
Component Caching in Hybrid Domains with Piecewise Polynomial Densities

Vaishak Belle∗
KU Leuven, Belgium
vaishak@cs.kuleuven.be

Guy Van den Broeck
University of California, Los Angeles

guyvdb@cs.ucla.edu

Andrea Passerini
University of Trento, Italy

passerini@disi.unitn.it

Abstract

Counting the models of a propositional formula is an im-
portant problem: for example, it serves as the backbone of
probabilistic inference by weighted model counting. A key
algorithmic insight is component caching (CC), in which dis-
joint components of a formula, generated dynamically during
a DPLL search, are cached so that they only have to be solved
once. In the recent years, driven by SMT technology and
probabilistic inference in hybrid domains, there is an increas-
ing interest in counting the models of linear arithmetic sen-
tences. To date, however, solvers for these are block-clause
implementations, which are nonviable on large problem in-
stances. In this paper, as a first step in extending CC to hy-
brid domains, we show how propositional CC systems can
be leveraged when limited to piecewise polynomial densi-
ties. Our experiments demonstrate a large gap in performance
when compared to existing approaches based on a variety of
block-clause strategies.

Introduction
Counting the models of a propositional formula, also re-
ferred to as #SAT, is an important problem in AI: for ex-
ample, it serves as the backbone of probabilistic inference
by weighted model counting (Chavira and Darwiche 2008).
#SAT appears to be more computationally challenging than
SAT, in that #SAT is complete for the class #P which is at
least as hard as the polynomial-time hierarchy. Thus, the task
of counting all assignments calls for novel algorithmic ideas.

One such powerful algorithmic idea is component caching
(CC), in which disjoint components of a formula, gener-
ated dynamically during a DPLL search, are cached so that
they only have to be solved once. Investigations into CC re-
vealed that not only is it a clever practical insight for har-
nessing an existing DPLL trace for model counting, but
it also achieves significant time-space tradeoffs (Bacchus,
Dalmao, and Pitassi 2009). In a probabilistic context, CC
closely matches the competitiveness of approaches such as
recursive conditioning (Darwiche 2001) and bucket elimina-
tion (Dechter 1996). Going further, SAT-based techniques

∗Supported by the Research Foundation-Flanders (FWO-
Vlaanderen).
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

can also reason about logical equivalence and determinis-
tic (hard) constraints in a principled way. Overall, CC is
the dominant approach for solving #SAT exactly, directly by
DPLL search or through knowledge compilation (Darwiche
2004). (For approximate methods, which are the not the fo-
cus here, see, for example, (Chakraborty et al. 2014).)

In the recent years, driven by SMT technology (Barrett
et al. 2009), diverse applications from verification in hybrid
systems (Chistikov, Dimitrova, and Majumdar 2015) to pri-
vacy (Fredrikson and Jha 2014) to inference in hybrid graph-
ical models (Belle, Passerini, and Van den Broeck 2015) re-
sort to counting the models of sentences from richer logi-
cal languages, especially the first-order fragment of linear
arithmetic. This fragment includes sentences of the form
((x + y) > z) ∨ p and (0.3 ≤ x ≤ 8.2), that is, the lan-
guage includes both binary and real-valued (or continuous)
variables, and so can concisely capture many complex do-
mains. Existing exact solvers here, however, perform model
counting by means of a block-clause strategy: in each iter-
ation of the search procedure, if a satisfying interpretation
α � b1 ∧ . . . ∧ bk is found, where bi is a literal, then ¬α
is added as a constraint for the subsequent iteration. In the
propositional context, such strategies are well-known to be
nonviable on all but small problem instances (Sang, Beame,
and Kautz 2005). To that end, it is natural to ask: can CC
be generalized to hybrid domains? Given the maturity of
propositional model counting technology, it is perhaps more
immediate to consider the conditions under which we can
leverage existing CC systems.

Our concern in this paper is the fundamental problem of
probabilistic inference in hybrid graphical models. In previ-
ous work (Belle, Passerini, and Van den Broeck 2015), we
proposed a formulation of this problem as a model count-
ing task over linear arithmetic formulas followed by an inte-
gration over the weights of models, referred to as weighted
model integration (WMI). As a first step in understanding
effective modeling counting for hybrid domains, we develop
ideas to leverage propositional CC systems for WMI. The
key restriction needed is that the continuous random vari-
ables are assumed to have piecewise polynomial densities.

Early work by Curds (1997) and recent investigations by
Shenoy and West (2011) show that polynomial densities are
not only natural for certain distributions (e.g., piecewise lin-
ear and uniform), but can also effectively approximate dif-

ferentiable families (e.g., Gaussians). Such representations
are widely used, for example, in computer graphics and nu-
merical analysis (Shenoy and West 2011), and have received
considerable attention in the recent years in the inference en-
deavor (cf. the subsequent section). Under this assumption,
propositional CC algorithms can be leveraged using three
simple but powerful ideas:

1. piecewise structure can be encoded in propositional logic;

2. DPLL search can be made to return densities rather than
the probability mass;

3. the integration of densities can be performed as a last step
in an effective manner.

We prove a number of formal properties about this approach,
and then turn to empirical evaluations. For our evaluations,
we compare this approach to two other WMI realizations:
the straightforward block-clause implementation from our
prior work (Belle, Passerini, and Van den Broeck 2015),
and one that builds on the allsatmodel enumerator imple-
mented in SMT solvers, which is based on a sophisticated in-
tegration of linear arithmetic and SAT solvers. To rigorously
compare these realizations, we convert challenging discrete
graphical models from the literature to hybrid ones, and our
experiments demonstrate a large gap in performance.

Related Work
A number of methods are known for performing exact
inference in discrete graphical networks, such as bucket
elimination (Dechter 1996), and weighted model count-
ing (WMC) that extends #SAT in according weights to the
models of a propositional formula (Chavira and Darwiche
2008). For hybrid graphical models, however, most infer-
ence algorithms are either approximate, e.g., (Murphy 1999;
Gogate and Dechter 2005; Lunn et al. 2000), or they make
strong assumptions on the form of the densities, e.g., Gaus-
sians (Lauritzen and Jensen 2001). This led to consider-
able interest in graphical models with polynomial densities,
e.g., (Salzmann 2013; Wang, Schwing, and Urtasun 2014;
Shenoy and West 2011; Sanner and Abbasnejad 2012),
where inference is often addressed by generalizations of the
join-tree algorithm or variable elimination. In contrast, WMI
accords weights to the models of linear arithmetic formulas,
and so is a strict generalization of WMC. Like WMC, it al-
lows us to reason about logical equivalence and determinis-
tic constraints over logical connectives in a general way.

While the focus of this paper is on exact inference,
approximate inference for WMI is investigated in (Belle,
Van den Broeck, and Passerini 2015), which is then related
to approximate model counting (Chakraborty et al. 2014). In
that vein, Chistikov, Dimitrova, and Majumdar (2015) intro-
duced an approximate algorithm for counting the models of
linear arithmetic.

Background
Probabilistic Models and Piecewise Polynomials
Let V = {x1, . . . , xk, b1, . . . , bm} be a finite set of random
variables, where xi take values from R and bi take values

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

u

w
ei

gh
t

(a) degree 0

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

u

w
ei

gh
t

(b) degree 3

Figure 1: approximations to a univariate Gaussian

from {0, 1}. We let (x1, . . . , xk, b1, . . . , bm) be an element of
the probability space Rk × {0, 1}m, which denotes a particu-
lar assignment to the random variables from their respective
domains. The joint probability density function is denoted
by Pr(x1, . . . , xk, b1, . . . , bm), and the partition function is:

Z =

∫
{x1,...,xk}

∑
{b1,...,bm}

Pr(x1, . . . , xk, b1, . . . , bm).

In this paper, the density is assumed to be of the form:

Pr(x1, . . . , bm) =

P(x1, . . . , xm) if x1 ∈ A1, b1 = θ1, . . .

.

0 otherwise

where Ai is an interval of R, θi ∈ {0, 1} , and P(x1, . . . , xm)
is any polynomial over {x1, . . . , xm}. We then say that the
distribution has piecewise polynomial densities.

For ease of presentation, however, we center discussions
around a definition from (Shenoy and West 2011), which can
be seen as a special case of what we handle. For the sequel:

Definition 1: A one-dimensional function f : R 7→ R is said
to be MOP if it is a function of the form:

f (x) =

{
a0i + a1ix + . . . + anixn if x ∈ Ai, i = 1, . . . ,m
0 otherwise

where A1, . . . , Am are disjoint intervals in R that do not de-
pend on x, and a ji is a constant for all i, j.

A k-dimensional function f : Rk 7→ R is a MOP function
if it is of the form:

f (x1, . . . , xk) = f1(x1) × f2(x2) × · · · × fk(xk),

where fi(xi) is a one-dimensional piecewise polynomial
function as defined above.

As argued in Shenoy and West (2011), MOPs natively
support distributions such as uniform and piecewise linear.
By further appealing to Taylor expansions (Shenoy and West
2011), differentiable distributions can also be effectively ap-
proximated in terms of MOPs. Henceforth, although our def-
inition of piecewise polynomial densities is strictly more
general than MOPs, we simply use the term piecewise poly-
nomial densities everywhere.

In Definition 1, we often refer to the intervals Ai as
“pieces,” and by definition, every density function is charac-
terized in terms of a finite number of pieces. The degree of
the polynomial representation corresponds to the granularity

of the approximation, in the sense that increasing the num-
ber of pieces and the corresponding degree of the polynomi-
als can lead to better approximations. For example (Belle,
Passerini, and Van den Broeck 2015), suppose x is a random
variable with univariate Gaussian density. Its approximation
in terms of 0 degree polynomials would be as in Figure 1a,
whereas its approximation in terms of polynomials of degree
3 would be as in Figure 1b; in the former, an interval, say,
[1.5, 3] has the density 0.043, in the latter, an interval, say,
[1, 2] has the density (2 − x)3/6.

By extension, let:

Pr(x1, . . . , bm) = f (x1, . . . , xk) × g1(b1) × · · · × gm(bm) (1)

where f is a piecewise polynomial function and gi : {0, 1} →
R is the form:

gi(bi) =

{
ci0 if bi = 0
ci1 otherwise

where ci0 and ci1 are constants.

Logical Background
In SAT, given a formula φ in propositional logic, we decide
whether there is an assignment (or model) M that satisfies φ,
written M |= φ. We write l ∈ M to denote the literals that are
satisfied at M.

A generalization to this decision problem is that of Satis-
fiability Modulo Theories (SMT). In SMT, we are interested
in deciding the satisfiability of a (typically quantifier-free)
first-order formula with respect to some decidable back-
ground theory, such as linear real arithmetic LRA. Stan-
dard first-order models can be used to formulate SMT; see
(Barrett et al. 2009) for a treatment. We use p, q and r to
range over propositional letters, and x, y and z to range over
constants, i.e., 0-ary functions, of the language. So, ground
atoms are of the form q, ¬p and x + 1 ≤ y. For convenience,
we also use a ternary version of ≤ written y ≤ x ≤ z to
capture intervals and treat them as literals.

For our purposes, we also need the notion of formula ab-
straction and refinement (Barrett et al. 2009). Here, a bijec-
tion is established between ground atoms and a propositional
vocabulary that is homomorphic with regards to logical op-
erations; propositions are mapped to themselves and ground
LRA atoms are mapped to fresh propositional symbols. Ab-
straction proceeds by replacing the atoms by propositions,
and refinement replaces the propositions with the atoms. We
denote the abstraction of an SMT formula φ by φ− and the
refinement of a propositional formula φ by φ+. For example,
[p ∨ (x ≤ 10)]− is p ∨ q, and [p ∨ q]+ is p ∨ (x ≤ 10).

Weighted Model Counting and Integration
WMC extends #SAT in that the weight of a formula is given
in terms of the total weight of its models, factorized in terms
of the literals true in a model:

Definition 2: Given a formula ∆ in propositional logic over
literals L, and a weight function w : L → R≥0, the weighted
model count (WMC) is defined as:

WMC(∆,w) =
∑
M|=∆

WEIGHT(M,w)

WEIGHT(M,w) =
∏
l∈M

w(l)

WMI generalizes WMC in labeling LRA literals (Belle,
Passerini, and Van den Broeck 2015) :

Definition 3 : Suppose ∆ is a LRA sentence over binary
variables B and continuous variables R, and literals L. Sup-
pose POLY(R) is the set of polynomial expressions over R.
Suppose w : L → POLY(R). Then:

WMI(∆,w) =
∑

M|=∆−

VOL(M,w)

VOL(M,w) =

∫
{l+:l∈M}

WEIGHT(M,w) dX.

In English: WMI is defined in terms of the models of the
abstraction ∆−, that are accorded a volume, obtained on in-
tegrating the refinements.1

To illustrate WMI, consider this example:

Example 4: Suppose ∆ = p∨(0 ≤ x ≤ 10). Letting q = [0 ≤
x ≤ 10]−, suppose w(p) = .1, w(¬p) = 2x, w(q) = 1 and
w(¬q) = 0. Roughly, x is a uniform distribution on [0, 10]
when p holds; otherwise it is characterized by a polynomial
density of degree one. There are three interpretations of ∆−.
The model {¬p, q} is accorded a volume given by:2

VOL({¬p, q} ,w) =

∫
{¬p+, q+}

2x dx =

∫
0≤x≤10

2x dx = 100.

Analogously, VOL({p, q} ,w) = 1 and VOL({p,¬q} ,w) = 0.
Therefore, WMI(∆,w) = 101.

Exact Inference with Component Caching
As mentioned earlier, we appeal to three simple but power-
ful ideas for speeding up WMI using CC: (a) a propositional
representation for the piecewise structure of densities, (b)
letting DPLL traces return densities, and (c) handling inte-
gration compactly at the end. We justify these steps formally
after briefly recapping the CC methodology.

Component Caching
Any propositional theory over variables B and CNF formu-
las F can be naturally seen as a hypergraph H = (V,E)
where the vertices V correspond to the variables B and
each clause in F corresponds to a hyperedge in E. That
is, a hyperedge e ∈ E connecting a, b, c ∈ V means that
there is a clause in F over those three variables. Recall that
#SAT is #P-complete (Valiant 1979), and so all known algo-
rithms require exponential time in the worst case. Nonethe-
less, for theories whose hypergraphs have a small treewidth

1The original formulation in (Belle, Passerini, and Van den
Broeck 2015) is not limited to polynomials, but we take the lib-
erty of doing so for the sake of consistency in presentation.

2Propositions are ignored for integration; see (Belle, Passerini,
and Van den Broeck 2015) for the general definition on how refine-
ments are handled wrt integration.

Algorithm 1 #DPLLCache(∆,w) returns WMC(∆,w)
1: if InCache(∆) then return GetValue(∆)
2: Θ = RemoveCachedComponents(∆)
3: choose variable v from some component β ∈ Θ
4: #DPLLCache(∆ − {β} ∪Θ0,w) // Θ0 = ToComponents(β|v=0)
5: #DPLLCache(∆ − {β} ∪ Θ1,w) // Θ1 = ToComponents(β|v=1)
6: AddToCache(β,w(v)×GetValue(Θ1)+w(¬v)×GetValue(Θ0))
7: return GetValue(∆)

(Bacchus, Dalmao, and Pitassi 2009), techniques like recur-
sive conditioning are very efficient. In contrast, the obvious
modification of DPLL for counting that backtracks fully is
always exponential-time. (Consider, for example, a k-CNF
formula over k · n variables and n clauses that share no
variables.) CC is an algorithm that decomposes the input
formula into independent components that are cached and
solved only once. For example, (p∨q)∧(q∨r)∧(t∨s) decom-
poses into components {p ∨ q, q ∨ r} and {t ∨ s}, whereas
(p ∨ q) ∧ (q ∨ r) ∧ (t ∨ r) corresponds to a single compo-
nent. CC solves #SAT with time complexity that is at least as
good any other exact algorithm, but can also achieve the best
known time-space tradeoff (Bacchus, Dalmao, and Pitassi
2009). By further appealing to more flexible variable order-
ings, significant speedups over other algorithms is possible.

A full description of the algorithm can be found in (Bac-
chus, Dalmao, and Pitassi 2009), but a basic weighted ver-
sion is given in Algorithm 1. The algorithm takes as input
a formula ∆ as a set of components. If the formula is al-
ready present in the cache, then its weighted model count is
returned via GetValue(∆). If not, ∆ is first restricted to the
set of non-cached components {β1, . . . , βn} . Then, choosing
some β, and some variable v mentioned in β,we compute (or
retrieve from cache) the weighted model counts of: (a) β|v=1,
and (b) β|v=0, where φ|v=b denotes the logical simplification
of φ by setting v to b. The weighted model count of β is then
obtained in line 6, which amounts to multiplying (a) by the
weight of v and (b) by that of ¬v.

Step 1: Eager Encodings
Observe that if we were to directly apply standard CC
on a propositional abstraction of a LRA sentence, we are
doomed to obtain inconsistent components.

Example 5: Consider ∆ = ((p∨ x ≤ 10)∧ (q∨ x ≥ 11)). On
abstraction, suppose we have (p∨s)∧(q∨t), where s+ = (x ≤
10) and t+ = (x ≥ 11). This sentence can be decomposed
into components {p ∨ s} and {q ∨ t}, but the truth values of
the literals {x ≤ 10, x ≥ 11} are not independent in LRA.

What is required, then, is a way to reason about LRA con-
sistency explicitly in the propositional formula. For exam-
ple, clearly s ⇔ ¬t in the above example, and if that sen-
tence is added to ∆−, the resulting formula would be treated
as a single component, as desired. Thus, in general, by ap-
pealing to LRA theorems, we can generate a purely propo-
sitional equisatisfiable formula for a given ∆. This would
come with a singular benefit: with some effort, a proposi-
tional CC system could be applied to the LRA setting.

The above desiderata comprises what is often called the
eager encoding of SMT sentences, the details of which are
not necessary here (Barrett et al. 2009). Unfortunately, ea-
ger encodings of arbitrary sentences in many first-order frag-
ments, includingLRA, incurs the cost of a significant blow-
up in the translation. Fortunately, for the particular case of
piecewise polynomial densities, the encoding is small and
elegant.3

Leveraging the piecewise structure The key observation
from Definition 1 is that one can provide an encoding of a
joint distribution in a manner that limits the LRA sentences
to disjoint intervals only, whose weights are given using sin-
gle variable polynomials:

Theorem 6: Suppose Pr(x1, . . . , bm) is a joint distribution of
the form (1), whose partition function is Z. Then there is an
LRA sentence ∆ and w such that WMI(∆,w) = Z, where
(a) for every continuous variable x in ∆, only literals of the
form α ≤ x ≤ β appear in ∆, where α, β ∈ R, (b) given
literals α ≤ x ≤ β and α′ ≤ x ≤ β′ in ∆, [α, β] and [α′, β′]
are disjoint intervals in R, and (c) w maps α ≤ x ≤ β to a
polynomial of the form a0 + a1x + . . . + anxn.

Proof: By assumption, Pr(x1, . . . , xk) = f1(x1) × · · · ×
fk(xk) × g1(b1) × · · · × gm(bm) where fi(xi) are piecewise
polynomials. By Definition 1, any instantiation of the ran-
dom variable xi must be in one of the disjoint intervals
A1, . . . , Am, where A j = [s j, t j] such that s j, t j ∈ R. More-
over, the density accorded to xi ∈ A j is of the form Pi j(xi) =

a0 j + a1 jxi + . . . + al jxl
i. For variable i, then, let φi � ∨ j(s j ≤

xi ≤ t j) with w(s j ≤ xi ≤ t j) = Pi j(xi). Finally, let ∆ = ∧iφi.
For the binary variables, let w(bi) = ci1 and w(¬bi) = ci0. It
is now not hard to see that WMI(∆,w) = Z.

Intuitively, then, for a full instantiation of the random vari-
ables x1 ∈ A1, . . . , xk ∈ Ak, associated with densities
P1(x1), . . . , Pk(xk), any model satisfying

∧
i(xi ∈ Ai) is ac-

corded the multi-variate density P1(x1) × · · · × Pk(xk).

Example 7: For illustration, Figure 2a is a coarse approx-
imation of a univariate Gaussian distribution given by ∆ =
(0 ≤ x ≤ 1) ∨ (1 < x ≤ 2), w(0 ≤ x ≤ 1) = 2x and
w(1 < x ≤ 2) = 2(2 − x) and 0 everywhere else.

Analogously, Figure 2b is a coarse approximation for a
bivariate Gaussian distribution, where ∆′ = ∆ ∧ ((0 ≤ y ≤
1) ∨ (1 < y ≤ 2)), and w additionally assigns: w(0 ≤ y ≤
1) = 2y and w(1 < y ≤ 2) = 2(2 − y) and 0 everywhere
else for y’s values. So, for example, any model that satisfies
ψ = (0 ≤ x ≤ 1)∧(0 ≤ y ≤ 1) would be accorded the density
2x × 2y = 4xy.

Finally, consider a proposition p and suppose w assigns:
w(p) = .9 and w(¬p) = .1. Then any model satisfying ψ ∧ p
is accorded the density 3.6xy.

3Strictly speaking, it is the piecewise structure of the density
function that turns out to be crucial to our methodology. In other
words, much of what we discuss in this paper would change little
if the density was, say, piecewise exponential. However, we are
not aware of any efficient methodologies to integrate products of
exponentials, outside of the usual case for conjugate distributions.

(a) 1d (b) 2d

Figure 2: coarse approximations

FromLRA to propositional logic From Theorem 6, a re-
stricted LRA fragment is sufficient for encoding the joint
distribution, by means of which an elegant eager encoding
is possible.

Definition 8: Suppose (∆,w) is as in Theorem 6. For any
variable x, suppose literals α1 ≤ x ≤ β1, . . . , αk ≤ x ≤ βk are
the only ones mentioning x in ∆. Let Γ be obtained by adding
the following clauses to ∆: ¬(αi ≤ x ≤ βi) ∨ ¬(α j ≤ x ≤ β j)
for i , j. Then, let Ω = Γ− and w′([αi ≤ x ≤ βi]−) = w(αi ≤

x ≤ βi). We call (Ω,w′) the eager encoding of (∆,w).

Basically, the additional constraint disallows x from taking
on values from multiple intervals.4 To see that, suppose ∆ =
((0 ≤ x ≤ 1) ∨ (1 < x ≤ 2)). If Ω is defined as ∆− = (p ∨ q),
then there is a model of Ω that makes both p and q true,
which corresponds to a LRA-inconsistent assignment. The
new constraint (¬p ∨ ¬q) is trivially entailed by ∆ in LRA,
but is needed in Ω for the equisatisfiability of Ω and ∆.

Reasoning about evidence and queries is an important
concern, which requires some extra work with eager en-
codings. Given ((0 ≤ x ≤ 1) ∨ (1 < x ≤ 2)) ∈ ∆,
the query/evidence 0 ≤ x ≤ 1 can be easily handled by
simply considering its abstraction with Ω. A query such as
(0 ≤ x ≤ .5) needs the addition of the following LRA the-
orem to Ω: (0 ≤ x ≤ .5) ⇒ (0 ≤ x ≤ 1). Finally, a query
of the form (.5 ≤ x ≤ 1.5) is less trivial. We can, however,
meaningfully split intervals. Using the mathematical prop-
erty that if the density of the interval α ≤ x ≤ β is δ, then the
density of both α ≤ x ≤ (β − α)/2 and (β − α)/2 < x ≤ β are
also δ, we can convert the original specification to one that
handles arbitrary interval queries.

Step 2: DPLL Traces with Densities
The construction (Ω,w′) from Definition 8 differs from a
standard WMC task in that w′ maps literals to polynomial
densities. In fact, these densities are defined for specific in-
tervals, which determine the bounds of the integral in Defini-
tion 3. The key observation we now make is that Algorithm 1
can be modified to carry over information about the bounds
in line 6 by letting it be AddToCache(β, γ) where γ is:

[Iv+ ×w′(v)×GetValue(Θ1)+ I¬v+ ×w′(¬v)×GetValue(Θ0)]

4Readers may observe significant similarities between this en-
coding scheme and that of multi-valued discrete Bayesian networks
(Sang, Beame, and Kautz 2005; Chavira and Darwiche 2008).

and Ie is the indicator event that e holds. That is, γ returns
a sum of product of densities, as applicable for the interval
determined by (¬)v+, which is enabled by I(¬)v+ .

For illustration, continuing Example 7, let [0 ≤ x ≤ 1]− =
p and [0 ≤ y ≤ 1]− = q. Suppose β = {p, q} is a component
considered for line 3 of Algorithm 1. Then γ becomes

Ip+ × w′(p) × GetValue(β|p=1) +
I¬p+ × w′(¬p) × GetValue(β|p=0).

The first term, for example, simplifies to I0≤x≤1 × 2x ×
GetValue(β|p=1), which is understood as saying that (0 ≤
x ≤ 1) is the interval for the density 2x.

Step 3: Delayed Integration
We now observe that the volume of a model in Definition 3
can be defined in terms of indicator events:∫
{l+:l∈M}

WEIGHT(M,w) =

∫
Rn
I{l+:l∈M} ×WEIGHT(M,w).

For example,
∫ 5

0 φdx =
∫
R
I0≤x≤5φdx. More generally, this

simplification can be applied to Definition 3 to yield:

WMI(∆,w) =
∑

M|=∆−

∫
Rn

I{l+:l∈M} ×WEIGHT(M,w) dX

=

∫
Rn

∑
M|=∆−

∏
l∈M

Il+ × w(l+) dX

Indeed, the modified CC algorithm essentially returns ex-
pressions of the form Il+ ×w(l+). This means that only a final
integration step is needed wrt piecewise densities for com-
puting WMI. More precisely, we obtain:

Theorem 9: Suppose ∆,w,Ω,w′ are as in Definition 8. Then

WMI(∆,w) =

∫
Rn

#DPLLCache(Ω,w′).

Complexity
There are two key computations in the WMI framework, the
first of which is the integration when computing the volume
in Definition 3. It is known that computing the volume of
polytopes of varying dimension is #P-hard (Dyer and Frieze
1988), and that integrating arbitrary polynomials over a sim-
plex is NP-hard (Baldoni et al. 2011). However, Baldoni et
al. (2011) further show that when the polynomial, of a de-
gree at most d, uses a fixed number of variables, integra-
tion over a simplex can be done in polynomial time. Under
those same assumptions, this result can be extended to gen-
eral polytopes because all polyhedral computation, such as
computing triangulations, is efficient (Baldoni et al. 2011).
This allows us to obtain the following:

Theorem 10: Suppose d, n ∈ N, (∆,w) is as before, where
∆ mentions literals L. Suppose |L| = n and for any L ⊆ L,∏

l∈L w(l) is of degree at most d. Then for any L ⊆ L, given
the polynomial P =

∏
l∈L w(l), there is a polynomial-time

algorithm for the integration of P.

Table 1: characteristics of the datasets used in
the experiments

Dataset #vars #clauses #literals
alarm 596 865 4167
child 279 419 1655
insurance 787 1380 6591
water 3661 3072 18145

Table 3: CC execution time (in seconds) over
piecewise constant and polynomial densities

Dataset CONST POLY
alarm 3.06 26.94
child 0.02 1.64
insurance 20.77 135.49
water 0.01 0.33

Table 2: comparing solvers execution times (in seconds) against increasing miss-
ing evidence, an X indicates that the solver did not terminate after 12 hours

Missing 5 10 15 20 25 30 50 75 100 150 200
alarm

BC 1.09 261.74 X X X X X X X X X
ALL 0.48 4.88 162.89 2842.69 X X X X X X X
CC 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01

child

BC 0.19 1.13 478.25 X X X X X X X X
ALL 0.18 0.31 4.54 139.98 X X X X X X X
CC 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.01

insurance

BC 1.47 344.41 X X X X X X X X X
ALL 0.67 6.71 238.33 X X X X X X X X
CC 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00

water

BC 6.08 1700.70 X X X X X X X X X
ALL 2.73 34.54 2282.18 X X X X X X X X
CC 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 2.03 0.01

We also need to take into account the complexity of the
counting operation, which, of course, runs in exponential-
time in the worst case. However, based on the formal proper-
ties of CC (Bacchus, Dalmao, and Pitassi 2009), we obtain:

Theorem 11: Suppose (∆,w) is as before, and (Ω,w′) is
the eager encoding of (∆,w) and suppose Ω uses n proposi-
tions. Then there is an execution of #DPLLCache(Ω,w′) that
runs in time bounded by nO(1)2O(w) where w is the underlying
treewidth of the instance.

Evaluations
In this section, we demonstrate that the approach introduced
here performs significantly better than known techniques for
model counting of arithmetic constraints. Our techniques are
built on the competitive WMC solver cachet (Sang, Beame,
and Kautz 2005). For integrating in fixed dimensions effi-
ciently, we use LattE v1.6.5 All experiments were run using
a 2.83 GHz Intel Core 2 Quad processor and 8GB RAM.

While there are a number of existing benchmarks for dis-
crete graphical models (Chavira and Darwiche 2008), we
are not aware of well-established and challenging bench-
marks for mixed discrete-continuous graphical networks. On
a related note, existing #SAT generalizations often resort to
proof-of-concept demonstrations (Chistikov, Dimitrova, and
Majumdar 2015), or small-size randomly generated prob-
lems (Belle, Passerini, and Van den Broeck 2015). In par-
ticular, as with (Sang, Beame, and Kautz 2005), we are de-
liberately after structured problems with many logical de-
pendencies between variables and hard constraints.

Our observation here is that many standard Bayesian net-
works (see (Chavira and Darwiche 2005; 2008) for sources),
including water, alarm, mildew, munin, among others, are
discrete models of continuous random variables, often with a
piecewise structure. Based on this, we propose the construc-
tion of hybrid networks where these properties are modeled

5https://www.math.ucdavis.edu/∼latte

using actual continuous variables. This allows us to gen-
erate a suite of challenging benchmark problems. To see
the recipe using an example, consider the alarm network
where the measurement of a patient’s blood pressure are:
low, normal and high. Letting the continuous variable x de-
note blood pressure, we consider the intervals 70 ≤ x ≤ 90,
90 < x ≤ 120 and 120 < x ≤ 190 to denote those states
respectively. We associate low and high with triangular den-
sities, that is, polynomials in x with degree 1. Finally, we as-
sociate normal with a piecewise polynomial approximation
of a Gaussian. In the sequel, we consider such hybrid ver-
sions of alarm,water, insurance, and child.6 Table 1 briefly
summarizes the characteristics of the datasets.

To demonstrate the benefits of WMI with component
caching (denoted CC in the results), we consider a straight-
forward block-clause realization of WMI (denoted BC in the
results) (Belle, Passerini, and Van den Broeck 2015). BC is
implemented using MathSAT v5.7 In the recent years, the
SMT community has developed their own variant of model
enumeration called allsat (simply denoted ALL). ALL
is based on a sophisticated and deep integration of LRA-
theory and SAT solvers.8 To date, variants of such native
model enumeration techniques and block-clause strategies
are the most dominant in the literature. We implemented an
ALL-based WMI system, also using MathSAT v5. Our ob-
jective here is to show that for the piecewise polynomial set-
ting, CC via eager encodings provides huge savings.

The overall recipe is this: given a hybrid graphical model
N, we consider a simpler setting with piecewise constant

6The caveat here is that apart from the labels on the nodes in the
graphical networks, we do not have access to natively hybrid ver-
sions of these networks. Thus, we randomly modeled some nodes
as continuous variables and randomly chose polynomial densities.

7http://mathsat.fbk.eu
8It is worth noting that these model enumeration techniques

handle arbitrary SMT problems, and thus, are more general than
our CC methodology.

densities (denoted CONST) and a second setting with piece-
wise polynomial potentials (denoted POLY). A weighted
LRA encoding of N is provided to BC and ALL, and a
weighted propositional one to CC (following Definition 8).

Regarding CONST, ALL and BC were not able to com-
plete the WMC task on all the networks considered, given
a timeout of 12 hours. However, we can simplify the task
for ALL and BC by providing a large amount of evidence.
This can be done in a principled manner as follows. We first
find a model M for the input sentence, which is a complete
truth assignment to all the propositions. Suppose there are n
propositions, and we would like to provide k propositions as
evidence. Then the SMT and CNF files are modified to assert
the truth values of k propositions as suggested by M. For ex-
tremely large k (or rather extremely small missing evidence
n − k), ALL and BC successfully terminate in Table 2. As
k is reduced in small iterations, ALL and BC are yet again
infeasible. Overall, CC offers a large gap in performance.

For the more challenging case where no evidence is pro-
vided, the performance of CC on CONST and POLY are
reported in Table 3. We observe that the effort needed for
integration is reasonable, given the complex nature of the
problems. (POLY is not reported for ALL and BC.)

Conclusions
In this paper, we considered the problem of performing ex-
act inference in hybrid networks. By enabling component
caching, realized in terms of eager encodings and delayed
integration, we obtained a new WMI solver, with a large
gap in performance when compared to existing implemen-
tations. Given that many real-world AI applications involve
combinations of discrete and continuous variables, develop-
ing effective model counting techniques for hybrid domains
is worthy of further investigation.

The efficiency of our eager encoding approach depends
on the piecewise structure of the probability density func-
tion. Adapting component caching strategies to more gen-
eral functions, like those obtained with the full language
of linear arithmetic, is a challenging direction for future re-
search. One possible strategy, for example, is to upgrade the
notion of a component to not only range over propositions
but also over the continuous variables. While this would be
general and come with some benefits, it remains to be seen
if it performs meaningfully in complex settings such as dy-
namic Bayesian networks (Boyen and Koller 1998) where
variables become correlated very quickly.

References
Bacchus, F.; Dalmao, S.; and Pitassi, T. 2009. Solving #SAT and
Bayesian inference with backtracking search. Journal of Artificial
Intelligence Research 34(1):391–442.

Baldoni, V.; Berline, N.; De Loera, J.; Köppe, M.; and Vergne, M.
2011. How to integrate a polynomial over a simplex. Mathematics
of Computation 80(273):297–325.

Barrett, C.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C. 2009.
Satisfiability modulo theories. In Handbook of Satisfiability. chap-
ter 26, 825–885.

Belle, V.; Passerini, A.; and Van den Broeck, G. 2015. Probabilistic
inference in hybrid domains by weighted model integration. In
Proc. IJCAI.
Belle, V.; Van den Broeck, G.; and Passerini, A. 2015. Hashing-
based approximate probabilistic inference in hybrid domains. In
UAI.
Boyen, X., and Koller, D. 1998. Tractable inference for complex
stochastic processes. In UAI, 33–42.
Chakraborty, S.; Fremont, D. J.; Meel, K. S.; Seshia, S. A.; and
Vardi, M. Y. 2014. Distribution-aware sampling and weighted
model counting for sat. Proc. AAAI.
Chavira, M., and Darwiche, A. 2005. Compiling Bayesian net-
works with local structure. In IJCAI, volume 19, 1306.
Chavira, M., and Darwiche, A. 2008. On probabilistic inference
by weighted model counting. Artificial Intelligence 172(6-7):772–
799.
Chistikov, D.; Dimitrova, R.; and Majumdar, R. 2015. Approx-
imate counting in smt and value estimation for probabilistic pro-
grams. In TACAS, volume 9035. 320–334.
Curds, R. M. 1997. Propagation techniques in probabilistic ex-
pert systems. Ph.D. Dissertation, Department of Statistical Science,
University College London.
Darwiche, A. 2001. Recursive conditioning. Artificial Intelligence
126(1):5–41.
Darwiche, A. 2004. New advances in compiling CNF to decom-
posable negation normal form. In Proceedings of ECAI, 328–332.
Dechter, R. 1996. Bucket elimination: A unifying framework for
probabilistic inference. In UAI, 211–219.
Dyer, M. E., and Frieze, A. M. 1988. On the complexity of comput-
ing the volume of a polyhedron. SIAM J. Comput. 17(5):967–974.
Fredrikson, M., and Jha, S. 2014. Satisfiability modulo counting:
A new approach for analyzing privacy properties. In LICS, 42:1–
42:10. New York, NY, USA: ACM.
Gogate, V., and Dechter, R. 2005. Approximate inference algo-
rithms for hybrid bayesian networks with discrete constraints. UAI.
Lauritzen, S. L., and Jensen, F. 2001. Stable local computation
with conditional gaussian distributions. Statistics and Computing
11(2):191–203.
Lunn, D. J.; Thomas, A.; Best, N.; and Spiegelhalter, D. 2000.
Winbugs - a Bayesian modelling framework: concepts, structure,
and extensibility. Statistics and computing 10(4):325–337.
Murphy, K. P. 1999. A variational approximation for bayesian
networks with discrete and continuous latent variables. In UAI,
457–466.
Salzmann, M. 2013. Continuous inference in graphical models
with polynomial energies. In CVPR, 1744–1751.
Sang, T.; Beame, P.; and Kautz, H. A. 2005. Performing bayesian
inference by weighted model counting. In AAAI.
Sanner, S., and Abbasnejad, E. 2012. Symbolic variable elimina-
tion for discrete and continuous graphical models. In AAAI.
Shenoy, P., and West, J. 2011. Inference in hybrid bayesian net-
works using mixtures of polynomials. International Journal of Ap-
proximate Reasoning 52(5):641–657.
Valiant, L. 1979. The complexity of enumeration and reliability
problems. SIAM Journal on Computing 8(3):410–421.
Wang, S.; Schwing, A. G.; and Urtasun, R. 2014. Efficient infer-
ence of continuous markov random fields with polynomial poten-
tials. In NIPS, 936–944.

