
XSLTGen: A System for Automatically

Generating XML Transformations via

Semantic Mappings?

Stella Waworuntu and James Bailey

NICTA Victoria Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
{stellavw, jbailey}@cs.mu.oz.au

Abstract. XML is rapidly emerging as a dominant standard for repre-
senting and exchanging information. The ability to transform and present
data in XML is crucial and XSLT is a relatively recent programming
language, specially designed to support this activity. Despite its utility,
however, XSLT is widely considered a difficult language to learn.
In this paper, we present a novel system called XSLTGen, an auto-
matic XSLT Generator. This system automatically generates an XSLT
stylesheet, given a source XML document and a desired output HTML
or XML document. It allows users to become familiar with and learn
XSLT stylesheets, based solely on their knowledge of XML or HTML.
Our method for automatically generating XSLT transformations is based
on the use of semantic mappings between the input and output docu-
ments. We show how such mappings can be first discovered and then
employed to create XSLT stylesheets. The results of our experiments
show that XSLTGen works well with a number of different varieties of
XML and HTML documents.

1 Introduction

XML (eXtensible Markup Language) [4] is rapidly emerging as the new standard
for data representation and exchange on the Web. As the medium for commu-
nication between applications, an ability to transform XML to other data rep-
resentations is essential. This data conversion can be performed by a language
called XSLT (eXtensible Stylesheet Language: Transformations) [7]. XSLT plays
an important role in transforming XML documents into HTML, text, or other
types of XML documents. In this paper, we focus on transformations from XML
to HTML (HyperText Markup Language) [26], since we are motivated by pub-
lishing applications, but our techniques are also applicable for XML to XML
transformations.

Despite its capability of transforming documents having a certain structure,
e.g. XML documents, into an HTML representation, XSLT is a relatively new

? Parts of results of this paper appeared in [30].

language, and is widely considered difficult to learn [19]. Rendering to HTML
using XSLT requires skills and knowledge of both XSLT programming and Web
page styling. Our focus in this paper is on the development of algorithms and
tools that can generate XSLT stylesheets automatically, given a user provided
source XML document and a user provided target HTML document.

Automatic XSLT generation is an extremely useful facility for students and
Web developers in the process of learning XSLT. With such a tool, they are able
to see and understand how the XSLT stylesheet should look, in order to trans-
form a particular XML document into a desired HTML document. In addition,
this tool can also be useful for aiding the XSLT development process. Program-
mers may use the automatically generated XSLT stylesheet as a starting point
for something more complex.

In this paper, we present XSLTGen: An Automatic XSLT Generator, a
novel system that automatically generates an XSLT stylesheet, given a source
XML document, and a desired output HTML document. The generated XSLT
stylesheet contains rules needed to transform the given XML document to the
HTML document and can be applied to other XML documents with similar
structure, or to the given XML document after updates to it have been ap-
plied. The important feature of this system is that users can generate an XSLT
stylesheet based solely on their knowledge of XML and HTML, i.e. users only
need to create a desired output HTML document based on an input XML doc-
ument. Moreover, users do not have to know anything about the syntax or pro-
gramming of XSLT, or be aware of the XSLT rule generation process.

A naive solution to the problem of automatic XSLT generation is to create an
XSLT stylesheet consisting of only one template rule, whose pattern matches the
XML root element and whose template contains the HTML document markup
(in other words create a stylesheet which is very specific to the desired output).
This naive approach has a major drawback in terms of reusability. This stylesheet
is specific for transforming the given XML document only and could not be used
to transform other XML documents having similar structure. In contrast, we
are interested in generating a more generic stylesheet, which can then be reused
to transform other XML documents with similar structure. A more detailed
discussion and illustration of both the naive and more generic solutions is given
in Sect. 3.

In this paper, we show how XSLT stylesheets can be automatically generated
by first discovering semantic mappings between the input and output. We make
the following contributions:

1. We describe the use of text matching and structure matching for finding
semantic mappings between an XML document and an HTML document
generated from this XML document.

2. We introduce sequence checking to the matching context, and show that it
enables the system to discover 1-m mappings between the two documents,
in addition to its capability of discovering 1-1 mappings.

3. We describe a fully automatic XSLT generation system that generates XSLT
rules based on the semantic mappings found.

4. We describe a technique for improving the accuracy of the XSLT stylesheet
generated, that examines the differences between the original HTML docu-
ment and the one produced by applying the generated XSLT stylesheet back
to the XML document.

5. We conduct experiments on a number of datasets to validate the matching
accuracy and quality of XSLT stylesheets generated by XSLTGen. The re-
sults show that XSLTGen works well with different varieties of XML and
HTML documents.

6. This is the first paper that we are aware of that describes completely auto-
matic XSLT generation from a source XML and a target HTML document.

This paper is structured as follows. In Sect. 2, we give a brief overview of
XSLT and describe important definitions and terminology used in the paper.
In Sect. 3, we present the definition of the problem of generating XSLT auto-
matically. In Sect. 4, we present an overview of XSLTGen and then describe
the details of each technique involved in the XSLTGen system. In Sect. 5, we
conduct experiments to measure the similarity between the original HTML doc-
ument and the one generated by the resulting XSLT stylesheet. We then evaluate
the performance of XSLTGen. In Sect. 6, we survey related work in the field.
Finally in Sect. 7, we offer concluding remarks and discuss possible extensions
to the current system.

2 Background and Terminology

In this section, we provide a brief overview of XSLT. For a more complete de-
scription of XSLT, the reader is directed to [7], and [16]. Following this, we
describe important definitions and terminology used in this paper.

2.1 XSLT

XSLT is a “high-level declarative language for transforming XML documents
into other XML documents or HTML documents” [7]. The dominant features of
XSLT as a declarative language are that it is a rule-based language, where the
rules are not arranged in any particular order, and it is side-effect free which
enables XSLT rules to be called any number of times and in any order.

XSLT uses XML syntax. The root element is <xsl:stylesheet>, which must
include a namespace declaration for XSLT. The optional <xsl:output> element
tells the type of the target document. The root element is then filled with tem-

plate rules, which describe how to transform elements in the source document,
in this case, XML document. Each template rule consists of two parts: a pat-

tern and a template. The pattern describes which XML element nodes should be
processed by the rule. In some cases, patterns are specified using XPath expres-
sions [8]. On the other hand, the template describes the HTML structure that
should be generated when nodes that match the pattern are found. In an XSLT
stylesheet, a template rule is represented by an <xsl:template> element. The

pattern is the value of its match attribute, and the template is the element’s
content.

The template may contain a sequence of text nodes and literal result ele-

ments1 to be copied to the output, and instructions to be executed according to
the rules of the particular instruction. The complete set of XSLT instructions
can be found in Sect. 7 of [7]. The two XSLT instructions that will be used very
often in the XSLT stylesheets generated by XSLTGen are <xsl:value-of> and
<xsl:apply-templates>. The <xsl:value-of> instruction extracts the data
content of an XML element and inserts it into the output. It has a select at-
tribute which consists of a pattern. The <xsl:apply-templates> instruction
finds all nodes that match the select attribute pattern, and processes each
node in turn by applying the template rule that matches the node.

As described earlier, XSLT is a language specifically designed for transform-
ing the structure of XML documents. The transformation process works as fol-
lows. A list of nodes from the source document is processed to create a result
tree fragment. The result tree is constructed by processing a list containing just
the root node. Within a list of source nodes, each list member is processed in
order and the result tree structures are appended. A node is processed by find-
ing all the template rules with patterns that match the node, and choosing the
best amongst them; the template of the chosen rule is then instantiated with the
node as the current node and with the list of source nodes as the current node
list. A template typically contains instructions that select an additional list of
source nodes for processing. This process is continued recursively until the list
of source nodes is empty.

2.2 Definitions and Terminology

We now present definitions and terminology that will be be useful in describing
the semantic mappings and their generation.

Let m : (m.x, m.h) denote a mapping between an element in the source XML
document to one or more elements in the output (destination) HTML document.
The XML component of m is denoted by m.x, while the HTML component of
m is denoted by m.h. Note that m.h can be a sequence (concatenation) of one
or more elements, while m.x must be a single element. e.g. (poem,body) and
(line[1],li++br) are both mappings. If m.x is an attribute node, owner(x)
is defined to be the XML node that owns m.x.

Two mappings m1 and m2 are distinct if both m1.x.name 6= m2.x.name and
m1.h.name 6= m2.h.name (where name refers to the tag name of the appropriate
element); otherwise they are coincide. e.g. (poem,body) and (line[1],li++br)
are distinct mappings, whereas (poem,body) and (poem,li++br) coincide.

Exact mappings and substring mappings will be used later to describe tex-
tual correspondences in the XML source and HTML output. An exact mapping

is a mapping e such that, e.x is a text node or an attribute node, e.h

1 A literal result element is an element within a template that cannot be interpreted
as an XSLT instruction.

is a text node, and e.x.value ≡ e.h.value (where value refers to the string
content of the appropriate element and ≡ indicates that the two strings being
compared have exactly the same characters located at the same positions, af-
ter leading and trailing whitespaces have been removed from the strings. e.g.
("XML is good","XML is good") is an exact mapping.

A substring mapping is a mapping s such that, s.x is a text node or an
attribute node, s.h is a text node, and s.x.value is a substring of s.h.value.
In addition to this, the following conditions must be satisfied by a substring
mapping in order to rule out meaningless cases, such as a mapping between an
XML text “the” and an HTML text “there” since it is highly unlikely that an
HTML text “there” is generated from an XML text “the”:

1. if s.x.value starts with a non-letter and non-digit character, then the char-
acter preceding its occurrence in s.h.value (if any) must be either a letter
or a digit; otherwise, the preceding character must be both non-letter and
non-digit. And,

2. if s.x.value ends with a non-letter and non-digit character, then the character
following its occurrence in s.h.value (if any) must be either a letter or a digit;
otherwise, the following character must be both non-letter and non-digit.

("XML","XML is good") is an example of a substring mapping.

Special HTML elements are the elements br and hr, which are used to sep-
arate text in HTML document.

An extra node is a node that does not have any matching node in the other
document. Extra XML nodes are those XML nodes that are ignored when gener-
ating the HTML document, while extra HTML nodes are HTML nodes that are
added at the time the HTML document was generated and are not constructed
from any part of the XML document. Examples of extra nodes are provided later
in Table 2.

Let N be an XML or HTML node. We define the precise node of N , denoted
by precise(N), to be the node that is used to represent a transformation in
the XSLT template rule match. For a mapping m, if m.x is a text node,
precise(m.x) is the parent of m.x, whereas if m.x is an attribute node,
precise(m.x) = m.x. Finding the precise node for m.h is slightly more com-
plicated since we need to look at the neighbourhood surrounding m.h, for the
existence of special HTML elements. precise(m.h) is discovered as follows:

1. If the next sibling of m.h is a special HTML element node hs, then
precise(m.h) = m.h ++ hs.

2. If m.h has no next sibling or the next sibling of m.h is not special and m.h

has element node siblings, then precise(m.h) = m.h.

3. Otherwise, precise(m.h) is the highest ancestor of m.h such that each node
lying between precise(m.h) and m.h path only has one non-extra child.

We also define the sequence of element N , denoted by seq(N) to be a DTD2

of N if N is the root of a document (e.g. In Figure 1, a possible DTD for the
root element is (author,date,title,stanza*)). Otherwise, let D′ be a DTD
of the parent of N, then seq(N) is equal to trimN (D′). Since it is possible
that D′ involves symbols that represent elements other than N , the function
trim is employed here. trimN (E) removes both the largest prefix not containing
the element N and the largest suffix not containing the element N from its
argument E, which is a regular expression. Here, E is viewed as an ordered
conjunction and so the largest prefix of E not containing N is the maximal
prefix of conjuncts in E that don’t contain N . Similar for the largest suffix. e.g.
trimp(a, b, (e|f), p∗, (p|a), a) = p∗, (p|a).

3 Problem Formulation

In this section, we further formulate the problem of generating an XSLT stylesheet
automatically from a source XML document and a desired output HTML docu-
ment. We also discuss both the naive and non-naive ways of solving our problem.

Our primary focus in this paper is to automatically construct an XSLT
stylesheet that transforms a source XML document to a desired output HTML
document. Thus, the problem addressed in this paper can be stated as follows.

Problem statement. Given an XML document drawn from a class of XML
documents, and an HTML document to be generated from the XML document,
generate an XSLT stylesheet which contains rules needed to transform the given
XML document into the HTML document and which also can be applied to
other XML documents of the same document class.

The following example best illustrates the problem described above. Figure 1
shows an XML source for a poem Song. We want to create an XSLT stylesheet
such that the poem appears in the browser as shown in Fig. 2.

A naive solution to the above problem is to create an XSLT stylesheet con-
sisting of only one template rule whose pattern matches the XML root element
poem and whose template contains the HTML document markup. Figure 3 shows
this naive solution. However, this naive approach has a major drawback in terms
of reusability. This solution is very specific for transforming the given XML doc-
ument only and could not be used to transform other XML documents having
similar structure. A particularly important kind of structurally similar docu-
ment is an updated version of the original (after insertions or deletions). i.e.
This naive solution would no longer be applicable if the XML document had
another stanza added. This violates the initial purpose of developing XSLTGen,
which is to generate a stylesheet based on the supplied source XML and desired
output HTML documents, so that the resulting stylesheet can be reused with
other XML documents having a similar structure, or with the original document
after updates to it have been applied.

2 A DTD (Document Type Definition) is a grammar for describing the structure of
a document. A DTD constrains the structure of an element by specifying a regular
expression that its sub-element sequences have to conform to.

<poem>

<author>Rupert Brooke</author>

<date>1912</date>

<title>Song</title>

<stanza>

<line>And suddenly the wind comes soft.</line>

<line>And Spring is here again;</line>

<line>And the hawthorn quickens with buds of green</line>

<line>And my heart with buds of pain.</line>

</stanza>

<stanza>

<line>My heart all Winter lay so numb.</line>

<line>The earth so dead and frore.</line>

<line>That I never thought the Spring would come again</line>

<line>Or my heart wake any more.</line>

</stanza>

<stanza>

<line>But Winter’s broken and earth has woken.</line>

<line>And the small birds cry again;</line>

<line>And the hawthorn hedge puts forth its buds.</line>

<line>And my heart puts forth its pain.</line>

</stanza>

</poem>

Fig. 1. XML source for poem Song

Fig. 2. Poem Song displayed in a browser and its HTML source

In contrast, we are interested in generating a more generic stylesheet, which
can then be reused to i) transform structurally similar XML documents and ii)
transform the document even after it has been updated. In order to generate this
solution, the first thing that we need to do is to discover the semantic mappings
between the XML and HTML documents. A complete listing of the mappings
found is presented in Table 1. The process of discovering these mappings will be
explained in Sect. 4.

Table 1. Mappings for poem Song

XML HTML

poem body
author div[2]
date p[4]
title div[1]
stanza[i] p[i], for 1 ≤ i ≤ 3
line[i] text()[i] ++ br, for 1 ≤ i ≤ 4

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match="poem">

<html>

<head>

<title>Song</title>

</head>

<body>

<div align="center"><h1>Song</h1></div>

<div align="center"><h2>Rupert Brooke</h2></div>

<p>

And suddenly the wind comes soft.

And Spring is here again;

And the hawthorn quickens with buds of green

And my heart with buds of pain.

</p>

<p>

My heart all Winter lay so numb.

The earth so dead and frore.

That I never thought the Spring would come again

Or my heart wake any more.

</p>

<p>

But Winter’s broken and earth has woken.

And the small birds cry again;

And the hawthorn hedge puts forth its buds.

And my heart puts forth its pain.

</p>

<p><i>1912</i></p>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

Fig. 3. Naive solution of XSLT stylesheet for poem Song

The next phase is to generate an XSLT stylesheet based on the mappings
found. The stylesheet should start with the standard header. Following that, a
template rule for each XML element specified in Table 1 is created. Finally, we
finish off the stylesheet by closing the <xsl:stylesheet> element. This non-
naive XSLT stylesheet is shown in Fig. 4. This stylesheet can then be reused to
transform other XML documents having similar structure as the one in Fig. 1.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match="poem">

<html>

<head>

<title><xsl:value-of select="title"/></title>

</head>

<body>

<xsl:apply-templates select="title"/>

<xsl:apply-templates select="author"/>

<xsl:apply-templates select="stanza"/>

<xsl:apply-templates select="date"/>

</body>

</html>

</xsl:template>

<xsl:template match="title">

<div align="center"><h1><xsl:value-of select="."/></h1></div>

</xsl:template>

<xsl:template match="author">

<div align="center"><h2><xsl:value-of select="."/></h2></div>

</xsl:template>

<xsl:template match="date">

<p><i><xsl:value-of select="."/></i></p>

</xsl:template>

<xsl:template match="stanza">

<p><xsl:apply-templates select="line"/></p>

</xsl:template>

<xsl:template match="line">

<xsl:value-of select="."/>

</xsl:template>

</xsl:stylesheet>

Fig. 4. Non-naive solution of XSLT stylesheet for poem Song

4 XSLTGen System

We now present an overview of the XSLTGen system. We then explain the details
of each subsystem in the later subsections. We will use a running example based
on a Soccer document.

4.1 System Architecture

The architecture of the XSLTGen system is illustrated in Fig. 5. Two input
documents, a source XML document and a desired target HTML document, are
given to XSLTGen in order to initiate the stylesheet generation process. The
output of XSLTGen is an XSLT stylesheet consisting of rules for transforming
the given XML document to the supplied HTML document. As shown in the
figure, the system consists of six main components: DOM Builder, Text Matching

subsystem, Structure Matching subsystem, Sequence Checker, XSLT Stylesheet

Constructor, and XSLT Stylesheet Refiner subsystem.

stylesheet

 DOM
Builder

DOM
Builder

XML
DOM

HTML
DOM

MatchingMatching

(M)

(M)
Substring Mappings

Exact Mappings

HTML DOM

XML DOM

XML
document

document
HTML

(M

Structure
Mappings

)
Sequence
Checker

StructureText Mappings
One−Many

)(MOMSM

E

S
Constructor
Stylesheet

XSLT XSLT
stylesheet

Structure Mappings (MSM)

Exact Mappings

Substring Mappings

(ME)

(M S)

Refining
XSLT

Stylesheet

One−Many Mappings
(MOM)

fixed
XSLT

Fig. 5. Architecture of the XSLTGen system

DOM Builder. DOM is “a programming API for documents” [12]. It is
based on an object structure that closely resembles the structure of the docu-
ments it models. In the DOM, documents have a logical structure which is very
much like a tree. For each input document used in XSLTGen, the DOM builder
constructs the DOM tree, which represents the structure of the specified docu-
ment. We adopt the DOM package from W3C (org.w3c.dom.*) embedded with
in Java to accommodate this task. The input document given to DOM builder
has to be strictly well-formed. Figure 6 shows an example of fragments of XML
and HTML DOMs for our Soccer example.

Text Matching subsystem. The XML and HTML DOMs built by the
DOM builder are input to the text matching subsystem. This subsystem dis-
covers associations between nodes in the XML DOM and those in the HTML
DOM, i.e. which nodes in the HTML DOM correspond to which nodes in the
XML DOM and what transformations need to be applied to those XML nodes.
In this subsystem, the mappings found are instances of text-based element-level

Fragment of HTML DOM

Matches in
Group A

h1

Brazil vs
Scotland

h2

10−Jun−98 Brazil Scotland

td td td

tr

table

Scotland vs
Norway

h2

td

16−Jun−98 Scotland Norway

td td

tr

table

body

date team

10−Jun−98 Brazil

team

Scotland

match

16−Jun−98 Scotland Norway

date team team

match

soccer

A

group

Fragment of XML DOM

Fig. 6. Soccer example

matching, which can either be exact or substring mappings. Since the HTML
document is generated based on the content of the XML document, it is possible
to find elements within the HTML DOM that have the same text data or part
of text data as the elements in the XML DOM.

Structure Matching subsystem. The structure matching subsystem also
takes the XML and HTML DOM trees produced by the DOM builder as its
input. Besides these DOM trees, this subsystem takes the list of exact and sub-
string mappings found by the text matching subsystem into account, to discover
structure-level associations between XML DOM nodes and HTML DOM nodes.
The term structure-level matching refers to matching combinations of elements
that appear together in a structure. Loosely speaking, two nodes, an XML and
an HTML node, structurally match if their children also match.

Sequence Checker. This subsystem is responsible for verifying each struc-
ture mapping found and possibly discovering 1-m mappings (a mapping between
an XML element and a concatenation of two or more HTML elements) depend-
ing on the result of the verification. In the verification process, the sequence
checker checks whether the sequence of the XML component conforms to the
sequence of the HTML component, by comparing an inferred DTD of the XML
component and an inferred DTD of the HTML component. The XTRACT sys-
tem [14] is used to infer the DTD of an element. If the verification process fails,
the sequence checker generates a new 1-m mapping based on the two extracted
DTDs.

XSLT Stylesheet Constructor. This subsystem generates a template rule
for each mapping discovered by the text matching, structure matching and se-
quence checker subsystems. Consecutively, the template rules are put together
to construct an XSLT stylesheet.

XSLT Stylesheet Refiner. This subsystem is responsible for repairing the
XSLT stylesheet generated by the XSLT stylesheet constructor, in circumstances
where there are differences between the original HTML document and the one
produced by applying the generated stylesheet back to the given XML document.

4.2 Text Matching

The quality of the XSLT stylesheet generated by the XSLT stylesheet constructor
is dependent on the set of mappings input to it. The mappings found in text
matching serve as the basis for discovering structure mappings, which in turn
serve as the starting point for finding 1-m mappings. Therefore, it is crucial
that the text mappings found be complete and accurate. The goal of the text
matching subsystem is to achieve this objective by discovering a set of exact

mappings Me and substring mappings Ms (recall these were defined in section
2.2). As the content of the HTML document is created based on the content of
the XML document, it is important to find both exact and substring mappings
between the two documents, since there must be HTML elements that have the
same string or substring as the XML elements.

The starting point to find a mapping is to compare nodes that have a value

attribute, i.e. text nodes and attribute nodes. In this paper, the nodes
that we compare are an XML text node with an HTML text node and an
XML attribute node with an HTML text node. We do not consider HTML
attribute nodes, since the attribute value of those nodes is usually specific to
the display of the HTML document in the Web browsers and is not generated
from the text within the XML document. Example 1 shows examples of both
exact and substring mappings.

Example 1. In the Soccer example of Fig. 6,

1. An exact mapping occurs between XML text node “10-Jun-98” and HTML
text node “10-Jun-98”, because X.value ≡ H.value.

2. A substring mapping occurs between XML text node “A” and HTML
text node “Matches in Group A”, since X.value is a substring of H.value.

As mentioned earlier, the text matching procedure takes two inputs: an XML
DOM x and an HTML DOM h. It discovers as many text mappings as possible
between the nodes in x and h. The text matching procedure is called twice,
once to first discover all exact mappings between the XML nodes in x and the
HTML nodes in h and again to discover all substring mappings. The output
of our text matching algorithm is two lists of mappings: exact mappings (ME)
and substring mappings (MS).

Our text matching is implemented using a top-down approach that visits
each node in the XML DOM in pre-order and uses the same traversal to explore
the HTML DOM, to find a matching node. Note that in order to create an XSLT
template rule, the XML node should be an element node (not a text node).
The discovered exact or substring mapping between two text nodes cannot
represent any transformation in the XSLT template rule. Therefore, we need
to determine for each mapping found, the precise node of its XML and HTML
component that best describes the transformation. This approach allows us to
discover more precise mappings between the XML and HTML documents.

Moreover, we set a constraint that every HTML node that has been matched
to an XML node during the exact matching process, cannot be considered as a

matching candidate in the substring matching process. In this way, we reduce
the number of possible matching elements for substring matching.

Referring back to the Soccer example (Fig. 6), some of the text mappings
discovered are: (<team>Brazil</team>, <td>Brazil</td>) (exact mapping),
(<team>Brazil</team>,<h2>Brazil vs Scotland</h2>) (substring mapping);
and
(group="A", <h1>Matches in Group A</h1>) (substring mapping).

4.3 Structure Matching

Structure matching discovers all structure mappings between the elements in
the XML and HTML DOMs. Finding these mappings is more complicated than
finding text matches. We adopt two constraints used in the GLUE system [10]
as a guide to determine whether two nodes should be structurally matched:

1. Neighbourhood Constraint: “two nodes match if nodes in their neighbourhood
also match”, where the neighbourhood is defined to be the children.

2. Union Constraint: “if every child of node A matches node B, then node A also
matches node B” (this constraint is derived from the taxonomy context. It
relies on the property that element/concept A is the union of all its children).

Note that there could be a range of possible matching cases, depending on
the completeness and precision of the match. In the ideal case, all components
of the structures in the two nodes fully match. Alternatively, only some of the
components are matched (a partial structural match). Examples of the two cases
are shown in Table 2. In the case of partial structure matching between XML
node X and HTML node H , there are some children of X that do not match
with any children of H ; and/or vice versa. However, these XML nodes must be
extra nodes, i.e. they do not have any match in the entire HTML document.
Similarly with those children of H that do not match with any children of X ,
they should not have any match in the entire XML document either. In addition
to this, partial structure matching is valid if at least one of the children of X

and H matches. If all children of X are extra nodes, and/or all children of H are
extra nodes, then this is not a partial structure matching. We allow XSLTGen
system to detect partial structure matching because extra nodes do not give
additional information about the mapping and we want to ignore them during
the structure matching process, i.e. treat them as if they are not present in the
document. Having or not having extra nodes in the documents should not affect
the mappings found.

In order to be able to discover full and partial structure matching, the above
constraints need to be modified to construct the definition of structure matching
which accommodates both full and partial structure matching.

Definition 1. A structure mapping m : (X, H) exists in the following cir-

cumstances:

Table 2. Example of full vs partial structural match

XML elements HTML elements

<tr> full structural
<td>Michael Kay</td> match of book
<td>XSLT</td> and tr

<book> <td>Wrox</td>
<author>Michael Kay</author> <td>34.99</td>
<title>XSLT</title> </tr>

<price>34.99</price> <tr> partial structural
<publisher>Wrox</publisher> <td>reference</td> match of book

</book> <td>Michael Kay</td> and tr
<td>XSLT</td>
<td>34.99</td>

</tr>

1. Neighbourhood Constraint: “X structurally matches H if H is not an extra
HTML node and every non-extra child of H either text matches or struc-

turally matches a non-extra descendant of X”; or,

2. Union Constraint: “X structurally matches H if every non-extra child of H

either text matches or structurally matches X”.

As stated in the above definition, we need to examine the children of the
two nodes being compared in order to determine if a structure matching exists.
Therefore, structure matching is implemented using a bottom-up approach that
visits each node in the HTML DOM in post-order and searches for a matching
node in the entire XML DOM. This bottom-up approach also enables the system
to apply the union constraint to a lower level structure mapping by invalidating
and updating it with an upper level structure mapping, if the latter is found to
be a better match than the former. If the list of substring mappings MSM is still
empty after the structure matching process finishes, we add a mapping from the
XML root element to the HTML body element, if it exists, or to the HTML root
element, otherwise. The structure matching algorithm is presented in Fig. 7. It
takes as input the exact mappings (ME , the substring mappings (MS), the XML
DOM x and the HTML DOM h. It then returns a list of structure mappings
MSM .

In the Soccer example (Fig. 6), some discovered structure mappings are:

1. (match, tr) (neighbourhood constraint): since every child of tr text matches
one of the children of match, i.e. (date, td[1]), (team[1], td[2]), and
(team[2], td[3])

2. mapping (1) will then be invalidated and updated by (match, table) (union
constraint) since the only child of table, i.e. tr, structurally matches match

3. (soccer, body) (neighbourhood constraint): since every child of body either
text matches or structurally matches one of the descendant of soccer.

procedure StructureMatching(ME , MS , x, h)
begin

1. DoStructMatch(ME , MS , x, h)
2. if (MSM is empty)
3. if (h has a descendant whose name is body)
4. add (x, body) to MSM

5. else

6. add (x, h) to MSM

end

procedure DoStructMatch(ME , MS , x, h)
begin

1. for each child c of h
2. DoStructMatch(ME , MS , x, c)
3. if h.type = element node

4. SearchStructMatch(ME , MS , x, h)
end

procedure SearchStructMatch(ME , MS , x, h)
begin

1. Ex := {cx : cx ∈ children of x, cx.type = element node}
2. for each node cx in Ex

3. SearchStructMatch(ME , MS , cx, h)
4. if (CheckMatch(ME , MS , x, h) = true)
5. m := (x, h)
6. if (MappingExist(m) = not exist)
7. add m to MSM

8. else if (MappingExist(m) = modify)
9. if (x 6= x root) /* x root is the root of the XML document */
10. replace all a.h in {a : a ∈ MSM , a.x = m.x, a.h.name 6= body, a.h is a descendant

of m.h} with h
end

procedure CheckMatch(ME , MS , x, h)
begin

1. if (h is an extra HTML node)
2. return false

3. for each child ch of h
4. if (ch is not an extra HTML node)
5. let x′ be an XML node, such that ((x′, ch) ∈ ME or (x′, ch) ∈ MS or (x′, ch) ∈ MSM)
6. if (x′ 6= null)
7. if (x′ is not a descendant of x)
8. return false

9. else

10. return false

11. return true

end

procedure MappingExist(m)
begin

1. if (m ∈ MSM or {a : a ∈ MSM , a.x is a descendant of m.x, a.h = m.h} is not empty)
2. return exist

3. else if ({a : a ∈ MSM , a.x = m.x, a.h.name 6= body, a.h is a descendant of m.h} is not empty)
4. return modify

5. return not exist

end

Fig. 7. The structure matching algorithm

4.4 Sequence Checking

Up to this point, the mappings generated by the text matching and structure
matching subsystems have been limited to 1-1 mappings. In cases where the
XML and HTML documents have more complex structure, these mappings may
not be accurate and this can affect the quality of the XSLT rules generated from
these mappings. Consider the following example:

In Fig. 6, we can see that the sequence of the children of XML node soccer

is made up of nodes with the same name, match; whereas the sequence of the
children of the matching HTML node body follows a specific pattern: it starts
with h1 and is followed repetitively by h2 and table. Using only the discovered
1-1 mappings, it is not possible to create an XSLT rule for soccer that resembles
this pattern, since the XML node match maps only to the HTML node table

according to structure matching. In other words, there will be no template that
will generate the HTML node h2.

Focusing on the structure mapping (match, table) and the substring map-
pings {(team[1], h2), (team[2], h2)}, we can see in the DOM trees that the
children of match, i.e. team[1] and team[2], are not mapped to the descendant
of table. Instead, they map to the sibling of table, i.e. h2. Normally, we expect
that the descendant of match maps only to the descendant of table, so that
the notion of 1-1 mapping is kept. In this case, there is an intuition that match
should not only map to table, but also to h2. In fact, match should map to the
concatenation of h2 and table, so that the sequence of the children of body is
preserved when generating the XSLT rule. This is termed as a 1-m mapping,
where an XML node maps to the concatenation of two or more HTML nodes.

The 1-m mapping (match, h2 ++ table) can be found by examining the sub-
element sequence of soccer and the sub-element sequence of body described
above. Note that the sub-element sequence of a node can be represented us-
ing a regular expression3. In this case, the regular expression representing the
sub-element sequence of soccer is match∗, whereas the one representing the
sub-element sequence of body is h1(h2, table)∗. We then check whether the ele-
ments in the first sequence conform to the elements in the second sequence, as
follows: According to the substring mapping (group, h1), element h1 conforms to
an attribute of soccer and thus, we ignore it and remove h1 from the second se-
quence. Comparing match∗ with (h2, table)∗, we can see that element m should
conform to elements (h2, table) since the sequence match∗ corresponds directly
to the sequence (h2, table)∗, i.e. they both are in repetitive pattern, denoted by
∗. However, element match conforms only to element table, as indicated by the
structure matching (match, table). The verification therefore fails, which indi-
cates that the structure matching (match, table) is not accurate. Consequently,
based on the sequences match∗ and (h2, table)∗, we deduce the more accurate
1-m mapping: (match, h2 ++ table).

3 A regular expression is a combination of symbols representing each sub-element and
metacharacters: |, ∗, +, ?, (,). | denotes OR, ∗ denotes zero or more, + denotes one
or more, ? denotes zero or one, and () are used for grouping

The main objective of the sequence checking subsystem is to discover 1-m
mappings using the technique of comparing two sequences described above. The
pseudo-code of the sequence checking procedure is presented in Fig. 8. The task
begins with processing the structure mappings in MSM which are provided as
input to the procedure. Given a structure mapping m, the issue is to verify that
the seq(m.x) conforms to seq(m.h). If seq(m.x) does not conform to seq(m.h),
the verification process fails and this situation suggests that there are 1-m map-
pings that can instead be generated based on these sequences. These discovered
mappings 1-m mappings (MOM) are what is finally returned by the procedure.

As we mentioned above, a sequence can be represented using a regular ex-
pression. To obtain this regular expression, we adapt the technique for inferring
a DTD of an element used by Xtract [14].

procedure CheckSequence(MSM)
begin

1. check root = false

2. for each mapping m in MSM

3. if (m.x = x root and check root = false)
4. x seq = Xtract(m.x)
5. h seq = Xtract(m.h)
6. else if (m.x 6= x root)
7. x dtd = Xtract(parent of m.x)
8. x seq = Trimm.x(x dtd)
9. h dtd = Xtract(parent of m.h)
10. h seq = Trimm.h(h dtd)
11. if (parent of m.x = x root)
12. check root = true

13. else

14. continue

15. if (x seq = (sx)∗ and h seq = (xh)∗)
16. x seq = sx

17. h seq = sh

18. X SEQS = ∅
19. if (x seq = s1|s2| . . . |sn)
20. add each si to X SEQS
21. else

22. add x seq to X SEQS
23. h seq = remove symbols representing special HTML elements in h seq
24. for each sequence xi in X SEQS
25. if (number of symbols in xi = 1 and number of symbols in h seq > 1)
26. x = XML node represented by symbol xi

27. for each symbol hj in h seq
28. h = h ++ HTML node represented by symbol hj

29. m = (x, h)
30. add m to MOM

end

Fig. 8. The sequence checking algorithm

4.5 XSLT Stylesheet Generation

This subsystem is responsible for constructing a template rule for each of the
mappings previously discovered (the exact mappings ME , structure mappings
MSM , and 1-m mappings MOM) and then putting them all together to compose

an XSLT stylesheet. We do not create template rules for the substring mappings
in MS , because in substring mappings, it is possible to have an HTML node
whose text value is a concatenation of text values of two or more XML nodes.
This makes it impossible to create template rules for those XML nodes. More-
over, as the term substring implies, there can be some extra strings presented in
the HTML text value. Considering these situations, we implement a procedure
that generates a template for each distinct HTML node in MS .

The XSLT stylesheet generation process begins by generating the list of sub-
string rules. We then construct a stylesheet by creating the <xsl:stylesheet>

root element and subsequently filling it with template rules for the 1-m mappings
in MOM , the structure mappings in MSM and the exact mappings in ME . The
template rules for the 1-m mappings have to be constructed first, since within
that process, they may invalidate several mappings in MSM and ME (e.g. rule
A and B of Table 6 and thus, the template rules for those omitted mappings do
not get used. In each mapping list (MOM , MSM , and ME), the template rule is
constructed for each distinct mapping to avoid having conflicting template rules.

Even though the mappings between the nodes in the XML document and
the nodes in the HTML documents have been discovered previously, creating
a template rule for a mapping m is not an easy task. This is due to the fact
that we have to appropriately locate the suitable XSLT instructions, taking into
account the structures or the subtrees of the XML and HTML components of
m. Therefore, in the next four subsections, we describe the detail of substring
rule generation, followed by explanation on how to construct template rules for
exact mapping, structure mapping, and 1-m mapping.

Substring Rule Generation. The substring rule generator creates a template
from an XML node or a set of XML nodes to each distinct HTML node pre-
sented in the substring mapping list MS. The result of this subsystem is a list of
substring rules SUB RULES, where each element is a tuple (html node, rule).

The set of XML nodes that map to the same HTML node could be large,
since within that set, it is possible to have two XML nodes with different names
but the same string, or two nodes with the same name and string but differ-
ent locations in the XML DOM. As an example, consider the substring map-
pings in Fig. 9. In that figure, both XML nodes artist (node I) and owner

(node B) have the same text value “Kylie” and map to the same HTML node
<td>Kylie’s by Kylie (2002)</td> (node R). On the other hand, two XML
nodes named date (nodes E and H) have the same text value “2002” but can
either map to HTML node <td>Aquarium by Aqua (2002)</td> (node P) or
<td>Kylie’s by Kylie (2002)</td> (node R).

This situation may cause some ambiguities in the substring rules generated.
Consider the mappings where the HTML component is node R, i.e. mappings 1,
6, 7, 8, 9. There can be four different combinations of the XML components in
these mappings that result in two similar substring rules representing the HTML
component. Combinations of nodes E, I, and J; or nodes H, I, and J produce
the substring rule:

Kylie’s

date

2002 Kylie

Aquarium
by Aqua Kylie

AquariumAqua2002

NEW NEW

(2002) (2002)

Fragment of XML DOM Fragment of HTML DOM

Kylie

5 6

9

873 41 2

owner

A

CD CD

albumartist artist album

B C D

E date F G H I J M N

O P Q R

K body

tableL

tr tr

tdtdtdtd

music 10
11

12

Kylie’s by

Fig. 9. Music example

<tr><xsl:value-of select="album"/> by <xsl:value-of select="artist"/>

(<xsl:value-of select="date"/>)</tr>.

Alternatively, combinations of nodes B, E, and J; or nodes B, H, and J yield
the substring rule:

<tr><xsl:value-of select="album"/> by <xsl:value-of select="owner"/>

(<xsl:value-of select="date"/>)</tr>.

Clearly, the problem that we face here is choosing the combination of XML
nodes that best describe an HTML component. Based on the XML and HTML
DOM in Fig. 9, we can see that the combination of XML nodes H, I, and J is the
one that best represents the HTML node R. This is because the region of these
XML nodes is related to the region of HTML node R, i.e. the parent of these
XML nodes structurally maps to the parent of HTML node R, as indicated by
the structure mapping 10. In addition, the mappings 1, 5, and 9 should not be
considered in the substring rule generation, since the regions between the XML
and HTML nodes are not related and hence, they are not accurate.

In the following subsection, we have devised a heuristic strategy for selecting
a subset of such HTML component mappings that yields an unambiguous sub-
string rule. We then present a brief description of the algorithm for generating
the substring rule itself.

Selecting a Subset of the Mappings to the Same HTML Component The main
motivation behind choosing a subset of the mappings that go the same HTML
component is that we want to construct a unique and unambiguous substring
rule between a set of XML nodes and an HTML node. This purpose is served only
if the region of the XML nodes and the region of the HTML node is related.
For example, in order to generate a substring rule for HTML node P in the

Music example (Fig. 9), there are four substring mappings that can be used:
mappings 2, 3, 4, and 5, since the HTML component of these mappings is the
HTML node P. However, the subset of these mappings that we select are the
mappings 2, 3, and 4, since the XML components of these mappings are located
in the region that is related to the region of the HTML node P. The two regions
that we discuss are the subtree of XML node C and the subtree of HTML node
M, which are structurally mapped as indicated by the structure mapping 11.
Mapping 5 is not selected since the XML node F is not located in the subtree
of XML node C.

In this subsection, we describe how we choose a subset of substring mappings
that best describes an HTML node based on the related regions. Note that the
set of mappings that we are focusing on, is the one that has the same HTML
component for every mapping in that set. This set of mappings is in fact a subset
of MS. Splitting MS into sets of mappings with the same HTML component is
not a complicated task.

Intuitively, given a set of mappings MH that all map to the same HTML node,
a subset G of MH is a good subset if the combination of the XML components
in G produces a single substring rule that represents the HTML component.

Therefore, given a set of substring mappings MH , which has the same HTML
component h for every mapping in it, we first find a mapping s in MSM or in
MOM , such that s.h, is the closest ancestor of h. Then, a subset G of MH is a
“good” subset for generating a unique substring rule, if for every mapping m in
G, m.x is a descendant of s.x.

Referring back to the Music example describe in Sect. 4.5, to facilitate the
substring rule generation of HTML node R, we need to examine the set MH of
substring mappings 1, 6, 7, 8, and 9, since these mappings lead to the HTML
node R. As stated above, the first thing that we need to do is find a structure
mapping or a 1-m mapping s, whose HTML component is the closest ancestor
of node R. In this case, the mapping s is the structure mapping between node
D and node N (mapping 10). We then select the mappings in MH whose XML
component is a descendant of node D and we obtain a good subset G consisting
of mappings 6, 7, and 8.

Once we have a “good” subset G, a substring rule R is generated by invoking
the algorithm described in the next subsection, and is then added to the list of
substring rules SUB RULES.

Algorithm for Generating a Substring Rule. In this subsection, we show how the
substring rule for a set of mappings G can be derived. Recall that all mappings
in G have the same HTML component, h. Concisely, the main idea of the sub-
string rule generation is to construct the string of h by combining the strings
of the XML components of the mappings in G. Since the mappings in G are
found within the text matching subsystem, h only has one string, denoted by
h string, which is the value of the text node located at the leaf of the subtree
of h. For example, the h string of the HTML node td (node R) in the Music
example (Fig. 9) is “Kylie’s by Kylie (2002)”. The same condition applies
to the XML component of each mapping in G. If the XML component is an

element node, the XML node also has only one string x string, which is the
value of the text node located at the leaf of the subtree of the XML node. For
instance, the x string of the XML node date (node E) in Fig. 9 is “2002”. In
the case where the XML component is an attribute node, the string x string

is simply the value of the XML node.
As the term substring implies, there must be parts of h string that do not

have any matching x string in G, i.e. these are extra strings. For each substring of
h string that exactly matches an x string, an XSLT <xsl:value-of> statement
is generated to extract the x string from the corresponding XML component.
Thus, we can conclude that the generated substring rule is a sequence of extra

strings and <xsl:value-of> statements that together represents h string.

The substring rule s rule for the mappings in G is constructed recursively
until h string is empty. At each step, we search for a mapping m′ whose x string

of m′.x matches the longest prefix of h string and then update the substring
rule s rule using the rules specified in Table 3. When h string is empty, the
construction of s rule of G is finished and a tuple (h, s rule) is returned.

Table 3. Rules for generating a substring rule

Rule Condition Update

A m′ is not found Extract the first character of h string and add it to
s rule, since it is suspected that the prefix of the cur-
rent h string is part of the extra strings

B m′ is found, m′.x is
an element node

Add <xsl:value-of select="m′.x.name"/> to s rule
and delete the prefix of h string matching x string

C m′ is found, m′.x is
an attribute node

Add <xsl:value-of select="owner(m′.x).name/
@m′.x.name"/> and delete the prefix of h string
matching x string

We believe that this algorithm is a reasonable method for constructing sub-
string rules, since it is capable of capturing extra strings and matching x strings
accurately. The following example best illustrates the key steps of our algorithm.

Example 2. Consider the set G of substring mappings 6, 7, and 8 shown in the
Music example of Fig. 9. In this case, the h string of G is “Kylie’s by Kylie

(2002)”, while the set of x strings is {“2002”, “Kylie”, Kylie’s}. Below, we
list how Rules (A) and (B) described in Table 3 are recursively applied to derive
the substring rule s rule.

1. Mapping 8 is chosen since its x string “Kylie’s” is the longest string that
matches the prefix of h string “Kylie’s by Kylie (2002)”. According to
Rule (B),

s rule = <xsl:value-of select="album"/>

h string = “ by Kylie (2002)”.

2. Apply Rule (A) recursively for characters in substring “ by ” since it is an
extra string. At the final execution of Rule (A),

s rule = <xsl:value-of select="album"/> by

h string = “Kylie (2002)”.
3. Mapping 7 is chosen and we apply Rule (B).
4. Apply Rule (A) recursively for characters in extra string “ (”.
5. Mapping 6 is chosen and we apply Rule (B).
6. Apply Rule (A) for character “)”. h string is now empty and s rule is

<xsl:value-of select="album"/> by <xsl:value-of select="artist"/>

(<xsl:value-of select="date"/>)

Constructing a Template Rule for an Exact Mapping in ME. As de-
scribed in Sect. 2.1, each template rule begins with an XSLT <xsl:template>

element and ends by closing that element. For a mapping m, the pattern of the
corresponding template rule is the name of m.x. The difficult task lies in deter-
mining the appropriate template, i.e. which XSLT instructions to be used and
where they should be placed.

We now describe how we construct a template rule for an exact mapping m.
Compared to the procedures for the other two mappings (structure mapping and
1-m mapping), this procedure is the simplest and the most straightforward, since
there is only one XSLT instruction used in the template: <xsl:value-of>. In
this procedure, we only construct a template rule when m is a mapping between
an XML element node to an HTML node or a concatenation of HTML nodes.
The reason that we ignore mappings involving XML attribute nodes is that
the template for this mapping will be generated directly within the construction
of the template rule for structure mapping and 1-m mapping.

Since there could be mappings from an XML node to a concatenation of
HTML nodes in text matching, we need to create a template for each HTML
node hi in m.h. Given an exact mapping m, the rules for creating a template
representing transformation between m.x and hi are listed in Table 4.

Table 4. Rules for creating the template for exact mappings

Rule Condition Template

A hi is a special HTML element <hi.name/>
B hi is not a special HTML ele-

ment, m.x is an element node

<hi.name><xsl:value-of select=”.”/>
</hi.name>

C hi is not a special HTML el-
ement, m.x is an attribute

node

<hi.name>
<xsl:value-of select="@m.x.name."/>
</hi.name>

Example 3. Consider the exact mapping (line, text() ++ br). The steps per-
formed to construct the template rule are:

1. Create a template rule: <xsl:template match="line">

2. Create a template for each HTML node in (text() ++ br): for HTML node
text(), apply Rule (B) since the XML node line is an element node.
The template body is: <xsl:value-of select="."/>

Note that there are no opening and closing tags, since text() is a text node.
3. Apply Rule (A), since br is a special HTML element:

4. Close the template rule: </xsl:template>

Constructing a Template Rule for a Structure Mapping in MSM . We
next explain how the template rule for a structure mapping m is constructed.
Recall from the structure matching subsystem that one of the mappings in MSM

must be the mapping that has the root of the XML document as its XML
component. Let r denote this special mapping. For the mapping r, the template
begins with copying the root of the HTML document and its subtree, excluding
the HTML component r.h and its subtree.

The next step in constructing the template for mapping r follows the steps
performed for the other mappings in MSM . For any mapping m in MSM , the
opening tag for m.h is created. The process continues with creating a template
for each child ci of m.h and finishes by closing the m.h tag.

For each HTML child ci, we need to determine whether an XSLT instruction
is needed; and if so, which XSLT instruction should be used. This task depends
fully on the similarities and differences between the structure of the XML com-
ponent m.x and the structure of the HTML node hi. Given an XML component
m.x and a child ci of the HTML component m.h, the rules for creating a template
that represents the transformation from m.x to ci are listed in

Table 5.

Example 4. Consider the structure mapping (match, table) and the exact map-
pings (date, td[1]), (team[1], td[2]), (team[2], td[3]) discovered in the Soc-
cer example (Fig. 6) . The steps required to generate the template rule for this
structure mapping are:

1. Create a template rule: <xsl:template match="match">

2. Start the template body by generating an opening tag for HTML node table,
since match is not the root of the XML document: <table>

3. Apply Rule (G) since tr has no matching XML node in any mapping lists:
(a) Generate an opening tag for HTML node tr: <tr>
(b) For the first child of tr, i.e. td[1], apply Rule (B) because (date,

td[1]) ∈ ME and date is a descendant of the XML node match:
<xsl:apply-templates select="./date"/>

(c) Apply Rule (B) to the second and third child of tr, i.e. td[2] and
td[3], for the same reason as the first child td[1], and we obtain:
<xsl:apply-templates select="./team[1]"/>

<xsl:apply-templates select="./team[2]"/>

(d) Generate the closing tag for tr: </tr>
4. Generate the closing tag for HTML node table: </table>
5. Close the template rule: </xsl:template>

Table 5. Rules for creating the template for structure mappings

Rule Condition Template

A ci is an extra node but not a special
HTML element

Node ci complete with its subtree

B ∃e ∈ ME , e.x is a descendant of
m.x, e.h = ci

<xsl:apply-templates select="{XPath
describing e.x in the context of m.x}"/>

C ∃e ∈ ME , owner(e.x) = m.x, e.x
is an attribute node, e.h = ci

Apply the algorithm for constructing a
template rule for an exact mapping to e

D ∃e ∈ ME , owner(e.x) is a de-
scendant of m.x, e.x is an at-

tribute node, e.h = ci

<ci.name><xsl:value-of select="

{XPath describing owner(e.x) in the con-
text of m.x}/@e.x.name"/></ci.name>

E ∃s ∈ MSM , s.x is a descendant of
m.x, s.h = ci

<xsl:apply-templates select="{XPath
describing s.x in the context of m.x}"/>

F ∃sr : (ci, sr.rule) ∈ SUB RULES <ci.name> sr.rule </ci.name>
G Otherwise <ci.name> {Create template for (m.x, ci),

i.e. apply Rules (A) - (G) to each child
of ci} </ci.name>

Constructing a Template Rule for a One-Many Mapping in MOM .
This subsection describes the process for constructing a template rule for a 1-m
mapping m in MOM . Being a 1-m mapping, the HTML component m.h must
be a concatenation of several HTML nodes. Thus, each HTML node hi in m.h

is processed sequentially to find out the sequence of XSLT instructions that fill
up the template rule. Given a 1-m mapping m, the rule for creating a template
representing the transformation from m.x to each hi is presented in Table 6.

Example 5. Consider 1-m mapping (match, h2 ++ table) discovered in Sect. 4.4,
and structure mapping (match, table) found in Sect. 4.3 for the Soccer example
(Fig. 6). Suppose we have generated substring rule
(h2, <xsl:value-of select= "team[1]"/> vs <xsl:value-of select="team[2]"/>).

The steps involved in generating the template rule for the 1-m mapping is:

1. Create a template rule: <xsl:template match="match">

2. Apply Rule (F) since SUB RULES contains a substring rule for h2:
<h2><xsl:value-of select="team[1]"/> vs

<xsl:value-of select="team[2]"/></h2>

3. For HTML node table, apply Rule (A) since (match, table) ∈ MSM . This
is the same as the template body discovered in Example 4, which is:
<table><tr>

<xsl:apply-templates select="./date"/>

<xsl:apply-templates select="./team[1]"/>

<xsl:apply-templates select="./team[2]"/>

</tr></table>

4. Close the template rule: </xsl:template>

Table 6. Rules for creating the template for 1-m mappings

Rule Condition Template

A (m.x, hi) ∈ MSM Apply the algorithm for constructing
a template rule for a structure map-
ping to (m.x, hi). Then, delete mappings
(m.x, hi) ∈ MSM

B (m.x, hi) ∈ ME Apply the algorithm for constructing
a template rule for an exact map-
ping to (m.x, hi). Then, delete mappings
(m.x, hi) ∈ ME

C ∃e ∈ ME , e.x is a descendant of
m.x, e.h = hi

<hi.name><xsl:apply-templates
select="{XPath describing e.x in
the context of m.x}"/></hi.name>

D ∃e ∈ ME , owner(e.x) = m.x, e.x
is an attribute node, e.h = hi

Apply the algorithm for constructing a
template rule for an exact mapping to e

E ∃e ∈ ME , owner(e.x) is a de-
scendant of m.x, e.x is an at-

tribute node, e.h = hi

<hi.name><xsl:value-of select="

{XPath describing owner(e.x) in the con-
text of m.x}/@e.x.name"/></hi.name>

F ∃sr : (hi, sr.rule) ∈ SUB RULES <hi.name>sr.rule</hi.name>
G hi is an extra node but not a spe-

cial HTML element
Node hi complete with its subtree

4.6 Refining the XSLT Stylesheet

In some cases, the (new) HTML document obtained by applying the generated
XSLT stylesheet to the XML document may not be accurate, due to the wrong
ordering of instructions within a template. i.e. there exist differences between
this (new) HTML document and the original (user-defined) HTML document.
By examining such differences, we can improve the accuracy of the stylesheets
generated by XSLTGen. This step is applicable in circumstances where we have a
set of complete and accurate mappings between the XML and HTML documents,
but generated erroneous XSLT code based on these mappings. If the discovered
mappings themselves are incorrect or incomplete, then this refinement step will
not be effective and it is better to address the problem by improving the matching
techniques. An indicator that we have complete and accurate mappings is that
each element in the new HTML document corresponds exactly to the element
in the original HTML document at the same depth.

Refining can be effective in situations where the generated XSLT stylesheet
can be fixed by applying local move operations within the template matches,
i.e. the generated stylesheet is inaccurate due to the wrong ordering of XSLT
instructions within the template rules. This situation typically occurs when we
have two or more XML nodes with the same name and are located at the same
depth in the XML DOM, but have different order or sequence of children. In
this case, the mappings generated are complete and accurate, however our XSLT
stylesheet constructor assumes that these XML nodes have the same order of

children and hence, it follows the order of the first node (amongst these XML
nodes) encountered in the pre-order traversal of the XML DOM. Therefore, the
main objective of this refining step is to fix the order of XSLT instructions within
the template matches of the generated stylesheet, so that the resulting HTML
document is closer to or exactly the same as the original HTML document.

A naive approach to the above problem is to use brute force and attempt all
possible orderings of instructions within templates until the correct one is found
(i.e. until there exist no differences between the new and the original HTML
documents). However, this approach is prohibitively costly. Therefore, we adopt
a heuristic approach, which begins by examining the differences between the
original and the new HTML documents. We employ a change-detection algo-
rithm [6], that produces a sequence of edit operations needed to transform the
original HTML document to the new HTML document. The types of edit op-
erations returned are insert, delete, change, and move. Of course, other similar
change detection algorithms such as [9, 18] could potentially be used instead.

To carry out the refinement, the edit operation that we focus on is the move
operations, since we want to swap around the XSLT instructions in a template
match to get the correct order. In order for this to work, we require that there are
no missing XSLT instructions for any template match in the XSLT stylesheet.
After examining all move operations, this procedure is started over using the
fixed XSLT stylesheet. This repetition is stopped when no move operations are
found in one iteration; or, the number of move operations found in one iteration
is greater than those found in the previous iteration. The second condition is
required to prevent the possibility of fixing the stylesheet incorrectly. We want
the number of move operations to decrease in each iteration until it reaches zero.
A sketch of the refinement algorithm is presented in Fig. 10.

procedure ImproveXSLT(XML, HTML, XSLT, ME , MSM , MOM)
begin

1. Mprev = ∅
2. Hist = ∅ /* List of XSLT instructions that have been moved */
3. repeat

4. Apply XSLT to XML to get HTMLnew

5. Find the set of edit operations, E, between HTML and HTMLnew

6. M = move operations in E
7. if (|M | = 0 or |M | > |Mprev |)
8. return

9. Mprev = M
10. NoFix = 0 /* Number of modifications made to XSLT in the current iteration */
11. for each move m ∈ M
12. Find the template match to be fixed, T , in XSLT
13. Find the specific XSLT instruction to be moved, I, within T
14. if I /∈ Hist
15. Move I into the correct place using the information from M
16. Add I to Hist
17. Increment NoFix
18. until

19. No new modifications made to XSLT, i.e. NoFix = 0
end

Fig. 10. The XSLT stylesheet refining algorithm (sketch)

5 Empirical Evaluation

We have conducted experiments to study and measure the performance of the
XSLTGen system. Our goals were to evaluate the matching accuracy of XSLT-
Gen, and verify that XSLTGen generates useful XSLT stylesheets with a variety
of XML and HTML documents. The system is written in Java, and employs a
library for HTML cleaning, JTidy4.

5.1 Data sets

It is difficult to test this system on a class of documents, due to the lack of
other suitable automatic generation systems for comparison. However, to give
the reader some idea on how XSLTGen performs, we evaluated XSLTGen on
four examples taken from a popular XSLT book5 and a real-life data taken from
MSN Messenger6 chat log.

These datasets were originally pairs of (XML document, XSLT stylesheet).
To get the HTML document associated with each dataset, we apply the original
XSLT stylesheet to the XML document using Xalan7 XSLT processor. We choose
the datasets such that they exhibit a wide variety of characteristics. This is useful
for benchmarking the performance of the XSLTGen system with different types
of data. The characteristics of the five datasets are shown in Table 7. The Books
dataset has its HTML document in a tabular format and the structure of the
XML is fairly similar. The Itinerary dataset contains no extra nodes in its HTML
DOM, unlike Books. Also, its HTML DOM is roughly twice the size of its XML
DOM. The Poem dataset is different from the previous two, containing a large
number of special HTML elements. The Soccer dataset has many more HTML
nodes than XML nodes and also a very large number of extra nodes. The Chat
Log dataset is noteworthy in that it has a large maximum number of children
per node, 20 in each DOM, which is significantly bigger than any of the other
datasets.

5.2 Manual Mappings

For evaluation purposes, we manually determined the correct mappings between
the XML and HTML DOMs in each dataset. These mappings include exact
mappings, substring mappings, structure mappings, and 1-m mappings. Table 8
shows the number of manual mappings found for each dataset.

5.3 Experiments

For each dataset, we applied XSLTGen to find the mappings between elements in
the XML and HTML DOMs, and generate an XSLT stylesheet that transforms
the XML document to the HTML document. We then measured two aspects:

4 http://sourceforge.net/projects/jtidy
5 http://www.wrox.com/books/0764543814.shtml
6 http://messenger.ninemsn.com/Default.aspx
7 http://xml.apache.org/xalan-j/index.html

Table 7. Datasets used in our experiments

Datasets # # non- depth # # # extra # special max #
x : xml elem leaf elem text attr HTML HTML children
h : html node node node node node element / node

Books x 17 5 2 12 4 - - 3
h 28 7 4 21 2 5 0 5

Itinerary x 10 1 1 9 9 - - 9
h 21 3 3 18 0 0 0 18

Poem x 19 4 2 15 0 - - 6
h 20 6 3 15 1 1 12 5

Soccer x 25 7 2 18 13 - - 6
h 99 44 5 55 18 54 0 13

Chat Log x 121 61 3 60 161 - - 20
h 244 45 6 105 40 100 0 20

Table 8. Manual mappings determined in the datasets

Datasets Exact Substring Structure 1-m

Books 22 0 5 0
Itinerary 9 9 1 9
Poem 1 12 5 0
Soccer 48 68 7 6
Chat Log 1440 0 51 0

1. Matching accuracy: the percentage of the manually determined mappings
that XSLTGen discovered.

2. The quality of the XSLT stylesheet inferred by XSLTGen.

To evaluate the quality of the XSLT stylesheet generated by XSLTGen in each
dataset, we applied the generated XSLT stylesheet back to the XML document
using Xalan and then compared the resulting HTML with the original HTML
document using HTMLDiff8. HTMLDiff is a tool for analysing changes made
between two revisions of the same file. It is commonly used for analysing HTML
and XML documents. The differences may be viewed visually in a browser, or
analysed at the source level.

5.4 Matching Accuracy

Table 9 shows the matching accuracy on the different datasets for the subsys-
tems of XSLTGen. As shown in the table, XSLTGen achieves high matching
accuracy across all five datasets. Exact mappings reach 100% accuracy in four
out of five datasets. In the dataset Chat Log, exact mappings reach 86% ac-
curacy which is still deemed significantly accurate. This is because there are
undiscovered mappings from XML attribute nodes to HTML attribute

nodes, which violates our assumption in Sect. 4.2 that the value of an HTML
attribute node is usually specific to the display of the HTML document in
the Web browsers and is not generated from a text within the XML document.
Substring mappings achieve 100% accuracy in the datasets Itinerary and Soccer.
In contrast, substring mappings achieve 0% accuracy in the dataset Poem. This
poor performance is caused by incorrectly classifying the substring mappings as
exact mappings during the text matching process. In the datasets Books and
Chat Log, substring mappings do not exist. Structure mappings achieve per-
fect accuracy in all datasets except Poem. In the dataset Poem, the structure
mappings achieve 80% accuracy because the XML node author is incorrectly
matched with the HTML text node “Rupert Brooke” in text matching, while
it should be matched with the HTML node div in structure matching. Following
the success of the other mappings, 1-m mappings also achieve 100% accuracy
in all applicable datasets, i.e. Itinerary and Soccer. In the datasets Books, Poem

and Chat Log, there are no 1-m mappings.
The results indicate that in most of these cases, the XSLTGen system is

capable of discovering complete and accurate mappings.

5.5 Quality of generated XSLT stylesheets

Table 10 shows the result of comparing the original and the new HTML docu-
ment, i.e. the one produced by applying the generated XSLT stylesheet to the
XML document, for different datasets in terms of the percentage of correct nodes.

As shown in the table, the new HTML documents have a high percentage
of correct nodes. Using HTMLDiff, the results of comparing the new HTML

8 http://www.componentsoftware.com/products/HTMLDiff/

Table 9. Matching accuracy of XSLTGen (in %)

Datasets Exact Substring Structure 1-m

Books 100.00 100.00
Itinerary 100.00 100.00 100.00 100.00
Poem 100.00 0.00 80.00
Soccer 100.00 100.00 100.00 100.00
Chat Log 86.11 100.00

Table 10. Percentage of correct nodes in the new HTML document for each dataset

Datasets Element Nodes Text Nodes Attributes Nodes

Books 100.00 85.71 100.00
Itinerary 100.00 100.00 100.00
Poem 100.00 14.29 80.00
Soccer 100.00 100.00 100.00
Chat Log 100.00 100.00 75.00

document with the original HTML document in each dataset is reflected in the
table. The accuracy is very high. In the datasets Itinerary and Soccer, the HTML
documents being compared are identical. This is shown by the achievement of
100% in all types of nodes. In the dataset Poem, the two HTML documents
have exactly the same appearance in Web browsers, but according to HTMLDiff,
there are some missing whitespaces in each line within the paragraphs of the new
HTML document. That is the reason why the percentage of correct text nodes
in the Poem dataset is very low (14%). The only possible explanation in this
case is that in the text matching subsystem, we remove the leading and trailing
whitespaces of a string before the matching is done. The improvement stage also
does not fix the stylesheet since there are no move operations. In the dataset
Books, the difference occurs in the first column of the table. In the original HTML
document, the first column is a sequence of numbers 1, 2, 3, and 4; whereas in
the new HTML document, the first column is a sequence of 1s. This is because
the numbers 1, 2, 3, and 4 in the original HTML document are represented
using four extra nodes, and our template rule constructor in the XSLT stylesheet
generator assumes that all extra nodes that are cousins (their parent are siblings
and have the same node name) have the same structure and values. Since in this
dataset the four extra nodes have different text values, the percentage of correct
text nodes in the new HTML document is slightly affected (86%). Lastly, the
differences between the original and the new HTML documents in the dataset
Chat Log are caused by the undiscovered mappings mentioned in the previous
subsection. Because of these undiscovered mappings, it is not possible to fix
the XSLT stylesheet in the improvement stage. These undiscovered mappings
affect some attribute nodes in the new HTML document but the percentage
of correct attribute nodes is still acceptable (75%).

5.6 Discussion and Future Work

We have also tested XSLTGen on many other examples. In general, it seems to
perform most effectively in situations where the XSLT stylesheet that needs to
be generated follows a ‘fill-in-the-blanks’ style design pattern [16]. In such sit-
uations, the structure of the required stylesheet is rather similar to the desired
output, with variable data being retrieved from the XML and inserted at par-
ticular points. The stylesheets generated were also tested on extra structurally
similar versions of the given examples, that were generated by insertions and
deletions of subtrees. The precision was similar to that for the original exam-
ples.

However, there are some problems that prevent XSLTGen from obtaining
higher matching accuracy. First, in a few cases, XSLTGen is not able to discover
some mappings which deal with relationships between XML attribute nodes
and HTML attribute nodes. The reason is that these mappings violate our
assumption stated in Sect. 4.2. This problem can be alleviated by adding HTML
attribute nodes in the matching process. Undiscovered mappings are also
caused by incorrectly matching some nodes, which is the second problem faced
in the matching process. Incorrect matchings typically occur when an XML
or an HTML text node has some element node siblings. In some cases,
these nodes should be matched during the text matching process, while in other
cases they should be matched in structure matching. Here, the challenge will
be in developing matching techniques that are able to determine whether a
text node should be matched during text matching or structure matching. The
third problem concerns with incorrectly classified mappings. This problem only
occurs between a substring mapping and an exact mapping, when the compared
strings have some leading and trailing whitespaces. Determining whether the
whitespaces should be kept or removed is a difficult choice. In many cases, the
whitespaces should be removed in order to correctly match some nodes. This is
how whitespaces are treated in our text matching. However in some cases, the
whitespaces should be kept since they are used to specify the formatting of the
HTML document. This problem can be mitigated by adding an option to keep
or remove the whitespaces.

Besides this, as the theme of our text matching subsystem is text-based
matching (matching two strings), the performance of the matching process de-
creases if the supplied documents contain mainly numerical data. In this case,
the mappings discovered, especially substring mappings, are often inaccurate
and conflicting, i.e. more than one HTML nodes match a single XML node. This
is also true for cases where very complex restructurings of the data are need to
be performed, such as unnesting and normalizing.

The mappings discovered certainly are an important basis for generating
a good and accurate XSLT stylesheet. Undiscovered mappings and incorrect
matchings cause the generated stylesheet to be erroneous, since the HTML nodes
that are supposed to have matching XML nodes are treated as extra nodes and
thus, are directly copied to the corresponding template. Although in some cases
the HTML document generated using this kind of stylesheet is identical to the

original HTML document, this behaviour obviously reduces the reusability of the
XSLT stylesheet, since it contains information specific to a particular XML doc-
ument. On the other hand, incorrectly classified mappings do not cause serious
problems in the XSLT stylesheet. They may or may not affect the appearance
of the HTML document generated using this stylesheet in a browser.

However, having complete and accurate mappings does not guarantee that
the generated XSLT stylesheet will be accurate and of high quality. Another crit-
ical factor that should be considered is the similarities and differences between
the structure of the XML document and the structure of the HTML document.

Occasionally within those complete and accurate mappings, there is more
than one mapping discovered for the same XML node. This case only happens
when two or more strings in the HTML document are generated from a single
string in the XML document. In this case, the generated XSLT stylesheet is
inconsistent, since it contains conflicting template rules. Hence, an additional
extension to XSLTGen is to make it be aware of such cases, and not generate
conflicting template rules, but instead, integrate the template of each of these
template rules to the appropriate <xsl:apply-template> instruction that calls
it, taking into account the structures of the two documents.

We note that the current version of XSLTGen does not support the capa-
bility to automatically generate XSLT stylesheets with complex functions (e.g.
sorting). This is a very challenging task and an interesting direction for future
work. Another direction for future work would be to modify XSLTGen so that
it uses a DTD, if it has been provided with the input XML document in the
automatic generation process. Of course, if the desired output is HTML, then
the standard DTD for the HTML language is unlikely to be useful.

Lastly, we observe that the focus of the XSLTGen has been on producing
quality stylesheets, rather than minimising execution time. Improving the run-
time efficiency and scalability of the system for very large documents are inter-
esting ways to enhance the system. However, we expect the XSLTGen system to
be deployed in a static, rather than dynamic manner (i.e. run once-only for an
input-output pair, rather than repeatedly) and so this is not a primary issue.

6 Related Work

Recently, there has been much work in the literature about XML document
transformations, in which only a few address the problem of generating XSLT
stylesheet automatically. To the best of our knowledge, this work mainly focuses
on XML to XML transformations and the techniques involved are specific to the
XML to XML transformations, such as element/tag names comparison, which
is impossible in our case since XML and HTML have completely different tag
names; and the use of XML Schemas. Although it may be possible to generate
an XML Schema for an HTML document, it would not be particularly useful in
our scenario.

[13] presents a system that captures the semantics of the XML schemas and
using these semantics to automatically generate the necessary XSLTs. The sys-

tem firstly defines a rich information model using ontology and then maps the
schema’s elements, complex types, and simple types to the information model,
thereby formally capturing the schemas’ semantics. While the creation of in-
formation model is partially automated by arbitrarily declaring an ontological
concept per schema component; the mapping process requires a human interven-
tion. In the next step, the active semantic hub is used to automatically generate
the XSLT based on the element’s meanings. The algorithm find elements of the
source and target that mapped to the same ontological concepts, or to concepts
that can be related to each other with encoded conversion rules.

A semi-automatic XSLT stylesheet generation is also invoked within the
IDACT system [23], which is a tool for automating the compilation of het-
erogeneous scientific datasets. If a suitable transformation is not found in its
database, IDACT attempts to create a new transformation. IDACT firstly rep-
resents the input and output XML documents as trees, and then determines
the relationships between them, by considering the XML element names, or the
XML element content formats. By searching a library of XSLT conversions or
functions, and a database of element name relationships, IDACT can build an
entire XSLT stylesheet from library components. However, if IDACT finds an
element that does not have a relationship, the user is prompted to provide one.
This new relationship and the new XSLT stylesheet will then be saved and made
available for future use.

[11] describes an approach to an automatic XML to XML transformation
generator that is based on a theory of information-preserving and approximat-
ing XML operations and their associated DTD transformations. The system
strictly requires the presence of DTDs of both the source and target documents.
The process starts with identifying an algebra of information-preserving and -
approxi- mating XML transformations. This is done by defining corresponding
relations on XML trees, which are induced by operations on XML values. The
operations considered as information-preserving are renaming of tags, regroup-

ing, and congruence; while the one considered as information-approximating is
deletion. The renaming of tags is comparable to our exact mapping. However, its
procedure involves some measures of similarity between tag names, which is not
applicable to XSLTGen since XML and HTML have completely different set of
tags. The congruence operation is similar to our structure matching. The next
step is to construct a search space of DTDs by applying algebra operations and
find a path from a source DTD element to the required target DTD element.
The path represents the sequence of operations that realise the sought trans-
formation. Based on the presentation in the paper, the approach seems to be
a theoretical one and does not appear to have been implemented in an actual
system.

In [3], a conceptual modelling based approach is used for performing semantic
matching. It introduces a new layered model for XML schemas, called LIMXS,
which offers a semantic view for XML schemas through the specification of con-
cepts and semantic relationships among them. This model initiates a dynamic
and incremental algorithm for finding semantic mappings. The system initially

performs semantic matching between a source and target semantic views. Once
semantic mapping is generated and validated by user, the result is given to the
logical layer, which performs logical matching. Finally, an XSLT code is auto-
matically produced. In a way, XSLTGen also uses the dynamic and incremental
approach with our text matching, structure matching, and sequence checking,
but without the need for user interaction.

The only prior work about XML to HTML transformations of which we
are aware of is XSLbyDemo [24], a system that generates an XSLT stylesheet
by example. The process begins with transforming the XML document to an
HTML page using an XSLT stylesheet that was manually created taking into
account the DTD of the XML document. This HTML page is referred to as initial

HTML page. The user then modifies the initial HTML page using a WYSIWYG
editor and their actions are recorded in an operation history. Based on the user’s
operation history, an XSLT stylesheet is generated. Obviously, this system is not
automatic, since the user directly involves at some stages of the XSLT generation
process. Hence, it is not comparable to our fully automatic XSLTGen system.
Specifically, our approach differs from XSLbyDemo in three key ways:

1. Our algorithm produces an XSLT stylesheet consisting of transformations
from an XML document to an HTML document, while XSLbyDemo gener-
ates transformations from an initial HTML to its modified HTML document.

2. Following the first argument, our generated XSLT can be applied directly
to other XML documents from the same document class, whereas using
XSLbyDemo, the other XML documents have to be converted to their initial
HTML pages before the generated XSLT can be applied.

3. Finally, our users do not have to be familiar with a WYSIWYG editor and
the need of providing structural information through the editing actions. The
only thing that they need to possess is knowledge of a basic HTML tool.

In the process of generating XSL Transformations, XSLTGen involves a step
of matching the supplied XML and HTML documents, i.e. finding semantic
mappings between the XML and HTML tags. The rest of this section focuses on
the related work in the area of tree matching and semantic mapping.

6.1 Tree Matching

There are a number of algorithms available for tree matching. Work done in [1,
28, 29, 32] on the tree distance problem or tree-to-tree correction problem and
work done in [6, 20] known as the change-detection algorithm, compare and
discover the sequence of edit operations needed to transform the source tree into
the result tree given. These algorithms are mainly based on structure matching,
and their input comprises of two labelled trees of the same type, i.e. two HTML
trees or two XML trees. The text matching involved is very simple and limited
since it compares only the labels of the trees. More recent algorithms on tree
matching and main memory change detection for XML include the XyDiff system
[9] and work in [18], which leverages relational database technology.

6.2 Semantic Mapping

In the field of semantic mapping, a significant amount of work has focused on
schema matching (refer to [27] for survey). Schema matching is similar to our
matching problem in the sense that two different schemas, with different sets
of element names and data instances, are compared. However, the two schemas
being compared are mostly from the same domain and therefore, their element
names are different but comparable. Besides using structure matching, most of
the schema mapping systems rely on element name matchers to match schemas.
The TransSCM system [22] matches schema based on the structure and names
of the SGML tags extracted from DTD files by using concept of labelled graphs.
The Artemis system [2, 5] measures similarity of element names, data types and
structure to match schemas. In XSLTGen, it is impossible to compare the element

names since XML and HTML have completely different tag names.
XMapper [17] is a system built for finding semantic mappings between struc-

tured documents within a given domain, particularly XML sources. This system
uses an inductive machine learning approach to improve accuracy of mappings
for XML data sources, whose data types are either identical or very similar, and
the tag names between these data sources are significantly different. In essence,
this system is suitable for our matching process since the tag names of XML and
HTML documents are absolutely different. However, this system is not automatic
since it requires the user to select one matching tag between two documents.

The Clio system [15] is an interactive, semi-automated tool for computing
schema matchings. It was introduced for the relational model in [21] and was
based on value correspondences provided by the user, in order to create the cor-
responding data transformation/query. In [31], the system has been extended by
using instances to refine schema matchings. Refinements are obtained by infer-
ring schema matchings from operations applied to example data, which is done by
the user who manipulates the data interactively. User interaction is also needed
in [25] where a two-phase approach for schema matching is proposed. The second
phase, called semantic translation, generates transformations that preserve given
constraints on the schema. However, if few or even no constraints are available,
the approach does not work well. It is clear that the algorithm for finding schema
matching used in the Clio system is not suitable for our work, since user inter-
action is required along the phases of finding schema matchings. In addition to
this, the Clio system is applicable only to structured and semi-structured data
that can be described by a schema (a relational schema, a nested XML Schema,
or DTD). It is not applicable to the exchange of documents or unstructured data
(e.g. HTML documents, multimedia, and unstructured text) [25].

Recent work in the area of ontology matching also focuses on the problem of
finding semantic mappings between two ontologies. GLUE system [10] employs
machine learning techniques to semi-automatically create such semantic map-
pings. Given two ontologies: for each node in one ontology, the purpose is to
find the most similar node in the other ontology using the notions of Similarity

Measures and Relaxation Labelling. Similar to our matching process, the basis
used in the similarity measure and relaxation labelling are data values and the

structure of the ontologies, respectively. However, GLUE is only capable of find-
ing 1-1 mappings whereas our matching process is able to discover not only 1-1
mappings but also 1-m mappings and m-1 mappings (in substring mappings).

The main difference between mapping in XSLTGen and other mapping sys-
tems, is that in XSLTGen we believe that mappings exist between elements in
the XML and HTML documents, since the HTML document is derived from the
XML document by the user; whereas in other systems, the mappings may not
exist. Moreover, the mappings generated by the matching process in XSLTGen
are used to generate code (an XSLT stylesheet) and that is why the mappings
found have to be accurate and complete, while in schema matching and ontology
matching, the purpose is only to find the most similar nodes between the two
sources, without further processing of the results. To accommodate the XSLT
stylesheet generation, XSLTGen is capable of finding 1-1 mappings and 1-m
mappings; whereas the other mapping systems focus exclusively on discovering
1-1 mappings. Besides this, the matching subsystem in XSLTGen has the ad-
vantage of having very similar and related data sources, since the HTML data
is derived from the XML data. Hence, they can be used as the primary basis
to find the mappings. In other systems, the data instances in the two sources
are completely different, the only association that they have is that the sources
come from the same domain. Following this argument, XSLTGen discovers the
mappings between two different types of document, i.e. an XML and an HTML
document, whereas the other systems compare two documents of the same type.
Finally, another important aspect which differs XSLTGen from several other
systems, is that the process of discovering the mappings which will then be used
to generate XSLT stylesheet is completely automatic.

7 Conclusion

With the massive upsurge in the data exchange and publishing on the Web,
simple conversion of data from its stored representation (XML) to its publishing
format (HTML) is becoming increasingly important. XSLT plays a prominent
role in transforming XML documents into HTML documents. However, XSLT
is difficult for users to learn.

We have devised the XSLTGen system, a system for automatically generating
an XSLT stylesheet, given a source XML document and a desired output HTML
document. This is useful for helping users to learn XSLT. The main strong char-
acteristics of the generated XSLT stylesheets are accuracy and reusability. We
have described how the notions of text matching, structure matching and se-
quence checking, enable XSLTGen to discover not only 1-1 semantic mappings
between the elements in the XML and HTML documents, but also 1-m map-
pings between the two documents. We have described a fully automatic XSLT
generation system that generates XSLT rules based on the mappings found. Our
experiments showed that XSLTGen can achieve high matching accuracy and
produce high quality XSLT stylesheets.

References

1. D.T. Barnard, N. Duncan, and G. Clarke. Tree-to-tree Correction for Document
Trees. Technical Report 95–372, Department of Computing and Information Sci-
ence, Queen’s University, Kingston, 1995.

2. S. Bergamaschi, S. Castano, S.D.C.D. Vimeracati, and M. Vincini. An Intelligent
Approach to Information Integration. In Proceedings of the 1st International Con-
ference on Formal Ontology in Information Systems, pages 253–267, Trento, Italy,
June 1998.

3. A. Boukottaya, C. Vanoirbeek, F. Paganelli, and O.A. Khaled. Automating XML
Documents Transformations: A Conceptual Modelling Based Approach. In Pro-
ceedings of the 1st Asia-Pacific Conference on Conceptual Modelling, pages 81–90,
Dunedin, New Zealand, January 2004.

4. T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E. Maler. Extensible Markup
Language (XML) 1.0 (Second Edition). W3C Recommendation, October 2000.
http://www.w3.org/TR/REC − xml.

5. S. Castano and V.D. Antonellis. A Schema Analysis and Reconciliation Tool
Environment for Heterogeneous Databases. In Proceedings of the 1999 Interna-
tional Database Engineering and Applications Symposium, pages 53–62, Montreal,
Canada, August 1999.

6. S.S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change Detection
in Hierarchically Structured Information. In Proceedings of the 1996 International
Conference on Management of Data, pages 493–504, Montreal, Canada, June 1996.

7. J. Clark. XSL Transformation (XSLT) Version 1.0. W3C Recommendation,
November 1999. http://www.w3.org/TR/xslt.

8. J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C Recom-
mendation, November 1999. http://www.w3.org/TR/xpath.

9. G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in xml documents.
In ICDE, pages 41–52, 2002.

10. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to Map between On-
tologies on the Semantic Web. In Proceedings of the 11th International Conference
on World Wide Web, pages 662–673, Honolulu, USA, May 2002.

11. M. Erwig. Toward the Automatic Derivation of XML Transformations. In Proceed-
ings of the 1st International Workshop on XML Schema and Data Management,
pages 342–354, Chicago, USA, October 2003.

12. A.L. Hors et.al. Document Object Model (DOM) Level 2 Core Specification Version
1.0. W3C Recommendation, November 2000.
http://www.w3.org/TR/DOM -Level-2-Core.

13. J. Fox. Generating XSLT with a Semantic Hub. In Proceedings of the 2002 XML
Conference, Baltimore, USA, December 2002.

14. M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. XTRACT: Learn-
ing Document Type Descriptors from XML Document Collections. Data Mining
and Knowledge Discovery, 7(1):23–56, January 2003.

15. L.M. Haas, R.J. Miller, B. Niswonger, M.T. Roth, P.M. Schwarx, and E.L. Wim-
mers. Transforming Heterogeneous Data with Database Middleware: Beyong In-
tegration. Bulleting of the IEEE Computer Society Technical Committee on Data
Engineering, 22(1):31–36, March 1999.

16. M. Kay. XSLT Programmer’s Reference. Wrox Press Ltd., 2000.
17. L. Kurgan, W. Swiercz, and K.J. Cios. Semantic Mapping of XML Tags using

Inductive Machine Learning. In Proceedings of the 2002 International Conference
on Machine Learning and Applications, pages 99–109, Las Vegas, USA, June 2002.

18. E. Leonardi, S. Bhowmick, T. Dharma, and Madria S. Detecting content changes
on ordered xml documents using relational databases. In DEXA, pages 580–590,
2004.

19. M. Leventhal. XSL Considered Harmful.
http://www.xml.com/pub/a/1999/05/xsl/xslconsidered 1.html, 1999.

20. S. Lim and Y. Ng. An Automated Change-Detection Algorithm for HTML Doc-
uments Based on Semantic Hierarchies. In Proceedings of the 17th International
Conference on Data Engineering, pages 303–312, Heidelberg, Germany, April 2001.

21. R.J. Miller, L.M. Haas, and M.A. Hernández. Schema Mapping as Query Discovery.
In Proceedings of the 26th International Conference on Very Large Data Bases,
pages 77–88, Cairo, Egypt, September 2000.

22. T. Milo and S. Zohar. Using Schema Matching to Simplify Heterogeneous Data
Translation. In Proceedings of 24th International Conference on Very Large Data
Bases, pages 122–133, New York, USA, August 1998.

23. K.L. Nance and B. Hay. IDACT: Automating Data Discovery and Compilation. In
Proceedings of the 2004 Nasa’s Earth Science Technology Conference, Palo Alto,
USA, June 2003.

24. K. Ono, T. Koyanagi, M. Abe, and M. Hori. XSLT Stylesheet Generation by Exam-
ple with WYSIWYG Editing. In Proceedings of the 2002 International Symposium
on Applications and the Internet, Nara, Japan, March 2002.

25. L. Popa, Y. Velegrakis, R.J. Miller, M.A. Hernández, and R. Fagin. Translating
Web Data. In Proceedings of the 28th International Conference on Very Large
Data Bases, pages 598–609, Hong Kong, China, August 2002.

26. D. Raggett, A.L. Hors, and I. Jacobs. Hypertext Markup Language (HTML) 4.01.
W3C Recommendation, December 1999. http://www.w3.org/TR/html4.

27. E. Rahm and P.A. Bernstein. A Survey of Approaches to Automatic Schema
Matching. VLDB Journal, 10(4):334–350, December 2001.

28. S.M. Selkow. The Tree-to-Tree Editing Problem. Information Processing Letters,
6(6):184–186, December 1977.

29. K.C. Tai. The Tree-to-Tree Correction Problem. Journal of the ACM, 26(3):422–
433, July 1979.

30. S. Waworuntu and J. Bailey. XSLTGen: A system for automatically generating
XML transformations via semantic mappings. In Proceedings of the 23rd Interna-
tional Conference on Conceptual Modeling (ER2004), volume LNCS 3288, pages
479–492, November, 2004.

31. L.L. Yan, R.J. Miller, L.M. Haas, and R. Fagin. Data-Driven Understanding and
Refinement of Schema Mappings. In Proceedings of ACM SIGMOD International
Conference on Management of Data, Santa Barbara, USA, May 2001.

32. K. Zhang and D. Shasha. Simple Fast Algorithms for the Editing Distance between
Trees and Related Problems. SIAM Journal of Computing, 18(6):1245–1262, De-
cember 1989.

