates.

In order to implement this strategy, we must solve several problems: how to
quantify the quality of the estimated preferences of a user; how to measure the
similarity between two users; how to appropriately inject the information about
other users into swmm optimization problem OP1; and finally how to select the
user to be queried. We discuss these points separately.

Measuring how much we know about a user. Ideally, one could quantify how
much is known about a user u by using the regret(

max
x
〈wu
∗ ,x〉

)
− 〈wu

∗ ,x
u〉

5 This detail is omitted from Algorithm 2 for simplicity.



i.e. the difference in true utility between a true most preferred recommendation
xu
∗ and the current recommendation xu. Unfortunately, computing the regret

requires to observe wu
∗ , so we must rely on surrogate measures.

A simple surrogate is given by the number of times a user was queried, i.e.
the number of collected user responses |Du|. This quantity, however, may give
a simplistic estimate: in general, two users who replied to the same number of
queries may have widely different regrets, depending on how difficult their pref-
erences are to learn. This is especially true when Du is redundant, i.e. contains
repeated or similar constraints.

Taking care of redundancy requires us to look at the geometry of the problem.
In particular, we use the spread of the weight vectors {wu

i } computed during the
query selection. As informative feedback is added to Du, the space of optimal
weight vectors shrinks, and so does the distance between the vectorswu

1 , . . . ,w
u
K .

More formally, we define the spread of user u as follows:

v(u) := c
∑
i 6=j

‖wu
i −wu

j ‖2 (5)

where the constant c is chosen so that v(u) ∈ [0, 1]. In other words, the spread
is simply the empirical variance of the estimated weights {wu

i }. Note that the
spread is much less affected by redundant constraints than |Du| 6.

Evaluating user similarity. The most general mechanism for defining similarities
between objects are kernels [20]. In particular, two users are similar when their
estimated preferences are. While a variety of kernels could be used, we propose
using a Gaussian kernel, similar to [26,19]:

k(u, y) := exp

−τ ∑
i,j

‖wu
i −w

y
j‖

2

 (6)

Here τ ∈ R+ is an “inverse temperature” parameter controlling the shape of the
kernel. Note that, similarly to [19], the kernel is not fixed: rather, it is adapted
dynamically as soon as new user weight estimates {wu

i } are computed.

Transferring preferences across users. Given a user u, we want to alter its es-
timated utility 〈wu

i ,x〉, i = 1, . . . ,K, based on the preferences of other similar,
well-known users. We propose the following aggregate utility:

(1− v(u))〈wu
i ,x〉+ v(u)

∑
y 6=u

(1− v(y))k(u, y)〈wy,x〉 (7)

This is the convex combination of the utility of user u (first term) and a weighted
combination of the utilities of the other users. Intuitively, the more u is known

6 A constraint repeated l times instantiates l slack variables in OP1, thus becoming
“harder” by a factor of αl. The effect however is much softer than for |Du|.



(e.g. at the end of the elicitation procedure) the closer v(u) is to zero, and
the first term dominates, and vice versa. The contributions of the users y 6= u
are decided, again, by how much is known about them (1 − v(y)) and by their
similarity to user u, measured by the kernel k(u, y). This formulation implies
that there is little influence from users whose preferences are not well known.

It is straightforward to introduce Eq. 7 into OP1. By rearranging the terms,
the aggregate utility can be written as:

〈awu
i + b,x〉 with

{
a = (1− v(u))
b = v(u)

∑
y 6=u(1− v(y))k(u, y)wy

Note that this is a linear transformation of the original, single-user utility. As
shown in [22], it is easy to incorporate linear transformations of this kind into
the swmm optimization problem. In our case, we need to rewrite Constraint 4
as:

aw⊥ + b ≤ wi ≤ aw> + b ∀i ∈ [K]

We use OP2 to refer to the modified optimization problem; in Algorithm 2
we use Solve OP2(u, v, k,Du,K,α) to denote a solution of the problem with
respect to user u, spread v, kernel k, input preferences Du, set cardinality K,
and using α = (α, β, γ) as coefficients in the objective function.

The spread v(·), the user similarity k(·, ·), and the transformation parameters
(a, b) are adapted whenever new feedback is received. The update is computa-
tionally inexpensive: whenever user u provides a response, only k(u, ·) (i.e. a
single row of the Gram matrix) needs to be recomputed.

Fairness-based user selection. The missing piece is how to choose a user at
every iteration. Many strategies may be adopted, depending on the objective. In
multi-user preference elicitation we are most concerned about fair distribution
of queries among users, so to minimize the individual cognitive effort. Therefore
we propose to select the user u that received the least queries so far:

u ∈ argmin
u
|Du|

with ties broken at random. Although other strategies can be conceived, this
simple strategy was observed to work well in our simulations, as shown in Sec-
tion 5. Additionally, we found empirically that it is surprisingly difficult to beat:
all of the more sophisticated strategies we tested failed to improve on it (data
not shown due to space constraints).

5 Empirical Analysis

We studied the behavior of mu-swmm on a synthetic and a realistic preference
elicitation tasks7, both taken from [22]. Our goal is to provide empirical answers

7 Our experimental setup is available at: https://github.com/stefanoteso/

musm-adt17

https://github.com/stefanoteso/musm-adt17
https://github.com/stefanoteso/musm-adt17


to these research questions: (Q1) Does aggregating the utility of similar users, as
per Eq. 7, reduce the cognitive effort required to produce good recommendations?
(Q2) Is the number of queries |Du| a reasonable user selection criterion? (Q3)
How does the algorithm behave when there are no common preferences to be
shared between users?

Our experimental setup follow closely the ones of [22,11]. We randomly gen-
erated 20 groups of M = 20 users each using a hierarchical sampling procedure.
Each group was split into C clusters, with ≈M/C users each. The users within
a cluster are chosen to have similar preferences, simulating different sub-groups
of users. For instance, in a PC recommendation scenario, there may be a cluster
of users who prefer energy efficient laptops and a cluster of power users who need
more capable machines. This cluster structure enables preference information to
be transferred. Note that the clusters are not known to mu-swmm beforehand :
the algorithm estimates them dynamically from the collected user replies.

For each cluster, we sampled the centroid from a uniform distribution in
[1, 100]. The true preferences of the users in the cluster were obtained by per-
turbing the centroid randomly according to a normal distribution of mean 0 and
standard deviation 25/6. As done in [22], we considered users with both sparse
and dense weight vectors: for sparse users, 80% of the entries of the true weight
vector wu

∗ were set to zero.
The user responses were simulated with a Plackett-Luce model [18,16], where

the probability of a particular answer is dictated by a Boltzmann distribution:

P (user chooses xi from {x1, . . . ,xK}) =
exp(λ〈w∗,xi))∑K
j=1 exp(λ〈w∗,xj〉)

with λ fixed to 1 as in [22,11]. For K = 2, this model reduces to the classical
Bradley-Terry model for pairwise ranking feedback [6].

Synthetic setting. The first experiment is performed on the synthetic problem
introduced in [22]. In this setting the space of products X is taken to be the
Cartesian product of r categorical attributes, each having r possible values. We
use a one-hot encoding to represent products, for a total of r2 0-1 variables. Here
we focus on the r = 4 case with r2 = 16 variables and rr = 256 total products.
While simple, this problem proved to be non-trivial [22].

We compared the mu-swmm algorithm against a straightforward multi-user
adaptation of swmm where all users are elicited independently. We also included
in the comparison an unrealistic variant of mu-swmm where the user to be
queried is selected according to the maximal true regret (i.e. assuming that an
oracle gives us this information). We assessed the ability of mu-swmm to prop-
agate preference information between users by varying the number of clusters
C in {1, 2, 5}. We also varied the query set size K ∈ {2, 3}. The kernel inverse
temperature parameter τ was fixed to 2 in all experiments.

The results for sparse users can be found in Figure 1. All algorithms were
run for T = 100 elicitation rounds, i.e. 5 queries per user on average (x-axis). We
report the median performance of the three recommenders across the 20 groups.



The performance on a group is the average regret over all M users (y-axis). As
above, the regret is simply the difference in true utility between a best product
x∗ and the actual recommendation x, i.e. 〈wu

∗ ,x∗ − x〉.
The plots show clearly that when users are similar enough, transferring pref-

erences across them (mu-swmm, red line) is better than no transfer at all (swmm,
gray line). This result is not obvious, since the kernel k(·, ·) is estimated dynam-
ically from the collected feedback to reflect the hidden cluster structure of the
users. The regret-based user selection strategy (blue line) provides an upper
bound on the performance of mu-swmm.

Understandably, the amount of improvement depends on C. The simplis-
tic C = 1 case showcases the potential of preference transfer: both multi-user
methods converge much faster than swmm. In the more realistic C = 2 case,
mu-swmm takes about half the number of queries than swmm to reach zero
median regret. In particular, the number of per-user queries drops from more
than 5 to about 3.3 for K = 2, and from 4 to less than 2 for K = 3. For C = 5,
i.e. 4 users per cluster, both mu-swmm and the regret-based strategy are closer
to the baseline. The results for dense users in Figure 2 follow the same trend,
despite elicitation being more difficult in this case.

In general, mu-swmm fares better than or similarly to the no-transfer base-
line. Notably, enlarging the query set size K from 2 to 3 further improves the
performance of mu-swmm: more ranking constraints are collected at each iter-
ation, thus improving the estimate of the kernel k(·, ·) and preference transfer
among similar users. These results validate Eq. 7 and allow us to answer affir-
matively to question Q1.

They also partially answer Q2. Clearly selecting the user with the minimal
number of queries does improve on the baseline, as shown in Figures 1 and 2. In
addition, we checked whether it distributes queries fairly among users. Indeed, in
the C = 2, K = 2 case the std. dev. in dataset size |Du| between users is rather
small (1.47) for the mu-swmm user selection strategy, and 2.58 for regret-based
user selection. The other cases behave similarly (data not shown).

PC recommendation. In the second experiment we consider a realistic PC con-
figuration task, as in [22]. The recommender is required to suggest a fully
customized PC. A PC configuration is defined by 7 categorical attributes—
type (laptop, desktop or tower), manufacturer, CPU model, monitor size, RAM
amount, storage amount—and a linearly dependent numerical attribute, the
price. The attributes are mutually constrained via Horn clauses, expressing state-
ments like “manufacturer X does not sell CPUs of brand Y”, for a total of 16
Horn constraints. The product space has about 700,000 distinct configurations.

In this experiment we increased the number of average queries per user to 10,
due to the very large number of products. We also restricted ourselves to sparse
users, as in [22], which are more realistic in this setting: a typical customer will
be indifferent about many aspects of a PC configuration.

The performance of the three methods, with K = 2, can be found in Figure 3.
Again, mu-swmm behaves better than the baseline for all values of C ∈ {1, 2, 5},
while the degree of improvement depends on C. For instance, for C = 2 the regret



20 users, 1 cluster 20 users, 2 clusters 20 users, 5 clusters

sparse users, query set size K = 2

sparse users, query set size K = 3

Fig. 1. Results for the synthetic setting with 1, 2, 5 clusters of sparse users, for K =
2, 3. The three lines represent the average regret over users of the swmm baseline (grey
line), mu-swmm with the fair user selection strategy (red), and mu-swmm with the
irrealistic regret-based user selection strategy (blue). The shaded area represents the
standard deviation. Best viewed in color.

achieved after 10 queries per user is much closer to the performance upper bound
(blue line) than to the baseline (gray). These results highlight that, despite
the complexity of this recommendation task, user similarity is still estimated
sufficiently well for preference transfer to work well.

Worst-case behavior. To answer Q3, we studied mu-swmm when there is only
one user in each cluster. This artificial setting is intended to verify the robust-
ness of mu-swmm against missing user similarities. We ran both the synthetic
recommendation (for both sparse and dense users) and the PC recommendation
settings (sparse users only) with C = M = 20 and K = 2; results in Figure 4.

In the two most difficult settings (i.e. synthetic with dense users and PC), mu-
swmm does not perform worse than the baseline. Unfortunately, in the remaining
case (synthetic with sparse users) mu-swmm performs worse than the baseline,
and so does the regret-based user selection strategy. This is probably due to
the kernel estimation taking too long to converge to a suitable value, therefore
propagating preferences between unrelated users. In order to avoid this kind
of interference, it may make sense to reduce the effect of the kernel, especially
during the first elicitation rounds, for instance by making the inverse temperature
τ increase during the process. We will explore this possibility in a future work.



20 users, 1 cluster 20 users, 2 clusters 20 users, 5 clusters

dense users, query set size K = 2

dense users, query set size K = 3

Fig. 2. Results for the synthetic setting with 1, 2, 5 clusters of dense users, for K = 2, 3.

20 users, 1 cluster 20 users, 2 clusters 20 users, 5 clusters

sparse users, query set size K = 2

Fig. 3. Results for PC recommendation with 1, 2, 5 clusters of sparse users, for K = 2.

6 Conclusion

We consider the problem of simultaneously eliciting the preferences of differ-
ent users. The goal is to provide high utility recommendations to each user by
considering all available preference information. A key idea is that, by asking
informative questions and leveraging using similarities, we can produce good
recommendations while distributing cognitive effort fairly among users.

This work tackles the problem of multi-user preference elicitation by gen-
eralizing setwise max-margin [22], thereby inheriting its core features. Namely,
our method can gracefully deal with inconsistencies in user feedback and it can
work in constructive recommendation scenarios, where the product to be rec-
ommended is synthesized by searching a large constrained configuration space
rather than selected from a set of enumerated options.



synthetic, sparse synthetic, dense PC, sparse

Fig. 4. Results for the C = M = 20 case for the synthetic setting with sparse users
(left column), synthetic setting with dense users (middle column) and for PC recom-
mendation with sparse users (right column). Here K = 2.

A key novelty of this work is that our method can effectively propagate prefer-
ence information from user to user. Our method estimates a kernel (similarity)
function between users utility models, as well as a reliability estimate of the
learned model for each user. Preferences of similar, well-known users are com-
bined into an aggregate utility function, which is incorporated into the setwise
max-margin optimization problem while retaining an efficient MILP formulation.

We tested our approach on a synthetic and a realistic recommendation task.
The experimental results show that our method is able to dynamically recover
the similarity between users from their responses, and to exploit it to propagate
preference information between more and less known users. When applied to suf-
ficiently similar users, our method often performs much better than a straightfor-
ward adaptation of single-user setwise max-margin. On the other hand, it fares
well in cases where users are not similar at all. Finally, our simple user selection
strategy minimizes the cognitive effort of individual users by distributing queries
fairly among them, and was shown to work well in practice.
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