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Abstract

Weighted model integration (WMI) is a framework for prob-
abilistic inference over distributions with discrete and con-
tinuous variables and structured supports. Despite the grow-
ing popularity of WMI, existing density estimators ignore the
problem of learning a structured support, and thus fail to han-
dle unfeasible configurations and piecewise-linear relations
between continuous variables. We propose LARIAT, a novel
method to tackle this challenging problem. In a first step, our
approach induces an SMT(LR.A) formula representing the
support of the structured distribution. Next, it combines the
latter with a density learned using a state-of-the-art estima-
tion method. The overall model automatically accounts for
the discontinuous nature of the underlying structured distribu-
tion. Our experimental results with synthetic and real-world
data highlight the promise of the approach.

1 Introduction

Weighted model integration (WMI) is a recent framework
for probabilistic inference in hybrid domains, that is, do-
mains with both discrete and continuous variables. A key
feature of WMI is that it enables reasoning with highly
structured distributions that include arbitrary combinations
of logical and linear constraints. As previously recognized
in work on discrete structured distributions (e.g. (Liang,
Bekker, and Van den Broeck 2017)), these arise in impor-
tant real-world applications because of, e.g., physical and
mechanical limitations (Afshar, Sanner, and Webers 2016)
or safety requirements (Amodei et al. 2016).

Despite their relevance, learning these WMI distribu-
tions (formally defined in the Background) from data has
not been considered so far. Indeed, density estimators for
hybrid domains entirely ignore the problem of identify-
ing and learning the support of the distribution. State-
of-the-art approaches like Mixed Sum-Product Networks
(MSPNs) (Molina et al. 2018) and Density Estimation Trees
(DETs) (Ram and Gray 2011) can only model bounding-
box constraints over individual variables, and do not admit
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oblique supports, which are necessary to capture linear in-
teractions between continuous quantities. Failing to account
for the support can lead to substantial inaccuracies in density
estimation, especially for high-density regions lying at the
border of the support. Most importantly, acquiring a faith-
ful support estimate is necessary to guarantee that invalid or
harmful configurations cannot be generated, a crucial feature
in safety-critical applications, e.g., reliable machine learning
and safe Al (Amodei et al. 2016).

Inspired by work on learning discrete structured distribu-
tions (Liang, Bekker, and Van den Broeck 2017), we con-
tribute LARIAT (LeARning to IntegrATe), a novel approach
for learning WMI distributions from data. Our approach
breaks the learning problem into two steps. In a first step,
a (non-trivial) support is learned from the data. This is ac-
complished by a novel extension of the approach of (Kolb
et al. 2018b) for learning satisfiability modulo linear real
arithmetic formulas (Barrett et al. 2009). Our generalization
extends the original approach to learning from positive-only
data, and inherits the ability to natively acquire oblique and
non-convex constraints. In a second step, a candidate density
is obtained by employing a state-of-the-art non-parametric
estimator, e.g., a DET or an MSPN. Finally, INCAL auto-
matically adjusts (normalizes) the learned density to be con-
sistent with the learned support, thus allocating zero mass to
infeasible configurations while guaranteeing that the result-
ing model is a valid WMI distribution.

Summarizing, our main contributions are: (1) INCAL+, an
extension of the SMT(LR.A) learning algorithm of (Kolb
et al. 2018b) to support learning; (2) LARIAT, a method to
estimate WMI distributions that combines structured sup-
ports (either learned by INCAL+ or provided by a domain ex-
pert) and state-of-the-art density estimators, e.g., DETs and
MSPN:S; (3) Extensive experiments showing the advantages
of LARIAT over standard density estimators in cases where
the underlying distribution has a non-trivial support.

2 Related Work

Non-parametric multivariate density estimation is a ven-
erable field of study. Textbook approaches include his-
tograms (Fix and Hodges Jr 1951) and kernel density es-
timation (Gray and Moore 2003). Histograms partition the



space into regularly sized bins, each associated to a con-
stant density. Adaptive histograms fit a local regressor (e.g.,
a spline) at each bin to capture the finer details while allow-
ing the bin size to grow adaptively (Jing, Koch, and Naito
2012). Kernel density estimation (KDE) fits a local density
around each datapoint. The runtime of these methods grows
quickly with the number of dimensions and/or datapoints.
Multivariate adaptive regression splines (MARS) (Friedman
1991) is another classical, greedy space-partitioning model
(with polynomial leaves) that tends to be more efficient than
histograms and KDE.

Recently, more efficient tree- and grid-based approaches
have been introduced. Tree-based methods (Li, Yang, and
Wong 2016; Meyer 2018) such as Density Estimation Trees
(DETs) (Ram and Gray 2011) achieve considerable scala-
bility by recursively partitioning the space based on axis-
aligned splits. The splits are obtained in an adaptive manner
by greedily optimizing the integrated square error. Notably,
DETs support hybrid domains. Grid-based methods (Pe-
herstorfer, Pfliige, and Bungartz 2014) recursively partition
the space too, but they place the splits at fixed, progressively
finer-grained locations.

In the discrete case, learning of structured distributions
has been explored for probabilistic sentential decision di-
agrams (Kisa et al. 2014) from both examples and pre-
specified constraints (Liang, Bekker, and Van den Broeck
2017). These techniques, however, have not been extended
to hybrid domains. On the other hand, MSPNs (Molina et al.
2018; Vergari et al. 2019) are state-of-the-art density estima-
tors that extend Sum-Product Networks (Poon and Domin-
gos 2011; Darwiche 2009; Vergari, Di Mauro, and Esposito
2019) by introducing continuous variables and polynomial
densities at the leaves. Like DETs, MSPNs allow efficient
inference so long as the query formula is axis-aligned, and
are learned using a greedy scheme. DETs and MSPNs will
be discussed in detail later on. Hybrid SPNs (Bueff, Spe-
ichert, and Belle 2018) is another very recent alternative and
could be used in place of MPSNs. However, since an imple-
mentation is not yet available, we postpone an evaluation to
future work.

None of the above models can learn or represent struc-
tured, oblique supports, which are crucial in many appli-
cations, including safety-critical ones. As our experimental
evaluation highlights, taking the support into account can
lead to dramatically improved performance in some appli-
cations.

3 Background

Satisfiability modulo theories WMI builds on satisfiabil-
ity modulo linear real arithmetic (SMT(LR.A)) (Barrett et
al. 2009), which we briefly overview here. SMT(LR.A) ex-
tends propositional logic to a combination of Boolean and
continuous variables, indicated as A = {A4;,..., Ay} and
X ={Xy,...,Xn}, respectively. An LR.A atom is a for-
mula ). ¢; X; < ¢ such that X; € X, ¢;,¢ € R are con-
stants and 1 € {=, >, <, #, <, >}. We call an LR.A atom
axis-aligned if at most one coefficient c; is non-zero, and
obligque otherwise. An LRA formula ¢ combines Boolean
variables (aka Boolean atoms) and LR.A atoms by means

of standard logical connectives, e.g., ¢ = (41 A (X1 +
X, < —1)) vV (_\A1 A\ (Xl + Xo > 1)) The if-then-
else expression ite(y, ¢, ¢") evaluates to ¢’ if ¢ holds
and to ¢ otherwise. The above formula can be written
ite(A1, X1 + Xo < —1,X; + X2 > 1). Given a set of
LRA formulas ® = {¢1,...,9K}, a total truth assign-
ment ,u‘l’ is an assignment of truth values to all the formulas,
e.g, n® = {1 — L,...,px = T}. Given a formula ¢
and a total truth assignment p to all its atoms, we denote by
p the assignment to the Boolean atoms of ¢. Later on, we
will often call SMT(LR.A) formulas simply “SMT formu-
las” and, according to the context, we denote with “4” either
a set of truth assignments or their conjunction.

Weighted model integration Probabilistic inference over
discrete variables is often solved with weighted model
counting (WMC), i.e., by computing the weighted sum of all
satisfying assignments of a propositional formula (Chavira
and Darwiche 2008). Weighted model integration (WMI)
extends WMC to mixed discrete-continuous domains. Here
we follow (Belle, Passerini, and Van den Broeck 2015;
Morettin, Passerini, and Sebastiani 2017).
A WMI distribution (x,w) over X x A includes:

e a (not necessarily minimal) support x : X x A — B,
which encodes the area outside of which w is zero.

e a conditional weight function w : X x A — R>(, which
associates a weight to interpretations. Intuitively, w plays
the role of a density function. We assume (w.l.o.g.) that w
integrates to 1.

Semantically, w is a piecewise-polynomial function over
X x A. More formally, w is characterized by a set of LR.A
formulas ¥ = {41,...,9¥k}, such that every assignment
1Y identifies a convex region X x A (namely ¥ A x) and
defines a potential function wy,# : X X A — Rxq on it.
The potential functions are usually taken to be (multivari-
ate) polynomials'. Encodings for w include directed acyclic
graphs (Morettin, Passerini, and Sebastiani 2017) (with sum,
product, and branching nodes), MSPNs (Molina et al. 2018),
and extended algebraic decision diagrams (XADDs) (Kolb
et al. 2018a). In XADDs the internal nodes encode the LR.A
conditions W and the leaves are labelled with the polynomi-
als wy, wj. From this perspective, an assignment ¥ merely
specifies a path from the root to a leaf, as well as the region
of X x A where wy,»| applies.

The support x is a standard SMT(LR.A) formula. It is
used by SMT-based solvers for pruning zero-density areas
from the computations using logical reasoning only.

Example. Figure I illustrates the weight function:

w = ite(h1, X; + Xo, ite(vh2, X7,0))
where 1 = (X1 + Xo < 1) A (X7 < 0.5) and o =
-A; A (X2 < 0.2). Note that W[{py s T oo L] = X1+ Xo,

and W[y, 1 o 1)) = 0. The polynomials at the leaves
are unnormalized, for simplicity.

'The potential functions wy,w) must be feasibly integrable;
polynomials satisfy this condition, since they can be integrated over
convex polytopes using numerical (Morettin, Passerini, and Sebas-
tiani 2017) or symbolic (Kolb et al. 2018a) procedures.
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Figure 1: Left: XADD of an example weight function w.
Solid (dashed) arrows point to the true (false) child. Right:
partition induced by w in (A1, X1, X5) € {T, L} x[0,1] x
[0, 1]. The green box is an example query ¢ = = A3 A (0.4 <
X1 <0.9) A (0.1 < X5 <0.6). (Best viewed in color.)

WMI can answer marginal and conditional queries in hy-
brid domains. Given a WMI distribution (, w), computing
the probability of an LR.A formula ¢ involves integrating
the weight of its (potentially uncountably many) models:

P(¢) = WMI(p,w|X,A) = )

MAE]B;M LP[HA]

’U}[HA](X)dX

Here the sum ranges over all total truth assignments on A
and the integral is over all real variables X. Computing
the conditional probability of a query ¢ given evidence ¢,
also reduces to weighted model integration: P(¢|p.) =
P(p Age)/P(pe). Notice that WMI also subsumes volume
computation, since vol(p) = WMI(¢, 1| X, A).

Although WMI is # P-hard in general, several solvers
have been proposed, including exact approaches based
on SMT solvers (Belle, Passerini, and Van den Broeck
2015; Morettin, Passerini, and Sebastiani 2017; Merrell,
Albarghouthi, and D’Antoni 2017), knowledge compila-
tion (Kolb et al. 2018a), and approximate approaches based
on hashing (Belle, Van den Broeck, and Passerini 2016) or
Monte Carlo sampling (Zuidberg Dos Martires, Dries, and
De Raedt 2019).

4 Learning WMI distributions

We are concerned with learning WMI distributions, that is,
hybrid distributions with a structured support. Formally, our
learning problem can be stated as follows:

Definition (WMI learning). Given a dataset D of feasible
samples drawn i.i.d. from an unknown hybrid structured dis-
tribution P* with true support x*, find a WMI distribution
(W, X) that well approximates P*.

Notice that P* is not required to be a WMI distribution, and
that x* is not required to be an SMT formula. In principle
this is not an issue, because (complex enough) WMI distri-
butions can approximate any hybrid structured distribution.

We are now ready to introduce our approach, LARIAT (for
LeARning to IntegrATe). Let D = {(x*,a®)}J_; be the
samples at our disposal, where x° and a® are the values as-
signed to X and A, respectively. LARIAT estimates a WMI
distribution from D by breaking the learning problem into
two tasks: 1) learning a support X; and 2) learning a weight

function w compatible with x. The first step is handled by a
novel generalization of INCAL (Kolb et al. 2018b), a state-
of-the-art method for learning SMT formulas. The second
step uses a hybrid density estimator to learn a weight func-
tion. Finally, LARIAT normalizes the latter to trim away the
unfeasible areas. We discuss these steps in detail.

Learning the support

Given examples of positive (feasible) and negative (infeasi-
ble) variable assignments, INCAL learns an SMT formula ¢
that covers all positive and no negative examples. Support
learning can be reduced to a similar problem, namely finding
a formula x that generalizes from the feasible samples D to
their underlying true support x*. Here we briefly overview
INCAL, and then introduce INCAL+, our generalization of
the former to support learning.

Learning SMT formulas with INCAL Given a set D of
positive and negative examples and a maximum number of
clauses k and unique linear inequalities h, INCAL finds a
CNF (or DNF) formula ¢ of the given complexity that cor-
rectly classifies all examples. The search is encoded as an
SMT(LR.A) satisfaction problem and solved with an SMT
solver, e.g., MathSAT (Cimatti et al. 2013) or Z3 (De Moura
and Bjgrner 2008); the full SMT encoding can be found
in (Kolb et al. 2018b). This non-greedy learning strategy
can acquire SMT formulas with non-convex feasible sets
and oblique LR.A atoms, which lie at the core of WMI dis-
tributions and are beyond the reach of greedier approaches
(see (Kolb et al. 2018b) for a discussion).

INCAL employs an incremental scheme whereby a candi-
date formula is gradually adapted to correctly classify pro-
gressively larger subsets of the data. At iteration ¢, a formula
; that correctly classifies a subset D; of the data is com-
puted. Next, some of the examples V; C D \ D; inconsistent
with ¢; are added to D; to obtain D, and the process re-
peats. Empirically, this allows learning a formula by encod-
ing a small fraction of the dataset, with noticeable runtime
benefits.

If the target formula complexity (k, h) is not given, INCAL
automatically searches for a formula of minimal complexity
that covers all positive and no negative examples. This is
achieved by gradually increasing k£ and A (initially set to 1
and 0, respectively) until an appropriate formula is found.

Learning supports with INCAL+ We cast support learn-
ing as the problem of finding an SMT formula y that covers
all of the positive examples and does not cover regions too
“far away” from them, as determined by some distance mea-
sure d over X x A and a user-provided threshold 6 > 0
over it.

More specifically, let By be the union of S bounding
boxes, each of size 6, centered around the samples in D:

S
By = [J{(x,a) |d((x*,2%), (x,2)) < 6}

s=1



Algorithm 1 The inner loop of the INCAL+ algorithm.
FINDFORMULA uses the INCAL encoding to look for an
SMT formula of complexity at most (k, k) that correctly
classifies D;.

1: procedure LEARN(D: samples, (k, h): complexity)

2: Vo < D;  sample from D, ¢+ 1

3 while |Vi_1| > 0do

4: Xi < FINDFORMULA(D;, k, h)

5: if the solver returns unsat then
6

7

8

| return no support
V; < all misclassified samples in D \ D;
if V; # () then

9: \ V; < sample from V;
10: else ~
11: | Vi + awrongly covered sample in By
12: Diy1 < DUV, 1+1i1+1
13: return y;

Also, let By be its complement. Our assumption is that § can
be chosen so that By is a reasonably tight overapproxima-
tion of the true support x*. In this case, if X approximates
By and does not cover any of By, then it will also be a good
approximation of the true support. (The algorithm can be
trivially adapted to allow for By to be an underapproxima-
tion instead.) Since too complex supports (in terms of k£ and
h) can overfit, we wish to minimize complexity.
This leads to the INCAL+ support learning problem:

miny, K+ h
s.t. (x%,2°) Ex
(x7,a7) Ex

V(x*,a®)eD (1)
V(x ,a )eBy (2

where s = 1,...,.S ranges over all samples in the dataset.
As underlying distance we choose d((x,a), (x/,a’)) =
ite(a = a’,max;(x; — x}),00), which admits an

SMT(LR.A) representation.

This formulation can not be solved directly, because of
the universal quantifier in Eq. 2. For given (k, h), we solve it
with INCAL, by exploiting its incremental learning scheme
(see Algorithm 1). First, an initial subset D; is obtained (at
line 2) by sampling examples from D. Then, at each itera-
tion ¢, INCAL+ computes a formula ¢; that correctly clas-
sifies D; C D (line 4), and a set misclassified variable as-
signments V; is obtained from D; if none are found, a new,
misclassified negative is taken from Bg A x; (lines 7-11).
Finding a negative example (x,a~) € By that is wrongly
covered by x; (line 11) is done via SMT by solving:

X A A\d((x*,a%),(x7,a7)) > 0) A BK

where s iterates over the examples in D and BK is back-
ground knowledge that should not be relearned, such as mu-
tual exclusivity of Boolean variables used as a one-hot en-
coding of discrete multi-valued attributes. The violating ex-
amples are then added to D; to obtain D;;; and the loop
repeats. INCAL+ stops when no violating examples can be
found. To improve the runtime of the algorithm, initial nega-
tive examples sampled from By (e.g., through rejection sam-
pling) can be added to the initial dataset.

Like the original algorithm, INCAL+ allows to search for
values of (k, h) by wrapping the above procedure into a loop
that gradually increases k and h whenever an appropriate
formula can not be found (line 6). This converges to a con-
sistent formula if one exists (Kolb et al. 2018b).

To automatically select a viable threshold 8, we dynami-
cally explore various thresholds 6; = m; - 0,,,,, where 0,,,, is
the average closest distance between neighbors in D. Since
smaller thresholds provide more detailed supports but in-
crease the runtime, we use an exponential-search based pro-
cedure to quickly find the smallest multiple m; for which IN-
CAL+ can learn a support within a given time budget ¢. Start-
ing with an initial multiplier m; and given a maximal num-
ber of steps [V, at each step we run INCAL+ with threshold 6;
for at most ¢ seconds, increasing the multiplier if a sup-
port was found, and decreasing it when INCAL+ timed out.
The latter controls the trade-off between computational re-
sources and complexity of the learned support. Notice how-
ever that a tighter support is not necessarily better, and that
the support to be used in LARIAT should selected e.g. on a
validation set.

Learning the weight function

Since the weight function w behaves like a structured den-
sity function, it can in principle be estimated by any hy-
brid density estimation technique. We focus on two state-of-
the-art models, Density Estimation Trees (DETs) and Mixed
Sum-Product Networks (MSPNs), which we introduce next.
A major limitation is that these estimators can not learn
nor model oblique structured supports. Below we show how
LARIAT lifts this limitation by normalizing the estimated
densities with respect to a learned SMT(LR.A) support.

Density Estimation Trees DETs are a density estimation
analogue of standard decision trees. The internal nodes re-
cursively partition the space with univariate, axis-aligned
LRA conditions (aka splits), while the leaves define uni-
form density functions. DETs are learned from data using
an iterative procedure, whereby splits are introduced so as
to greedily optimize (a surrogate of) the integrated square
error (Ram and Gray 2011). The procedure terminates when
a pre-specified minimal number of instances is covered by
each leaf. In order to control overfitting, the resulting tree is
then pruned. The whole learning procedure allows piecewise
constant densities to be efficiently learned from data.

DETSs have a number of useful features. First, under suit-
able conditions, DETs are provably consistent (Ram and
Gray 2011). Just like decision trees can approximate any
Boolean function, deep enough DETSs can approximate any
weight function to arbitrary precision. Second, given a DET,
the weighted model integral of any axis-aligned query ¢ can
be easily computed by partitioning ( according to the leaves
and summing the resulting integrals.

DETs also have limitations. The shallow DETs that are
used in practice can not approximate oblique LR.A splits.
Moreover, DET leaves have constant density and may fail
to accurately represent non-constant densities. Finally, since
leaves always contain at least one example, DETs can only



model trivial supports (Ram and Gray 2011).

Mixed Sum-Product Networks Mixed Sum-Product Net-
works (MSPNs) (Molina et al. 2018) are state-of-the-art
models for hybrid domains. MSPNs extend Sum-Product
Networks (Poon and Domingos 2011; Darwiche 2009) by
introducing continuous variables and densities. They encode
a circuit where the leaves define piecewise polynomial dis-
tributions over the input variables, and the internal nodes are
sums (i.e., mixtures) or products of their child nodes.

Like DETs, MSPNs are learned greedily from data. The
learning algorithm recursively splits the dataset by either: 1)
partitioning the input variables into independent sets, which
amounts to introducing a product node, or ii) clustering sim-
ilar examples together, thus introducing a sum node. If no
split can be found (e.g., if there’s only one example/variable
in the current dataset), a polynomial leaf node is fit on the
data. In practice, MSPNs implementations support univari-
ate constant or linear leaves only.

By exploiting context-specific independencies, MSPNs
can be much more compact than DETs, while still allowing
for tractable inference of marginal and conditional queries.
Indeed, if the queried quantity decomposes over the circuit,
then inference amounts to a couple of bottom-up evalua-
tions.

Normalization

The third and final step of LARIAT is normalization. Given a
support y and a learned piecewise-polynomial weight func-
tion w, normalization aims at redistributing the density of w
away from the unfeasible region outside of y and inside the
feasible one. After normalization, the resulting weight func-
tion < has to satisfy the properties: p;) WMI(—x, @) = 0;
and p2) WMI(x, @) = 1. For general densities normaliza-
tion is computationally hard, because computing the mass
of infeasible regions is #P-hard. However, it must only be
performed once and the guarantees it offers e.g. in safety-
critical applications justify the additional processing cost.

Global normalization These two properties give rise to a
simple, yet effective normalization scheme which defines:

w
X YNAINALS ~  ~N\ ) 0
ey Y

It is trivial to see that properties p; and po are satisfied, how-

ever, to improve the likelihood of the resulting density, we
can resort to a more elaborate normalization scheme.

W = ite(

Local Normalization Local density estimators, like
DETs, partition the space into sub-regions defined by mu-
tually exclusive SMT formulas y; and fit a local density w;
for every sub-region ¢. The idea behind local normalization
is to retain the space partitioning induced by the learner but
to (locally) normalize the densities within every subregion
such that: WMI(x; A =X, ;) = 0 and WMI(x; A X, w;) =
WMI(x;, @;), where w; is the normalized local density. It
follows that, since the x; exhaustively partition the entire
space and WMI(T,w) = 1, the properties p; and po are

both satisfied. The local normalized density w; can be com-
puted as:

norm” : w; = w; - WMI(x;,w;) / WMI(x; A X, w;)
norm™ : w; = w; + WMI(x; A =X, 10;) / vol(x; A X)

Local normalization for DETs In the case of DETsS, local

densities w; are computed as w; = %%, and we obtain,
Xi)

using S = |D| for the total number of samples and S; =

|D & x| for the number of samples that satisfy x;:

.15 WMI(x;, ;) 1 S;

1T S vol(xi)  WMIG A K@) S Vol AR)
There are three properties of DETs which makes local nor-
malization especially attractive: 1) DETs explicitly describe
the sub-regions; 2) norm* and norm™ yield the same result
since w; is constant; and 3) since every DET subregion con-
tains at least one sample, no subregion can become entirely
infeasible. Local normalization is computationally more ex-
pensive than global normalization, however, for locally fit
models (like DETS) it obtains more accurate models.

Example. Consider a learned weight function (DET) con-
sisting of two non-zero subregions whose local densities
have been fitted based on the number of samples in those
sub-regions ( ith of the samples in the first, and %th of the
samples in the second sub-region):

025 f(0<z<)A0<y<1)
075 if(0<z<I)A(l<y<?2)

and a support X = (y > x). The support only cuts away
feasible volume from the first sub-region, meaning that the
samples falling into the first sub-region are now distributed
over a smaller volume. Therefore, the local normalization
procedure increases the density over the remaining feasible
volume in the first sub-region, while leaving the second sub-
region untouched. We obtain the normalized weight func-
tion:

if0<z<)A(0<y<

oo {05 DAy = )
1075 if(0<2<1)A(l<y<?2)

Local normalization for generic densities First, to nor-
malize generic weight functions encoded as ASTs (e.g.,
MSPNs) which only indirectly describe the sub-regions
and their densities, we can compile the ASTs into equiva-
lent XADDs (Kolb et al. 2018a) that support the enumera-
tion of sub-regions and integration. Second, the choice be-
tween norm* and norm™ is left up to the user. Third, the
density of completely infeasible sub-regions is redistributed
over the entire feasible space akin to global normalization.
It is important to note that normalization of models like
MSPNs that support tractable inference generally may ren-
der inference intractable.

Both normalization schemes are amenable to any support,
be it learned with INCAL+ or provided by a domain expert
(as can be the case in security applications). Since they can
can deal with arbitrary WMI distributions, other density esti-
mators such as MARS (see Related Work), can also be read-
ily converted to WMI and normalized.



S Empirical Analysis

In this section, we explore the following research ques-
tions?: Q1) Does INCAL+ learn reasonable supports? Q2)
Does LARIAT improve over state-of-the-art density estima-
tors when the true support is provided? Q3) Does LARIAT
improve over state-of-the-art density estimators when the
support is estimated by INCAL+? We address the first two
questions on synthetic datasets of increasing complexity,
and the last one on both synthetic and real-world datasets.

Each synthetic dataset was obtained by first generating a
random WMI distribution (x*, w*) with a given number of
Boolean b and continuous variables r, and then sampling
examples (i.e. feasible configurations) from it. More specif-
ically: i) w* was a random XADD sampled by recursively
adding internal and leaf nodes up to a fixed depth d = 2,
where the internal nodes partition the space with a random
SMT(LR.A) formula, while the leaves host a randomly gen-
erated non-negative polynomial of maximum degree 27. ii)
x* was obtained by sampling a CNF formula with i hy-
perplanes and [ literals using the procedure of (Kolb et al.
2018b). Without loss of generality, we restricted the range
of the continuous variables to [0, 1].

We evaluated how the complexity of the true distribution
impacts the performance of INCAL+ and LARIAT by gener-
ating increasingly complex supports, either by fixing b = 3,
! = 3 and varying h and r, or by fixing r = 3, h = 5 and
increasing [ and b, for a total of 30 configurations. For each
configuration, we generated 20 different ground-truth mod-
els and relative dataset, each consisting of 500 training and
50 validation examples.

Learning the support In order to answer Q1, we imple-
mented INCAL+ using the MathSAT solver, applied it to the
synthetic datasets with a timeout of 300 seconds for each
call, and measured the misclassification error between the
true and the learned support. This amounts to the volume
of the symmetric difference of the two supports, that is,
vol((X A =x™) V (=X A X))

In these experiments we ran INCAL+ on training data Dy
and used the validation data D), to select the learned support
that minimizes:

vol(x A —Bjp) N 2 (xe.a)epy 1(x%,2%) = X)
vol(—B;) |Dy|

where 1(. ..) is the indicator function and B}, is the formula
that encodes the union of bounding boxes of size 6 around
the points in Dy, being 6 the threshold used to learn . Fig-
ure 2 (left) shows the average and standard deviation mis-
classification error (normalized in [0, 1]) for each set of pa-
rameters. INCAL+ is compared to the trivial support, given
by the range of each single variable in the dataset. Results
show that INCAL+ learns a support that substantially im-
proves on the trivial one in all settings, apart for a few in-
stances for | = 4 where it timed out. This allows us to an-
swer question Q1 affirmatively.

The code is available at: URL ANONYMIZED

Dataset DET +LARIAT | MSPN  +LARIAT
anneal-U —61.2 —38.5 | —41.9 6.0
australian —44.1 —-30.1 | —32.8 —27.8
auto —80.8 —63.5 | —67.2 —58.5
balance-scale —7.2 —6.4 —7.5 —6.4
breast —29.6 —29.2 | —26.1 —25.2
breast-cancer —11.8 -91 | —-11.5 —8.6
cars —40.1 —29.5 | —29.2 —26.8
cleve —-31.2 —26.9 | —28.0 —25.8
crx —48.2 —32.7 | —-32.7 —28.8
diabetes —28.8 —-27.9 | -30.3 —294
german —46.1 —-36.4 | -394 -33.3
german-org —28.8 —28.6 | —27.5 —25.2
glass —-2.1 1.6 0.7 3.7
glass2 4.2 4.8 4.7 5.2
heart —24.1 —23.8 | —24.7 —22.7
hepatitis —29.3 —24.0 | —27.1 —23.7
iris —4.3 -34 -2.9 -2.7
solar —15.0 —2.6 —7.6 3.3

Table 1: Average log-likelihood on the test set for the
UCI/MLC++ experiment. Bold text highlights a statistically
significant improvement (p-value < 0.0001) in the test set
log-likelihood of LARIAT over the unnormalized model.

Learning synthetic distributions We addressed Q2 and
Q3 by comparing the distribution learned by the density es-
timator alone (DET or MSPN) with the one learned by LAR-
IAT using ground truth (Q2) and INCAL+ estimated (Q3)
support.

Contrary to the previous support learning experiment, IN-
CAL+ was run on D7 UDy,. Weight learning was performed
on D7 only, reserving the validation set Dy, to select the best
support among those learned by INCAL+, as the one yielding
the highest log-likelihood on Dy,. For DETs, the validation
set was also used to prune the tree.

We measured the quality of the learned distributions
(X, w) by measuring the integrated absolute error (IAE) with
respect to the true distribution:

IAE (0, w*) :Z/ (X, A) — w* (X, A)| dX
A YXVX®

Since computing the exact value of TAE is computation-
ally prohibitive, we performed a Monte Carlo approximation
with 1,000,000 samples.

The average IAEs and their standard deviations are shown
in Figure 2 (middle) and (right) when using DET and MSPN
estimators respectively. The results affirmatively answer Q2,
as LARIAT with ground truth support achieves substantial
improvements over the density estimators alone, for both
DET and MSPN. The same holds for Q3 when using a DET
estimator, even if the improvements are clearly more lim-
ited. Conversely, the supports learned appear not as effective
when applied to the global normalization.

Learning real-world distributions In order to check
whether the improvements shown by LARIAT in the syn-
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Figure 2: Results on the synthetic datasets. Left: volume of the difference of the true support and the learned (blue) or trivial
(red) ones for varying (I, b) (top) and (r, h) (bottom). Middle: IAE of DETs (red) vs. LARIAT-DETs with learned (blue) and
ground truth (green) support. Right: IAE of MSPNs (red) vs. LARIAT-MSPNs with learned (blue) and ground truth (green)

support. (Best viewed in color.)

thetic experiments hold in real world scenarios, we tested its
performance on real-world datasets (question Q3). The cate-
gorical features were converted to Booleans with a one-hot-
encoding. The resulting mutual exclusivity constraints were
used to initialize both INCAL+ and the sampling procedures.
Support and weight learning were run using the same setting
used for the synthetic distributions.

We evaluated LARIAT on the hybrid UCI benchmarks
contained in the MLC++ library, which includes 18 hy-
brid datasets from different real-world domains. On some
datasets, INCAL+ was not able to discover any non-trivial
support on the full hybrid space before timing out. In those
cases, the search was then performed on the numerical sub-
space, allowing INCAL+ to learn linear relationships among
the continuous variables. Table 1 shows the average log-
likelihood computed on the test set for each dataset. (No-
tice that the log-likelihood of test points falling outside
the model support is —co. In order to apply the metric in
our structured and hybrid spaces, we follow the approach
of (Molina et al. 2018) and substitute each log(0) in the av-
erage with a large negative constant.)

For the most complex tasks, LARIAT-DET is sometimes
unable to complete the local normalization within reason-
able time. If the local normalization timeout (set to 1200s)
is reached, LARIAT’s fallback strategy is to apply the faster,
global normalization.

Nevertheless, in every setting LARIAT improves the per-
formance of the underlying model. We compared the log-
likelihood of test set points using a Wilcoxon test, confirm-
ing that the improvement is significant for both DETs and
MSPNs (p-value < 0.0001).

The tasks that benefited the most from LARIAT are charac-
terized by a large amount of categorical and few continuous

variables. A more extensive investigation of the factors con-
tributing to the performance gains is left for future work.

6 Conclusion and Future Work

We presented LARIAT, a novel approach for learning WMI
distributions from data. LARIAT first learns a non-trivial
SMT(LR.A) support from examples—using an extension
of a recent SMT(LR.A) constraint learner to positive-only
data—and then combines said support with state-of-the-art
hybrid density estimators. Our experiments with DETs and
MSPNs show that combining support learning and density
estimation allows to more accurately recover the underly-
ing density. Our approach is modular, and each component
can be replaced with alternative solutions whenever appro-
priate. For instance, solutions based on search-based pro-
gram synthesis (Alur et al. 2018) could be explored as a re-
placement for INCAL+ in learning supports. Concerning the
density estimator, we showed the advantages of integrating
support learning and density estimation for both DET and
MSPN, but other density estimators like the recently pro-
posed HSPN (Bueff, Speichert, and Belle 2018) could be
tried as soon as implementations will be made available.
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