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Abstract

In recent years, there has been considerable progress on fast
randomized algorithms that approximate probabilistic infer-
ence with tight tolerance and confidence guarantees. The idea
here is to formulate inference as a counting task over an an-
notated propositional theory, called weighted model counting
(WMC), which can be partitioned into smaller tasks using
universal hashing. An inherent limitation of this approach,
however, is that it only admits the inference of discrete prob-
ability distributions. In this work, we consider the prob-
lem of approximating inference tasks for a probability dis-
tribution defined over discrete and continuous random vari-
ables. Building on a notion called weighted model integra-
tion, which is a strict generalization of WMC and is based on
annotating Boolean and arithmetic constraints, we show how
probabilistic inference in hybrid domains can be put within
reach of hashing-based WMC solvers. Empirical evaluations
demonstrate the applicability and promise of the proposal.

Introduction
Weighted model counting (WMC) on a propositional knowl-
edge base is an effective and general approach to probabilis-
tic inference in a variety of formalisms, including Bayesian
and Markov Networks. It extends the model counting task,
or #SAT, which is to count the number of assignments (or
models) that satisfy a logical sentence (Gomes, Sabharwal,
and Selman 2009). In WMC, one accords a weight to every
model, and computes the sum of the weights of all models.
The WMC formulation has recently emerged as an assembly
language for probabilistic reasoning, offering a basic for-
malism for encoding various inference problems. State-of-
the-art reasoning algorithms for Bayesian networks (Chavira
and Darwiche 2008), probabilistic programs (Fierens et al.
2013) and probabilistic databases (Suciu et al. 2011) re-
duce their inference problem to a WMC computation. Exact
WMC solvers are based on knowledge compilation or com-
ponent caching (Chavira and Darwiche 2008).

However, exact inference is #P-hard (Valiant 1979), and
so, there is a growing interest in approximate model coun-
ters. Beginning with Stockmeyer (1983), who showed that
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approximating model counting with a tolerance factor can
be achieved in deterministic polynomial time using a ΣP
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oracle, a number of more recent results show how ran-
dom polynomial-time realizations are possible using an NP-
oracle, such as a SAT solver (Jerrum, Valiant, and Vazirani
1986; Karp, Luby, and Madras 1989; Ermon et al. 2013;
Chakraborty et al. 2014). The central idea here is the use
of random parity constraints, in the form of universal hash
functions (Sipser 1983), that partition the model counting
solution space in an inexpensive manner. Most significantly,
such methods come with tight tolerance-confidence guaran-
tees, unlike classical variational methods that only provide
asymptotic guarantees.

The popularity of WMC can be explained as follows. Its
formulation elegantly decouples the logical or symbolic rep-
resentation from the statistical or numeric one, which is en-
capsulated in the weight function. When building solvers,
this allows us to reason about logical equivalence and reuse
SAT solving technology (such as constraint propagation and
clause learning). WMC also makes it more natural to reason
about deterministic, hard constraints in a probabilistic con-
text. Nevertheless, WMC has a fundamental limitation: it is
purely Boolean. This means that the advantages mentioned
above only apply to discrete probability distributions.

To counter this, in a companion paper (Belle, Passerini,
and Van den Broeck 2015), we proposed the notion of
weighted model integration (WMI). It is based on satisfi-
ability modulo theories (SMT), which enable us to reason
about linear arithmetic constraints. The WMI task is defined
on the models of an SMT theory ∆, containing mixtures of
Boolean and continuous variables. For every assignment to
these variables, the WMI problem defines a weight. The total
WMI is computed by integrating these weights over the do-
main of solutions of ∆, which is a mixed discrete-continuous
space. Consider, for example, the special case when ∆ has no
Boolean variables, and the weight of every model is 1. Then,
WMI simplifies to computing the volume of the polytope en-
coded in ∆. More generally, weighted SMT theories admit a
natural encoding of hybrid graphical models, analogous to
the encodings of discrete graphical models using weighted
propositional theories.

In this work, we consider the problem of approximating
inference tasks for a probability distribution defined over
discrete and continuous random variables. Formulated as



a WMI task, we address the question as to whether fast
hashing-based approximate WMC solvers can be leveraged
for hybrid domains. What we show is that an NP-oracle
can indeed effectively partition the model counting solu-
tion space of the more intricate mixed discrete-continuous
case using universal hashing. (Of course, volume compu-
tation via integration is still necessary, but often over very
small spaces.) In this sense, hybrid domains can now be put
within reach of approximate WMC solvers.1 In particular,
the hashing approach that we consider here builds on the
recent work of Chakraborty et al. (2014) on approximate
WMC, and inherits their tolerance-confidence guarantees.
In our empirical evaluations, the approximate technique is
shown to be significantly faster than an exact WMI solver.
We then demonstrate the practical efficacy of the system on
a complex real-world dataset where we compute conditional
queries over intricate arithmetic constraints that would be
difficult (or impossible) to realize in existing formalisms.

Let us finally mention that current inference algorithms
for hybrid graphical models often make strong assumptions
on the form of the potentials, such as Gaussian distributions,
or approximate using variational methods (Murphy 1999).
There is also a recent focus on piecewise-polynomial poten-
tials (Shenoy and West 2011; Sanner and Abbasnejad 2012),
which are based on generalizations of techniques such as the
join-tree algorithm. Such piecewise-polynomials can also be
represented in the WMI context, but in a general frame-
work allowing arbitrary Boolean connectives and determin-
istic hard constraints.

Weighted Model Integration
We briefly review the ideas behind WMI.

From a probabilistic perspective, we are imagining a set
of Boolean random variables B and real-valued random vari-
ables X . In particular, we let (b, x) = (b1, . . . , bm, x1, . . . , xn)
be an element of the probability space {0, 1}m ×Rn, and we
let Pr(b, x) denote the probability of the assignments (b, x)
to the variables in B∪X .Assuming the joint probability den-
sity function Pr can be suitably factorized, e.g. via graphical
models, we would like to perform probabilistic inference,
that is, compute things like the partition function and condi-
tional probabilities (Koller and Friedman 2009).

For the discrete case, that is, when limited to Boolean
variables B only,2, a prominent approach to perform infer-
ence is WMC (Chavira and Darwiche 2008). The idea is to
encode the graphical model as a weighted propositional the-
ory, and then compute the model count on this theory. Recall
that SAT is the problem of finding a satisfying assignment M
to a propositional formula φ. WMC, an extension of #SAT,

1In an independent and recent effort, Chistikov, Dimitrova, and
Majumdar (2015) also introduce the notion of approximate model
counting for SMT theories. The most significant difference be-
tween the proposals is that they focus only on unweighted model
counting. Moreover, they define model counting as a measure on
first-order models. Our approach is a simpler one that, as we will
see, allows us to cast statements for WMI in terms of WMC.

2Handling random variables that take values from finite sets,
rather than {0, 1}, is also possible (Sang, Beame, and Kautz 2005),
but we omit a discussion on this for simplicity.

computes the number of models of φ, and defines a weight
to each of these based on the input theory. Formally, Given a
formula ∆ in propositional logic over literals L, and a weight
function w : L → R, WMC is defined as:

WMC(∆,w) =
∑
M|=∆

w(M)

where, w(M) is shorthand for
∏

l∈M w(l). Here, given an
assignment (or model) M, we write M |= φ to denote satis-
faction. We write l ∈ M to denote the literals (that is, propo-
sitions or their negations) that are satisfied at M. We often
writeM(φ) to mean the set of models of φ.

The key insight behind WMI is that for hybrid graphical
models, we would need to talk about satisfiability and model
counting over logical theories with propositions (for B) as
well as real-valued variables (for X ). This is made possible
by satisfiability modulo theories (SMT) technology (Barrett
et al. 2009). More precisely, in SMT, DPLL is generalized to
decide the satisfiability of a (typically quantifier-free) first-
order formula with respect to some decidable background
theory T . Formally, assume a bijection between ground first-
order atoms (from the language of linear arithmetic) and a
propositional vocabulary; formula abstraction, denoted φ−,
proceeds by replacing the atoms by propositions, and refine-
ment, denoted φ+, replaces the propositions with the atoms.
For example, if ∆ = (x ≤ 4) ∧ (x ≤ 5), then ∆− = p ∧ q
where (say) p denotes x ≤ 4 and q denotes x ≤ 5; also,
q+ = x ≤ 5. Then, suppose ∆ is an linear arithmetic theory
over Boolean and rational variables B and X , and literals L.
Suppose w : L → EXPR(X ), where EXPR(X ) are expres-
sions over X . WMI is defined as:

WMI(∆,w) =
∑

M|=∆−

VOL(M,w)

where, VOL(M,w) =

∫
{l+:l∈M}

w(M) dX .

The intuition is as follows. The WMI of a linear arithmetic
theory ∆ is defined in terms of the models of its proposi-
tional abstraction ∆−. For each such model, we compute its
volume, that is, we integrate the weight values of the literals
that are true at the model. The interval of the integral is ob-
tained from the refinement of each literal. Finally, EXPR(X )
is the weight function mapping an expression e to its density
function, which is usually another expression mentioning the
variables in e.

To see a very simple example, let ∆ = (0 ≤ x)∧ (x ≤ 10),
and suppose w maps (0 ≤ x) to 2 and (x ≤ 10) to x. Suppose
p∧ q is the abstraction. Then ∆ has only one model, namely
the one where both p and q are true, and we find:

VOL({p, q} ,w) =

∫
0≤x≤10

2x dx = [x2]
10
0 = 100.

Thus, WMI(∆,w) = 100.
The correctness of WMI and the fact that it is a strict gen-

eralization of WMC are argued elsewhere (Belle, Passerini,
and Van den Broeck 2015).



Approximating WMI
The purpose of this section is to identify how to approximate
WMI(∆,w). As mentioned before, we would like such an al-
gorithm to come with strong theoretical guarantees. To bet-
ter understand what we offer, consider the well-understood
WMC version (Chakraborty et al. 2014):

Definition 1 : Given a propositional sentence ∆ and a
weight function w, an exact algorithm for WMC returns
WMC(∆,w).An approximate algorithm for WMC given tol-
erance ε ∈ (0, 1] and confidence 1−δ ∈ (0, 1], simply called
an (ε, δ)-algorithm, returns a value v such that

Pr
[
WMC(∆,w)

1 + ε
≤ v ≤ (1 + ε)WMC(∆,w)

]
≥ 1− δ

Intuitively, when the weight of every model is 1, an exact
algorithm returns the size of the setM(∆) = {M | M |= ∆}
while an approximate one samples from that solution space.
The main question, then, is how can we sample from an un-
known solution space while offering such tight bounds? We
return to this question shortly.

Problem Statement
To see how the above notion applies to our task, consider an
SMT theory ∆ and weight function w. We observe that

WMI(∆,w) = WMC(∆−, u)

where, for any model M of ∆−, u is a weight function such
that u(M) = VOL(M,w). More precisely, u is to be seen as
a weight function that does not factorize over literals and
directly maps interpretations to R. (This is without any loss
of generality.) Thus, our problem statement becomes:

Definition 2: An (ε, δ)-algorithm for a WMI problem over
∆ and w is an (ε, δ)-algorithm for WMC over ∆− and
weight function u, where for any model M of ∆−, u(M) =
VOL(M,w).

The idea is that by treating the volumes of models as weights
over propositional interpretations, we can view WMI simply
in terms of WMC. Theoretical results can then be inherited.

There are two caveats, however. First, the weights on the
propositional abstraction need to be actually computed us-
ing integration during inference. Second, such an algorithm
samples feasible satisfying assignments for ∆−, but these
need not be consistent in arithmetic. For example, if p de-
notes x ≤ 3 and q denotes x ≥ 5, then the interpretation
{p, q} is not a model in linear arithmetic. We refer inter-
ested readers to the full paper (Belle, Van den Broeck, and
Passerini 2015) for details on how these are addressed.

Approach
Approximate algorithms for model counting (i.e. when the
weights are uniform) with strong guarantees have been the
focus of many papers, e.g. (Jerrum, Valiant, and Vazirani
1986; Karp, Luby, and Madras 1989; Ermon et al. 2013;
Chakraborty et al. 2014). The main technical device is the
use of uniform hash functions (Sipser 1983), a discussion

of which we omit here. Roughly speaking, given a propo-
sitional theory φ, rather than countingM(φ) exactly, which
is #P-hard, one computes the models of φ ∧ χ, where χ is a
random parity constraint corresponding to the hash function.
The parity constraint has the effect of partitioning M(φ)
into a set of well-balanced cells: such a cell is a relatively
small subset of the solution space. We count solutions for
such cells, which is relatively easy owing to their size, and
leverage that count as an estimate for the solution space as
a whole. It can be shown that for an efficient family of hash
functions, such an approach provides the desired bounds.

At this point, our formulation for approximating WMI is
basically agnostic about the counting algorithm used, giv-
ing us a direct way to adapt its bounds. In this paper, we
demonstrate that by leveraging the work of Chakraborty
et al. (2014) (CFMSV henceforth). As argued by Ermon
et al. (2013), the one major limitation when applying ap-
proximate model counters for probabilistic inference is that
weights play an important role in deeming which samples
are interesting. Therefore, uniformly sampling from M(φ)
is not appealing, and would lead to poor estimates of con-
ditional probabilities. The approach taken by CFMSV is to
bias the sampling by means of a parameter called tilt.

Definition 3: Suppose (∆,w) is a weighted propositional
theory. Let wmax = maxMw(M) and let wmin = minMw(M).
We define the tilt θ to be the ratio wmax/wmin.

They introduce an algorithm WeightMC(∆,w, ε, δ, θ) for
which they show (our rewording):

Theorem 4 : [CFMSV] Suppose (∆,w) is a weighted
propositional theory, and ε, δ, θ are as above. Then
WeightMC(∆,w, ε, δ, θ) is an (ε, δ)-algorithm for
WMC(∆,w). Given a SAT-oracle, it runs in time poly-
nomial in log2(1/δ), θ, |∆| and 1/ε relative to the oracle.

For our purposes, we adapt the notion as follows:
Definition 5: Suppose (∆,w) is a weighted SMT theory. Let
wmax = maxM VOL(M,w) and let wmin = minM VOL(M,w).
We define the tilt θ to be the ratio wmax/wmin.

We then compute:

WMI(∆,w, ε, δ, θ) = WeightMC(∆−, u, ε, δ, θ)

where u is calculated using u(M) = VOL(M,w).
We are (almost) done. The algorithm WeightMC has to

be adapted to address the caveats mentioned earlier (theory
consistency, computing integrals optimally). We argued in
(Belle, Van den Broeck, and Passerini 2015) that this adap-
tion does not affect the algorithm’s theoretical properties,
which allows us to show:
Corollary 6: Suppose ∆ is an SMT theory, w is a weight
function, and ε, δ, θ are as above. Suppose u is the derived
weight function for ∆−. Then, WeightMC(∆−, u, ε, δ, θ) is
an (ε, δ)-algorithm for WMI(∆,w). Suppose we are given
an oracle to the weight function u and a SAT-oracle.
Then, WeightMC(∆−, u, ε, δ, θ) runs in time polynomial in
log2(1/δ), θ, |∆−| and 1/ε relative to the oracles.
The oracle to u computes the volumes of T -consistent mod-
els, which is shown to be efficient by Baldoni et al. (2011).



Figure 1: At most two junctions from A6.

Empirical Evaluations
We now study the scaling behavior and expressivity of an
approximate inference system on a complex real-world sce-
nario; see (Belle, Van den Broeck, and Passerini 2015) for
a comprehensive report and implementation details. The
scenario involves computing conditional queries over arith-
metic constraints, and is based on a data series released by
the UK government that provides the average journey time,
speed and traffic flow information on all motorways in Eng-
land, known as the Strategic Road Network.3 Motorways are
split into junctions, and each information record refers to a
specific junction, day and time period. Figure 1 shows the
portion of the network around the A6 motorway, limited to
at most two junctions from A6.

Imagine a planning problem for a supply system for mo-
torway service stations. The operations center (located, say,
somewhere along A6) receives supply requests from a num-
ber of stations, and needs to predict whether the delivery
vehicle will be able to reach all stations and return within
a certain amount of time. Travel time between every pair
of stations, and between stations and the operations center,
is computed in terms of shortest paths across the network.
We compute shortest paths for both minimum and maximum
travel times, so as to get a distribution for the shortest path
duration wrt every pair of relevant points (stations and oper-
ations center). Then, given a certain route between stations,
the probability of completing it within the desired time can
be computed by integrating over travel time distributions be-
tween consecutive stops.

For example, based on our statistical model, the proba-
bility of beginning from the operations center at 8 a.m. and
completing the route touching A14, A1304, A43, and A5199
by 9 a.m. is: Pr(T < 3600) = 0.765. Here, T is the time
taken for the route in seconds. Suppose, however, we re-
quest that station A14 should be reached only after visit-
ing A1304 (owing to a delivery request between these two
stations) but A1304 should not be visited before 8:30 a.m.

3
http://data.gov.uk/dataset/dft-eng-srn-routes-journey-times

(say, because the package to deliver will not be available un-
til then). Then the system would compute: Pr(T < 3600 |
tA14 > tA1304 ∧ tA1304 ≥ 1800) = 0.557. Finally, suppose a
last constraint were to require the station A5199 to be also
visited after 8:30 a.m. (say, when a package to be delivered
to the operations center will be made available). This addi-
tional constraint makes it infeasible to complete the route in
the required time: Pr(T < 3600 | tA14 > tA1304 ∧ tA1304 ≥
1800 ∧ tA5199 ≥ 1800) = 0.

We use this construction as a template for considering cy-
cle paths of increasing lengths to study the implementation
extensively (see the full paper for details). To the best of our
knowledge, a probabilistic inference system for hybrid spec-
ifications against intricate Boolean combinations of propo-
sitional and arithmetic constraints has not been deployed on
such a scale previously.

Conclusions
We introduced a novel way to leverage a fast hashing-based
approximate WMC methodology for inference with dis-
crete and continuous random variables. On the one hand,
SAT technology can now be exploited in challenging infer-
ence and learning tasks in hybrid domains. On the other,
strong tolerance-confidence guarantees can be inherited in
this more complex setting. Weighted SMT theories allow a
natural encoding of hybrid graphical networks while also ad-
mitting the specification of arithmetic constraints in condi-
tional queries, all of which are difficult to realize in standard
formalisms. We demonstrated its practical efficacy in a com-
plex novel application, deployed on a scale not considered
previously.
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