
SmartMatcher – How Examples and a Dedicated Mapping Language can
Improve the Quality of Automatic Matching Approaches

Horst Kargl and Manuel Wimmer
Business Informatics Group

Vienna University of Technology
Favoritenstrasse 9-11, 1040 Vienna, Austria

{kargl|wimmer}@big.tuwien.ac.at

Abstract

Information integration has a long history in computer
science. It has started with the integration of database
schemas in the early eighties. With the rise of the semantic
web and the emerging abundance of ontologies, the need for
an automated integration increased further. A lot of auto-
mated matching approaches and tools have been proposed
so far. The typical output of such tools is a simple one-
to-one alignment mostly based on schema information, e.g.,
similar names and structures of schema elements. However,
these alignments cannot cope with schema heterogeneities,
hence, these problems must be resolved manually. Further-
more, there is no automated evaluation of the quality of the
alignments based on the instance level, because the match-
ing approaches are not bound to a specific integration sce-
nario, e.g., transformation or merge. In this work we pro-
pose the SmartMatching approach, which can be seen as an
orthogonal extension to existing matching approaches for
increasing the quality of the automatically produced align-
ments for the transformation scenario. This is achieved by
using an executable mapping language for bridging schema
heterogeneities and by using instance models to evaluate
the quality of the alignments in an iterative and feedback-
driven process inspired by machine learning approaches.

1. Introduction

Information integration deals with the problem of build-
ing a general view on different kinds of data. The origin
of information integration lies two to three decades ago in
the area of database engineering, as autonomous databases
started to federate [17]. With the advent of semantic web
and its schema-based technologies (RDFS and OWL) for
describing, storing, and exchanging data, the need for an
automatism arises.

In general, we can distinguish between three categories
of matching approaches [18]. The first category are schema-
based approaches which use only schema information as
input for the matching process. The second category are
instance-based approaches which use instances as input for
the matching process, only. And the third category is about
hybrid approaches which use schema and instance informa-
tion.

The main requirements of matching approaches are the
completeness and correctness of the produced mappings as,
well as usability. However, the following three problems
complicate the realization of these three requirements.

Different mapping execution scenarios: Matching ap-
proaches can be applied to solve different kinds of inte-
gration problems. For example, alignments from existing
matching approaches can be used to merge or transform in-
stances. However, each integration scenario entails other
interpretations of alignments with different side conditions.
Due to the generality of common approaches, it is hard to
cover all aspects of each scenario in the alignments, and
most of the approaches lack a binding to an execution envi-
ronment.

Schema heterogeneity: Matching approaches produce
alignments which express correspondences between ele-
ments belonging to different schemas. Most of the schemas
to be integrated share similar semantics but describe these
semantics with different structures. Currently used equiv-
alence correspondences cannot cope with schema hetero-
geneities. Hence, the results of such approaches, often de-
scribed in the INRIA alignment format [8], must be inter-
preted, and missing alignments between schematically het-
erogeneous elements must be explored by the user in fur-
ther steps when the transformation or the merge scenario is
written in an executable language. To fulfill the need of an
executable and evaluable approach, a more powerful map-
ping language that can cope with schema heterogeneities is
needed.



Person
name

Person
label

Schema Alignment

~ 1.0

INRIA Alignment Format

Job
titel

has

~ 0.45name
famName

label

Family
label

belongsTo

Parents
name

has

titel

LHS RHS (a)

~ 0.45

Person
name
famName

Person
label

belongsTo

Job
titel

C2C

A2A

Schema Mapping Dedicated mapping language

has

Family
label

belongsTo

Parents
name

has

A2C

Transformation

LHS RHS

Transformations in pseudo code

(b)

agg=true

1  for each y in LHS.Person
2    create RHS.Person x
3    x.name = y.name

1   for each pL in LHS.Person
2      create RHS.Person pR
3      pR.label = pL.name
4      if not exist RHS.Family.label = pL.famName
5          create RHS.Family f
6          f.label = pL.famName
7          pR.belongsTo = f
8      else
9 f t RHS F il l b l L f N9           f = get RHS.Family.label == pL.famNam
10         pR.belongsTo = f

(d)(c)

Figure 1. Simple mappings (1a), complex
mappings (1b), transformation code (1c, 1d)

Automatic evaluation: Matching results are sugges-
tions and one cannot rely on them. To make assertions about
the quality of the resulting alignments, quality measures can
be applied [2, 16, 21]. To calculate those quality measures,
all correct alignments must be already given by the user.
Typically mistakes are wrong alignments, and alignments
which exist, but are not found by the matching approach.

In this work we introduce the SmartMatching approach
which is dedicated to the transformation scenario. It will
tackle the three aforementioned problems, namly execu-
tion problem, schema heterogeneities, and evaluation of the
mappings. To cope with the execution problem and schema
heterogeneity, we do not use simple alignments which de-
scribe similarities between schema elements. Instead, we
use a dedicated mapping language that can cope directly
with schema heterogeneities. This mapping language has a
direct link to an execution environment. Hence, the map-
pings found can be directly executed without any further
user interaction.

The evaluation of the mappings can be done automati-
cally in the SmartMatching approach during the mapping
process. Therefore, we need instances which describe the

same real-world domain. With these semantically equiva-
lent examples, expressed in both of the schemas to be inte-
grated, we can compare the results of the transformations.
If there are still differences between the transformed in-
stances, further adaptation of the mappings are necessary,
otherwise the mappings represent correct correspondences
between these two schemas.

The SmartMatching approach consists of three compo-
nents, namly, the Initial Matcher, Fitness Function and the
Mapping Engine, and components responsible for the trans-
formation scenario. Depending on the types of schemas to
be integrated, different kinds of mapping languages can be
plugged into the MappingEngine. As a side condition, the
mapping language must be declarative and the mapping op-
erators must have statically typed interfaces. Based on the
interface definition, different selecting strategies for map-
ping operators can be implemented in the MappingEngine.

In the rest of the paper, we use the term matching as
the automatic process of finding bridges between schema
elements, and the term mapping and alignment for those
bridges. Furthermore, the term mapping is used for com-
plex mappings which can bridge schema heterogeneities
and the term alignment for simple equivalent correspon-
dences.

The paper is structured as follows. In Section 2 we give
further motivation for the SmartMatching approach. In Sec-
tion 3 we introduce the SmartMatching approach in detail.
Section 4 shows related approaches and describes the differ-
ences to the SmartMatcher. Finally, in Section 5, we sum-
up our approach and give an outlook on future work.

2. Motivating Example

Figure 1(a) depicts an example of two semantically sim-
ilar but schematically different schemas. In this paper, we
use UML class diagram notation for representing schemas.
The classes with white background color on the left hand
side (LHS) and on the right hand side (RHS) are seman-
tically equivalent but schematically different. The classes
with gray background color are not semantically equivalent
and therefore not considered in the mappings. The LHS
schema describes a concept person (cf. class Person) with
its first name (cf. attribute Person.name) and family name
(cf. attribute Person.famName). The RHS schema describes
the same semantics, but using a different schema represen-
tation. It consists of a class Person and an attribute label,
which represents the name of the person. The information
of the family name is represented in an own class, which has
also an attribute label, representing the family name value.
On the LHS schema, the same value of the attribute fam-
Name can occur repeatedly in different instances. In con-
trast, on the RHS only one Family instance exists for each
person with the same family name. This means, the values



of the Family.label attribute are unique.
Existing matching tools can deliver alignments with sim-

ilarity values between schema elements mostly described
in the INRIA alignment format [8]. Figure 1(a) shows an
alignment between LHS Person and RHS Person with a
similarity of 1.0. This mapping was found due to name sim-
ilarity with schema-based matching techniques. Because
of different names for semantically equivalent attributes,
only instance-based or hybrid matching techniques [18] can
find alignments between the attribute Person.name and Per-
son.label as well as Person.famName and Family.label.

When interpreting the alignments between the LHS and
RHS elements, the transformation code depicted in Figure
1(c) can be derived. All instances of type Person on the LHS
are transformed into instances of type Person on the RHS.
Additionally, the alignment between the two attributes Per-
son.name and Person.label leads to the code in which each
value of the attribute Person.name of a Person instance on
the LHS is shifted into the value of the attribute Person.label
of a Person instance on the RHS.

When transforming this alignments to transformation
code, only some parts of the required transformation code
can be derived without any further interpretation of the
alignments. These alignments do not express that each
value of Person.famName attribute should be transformed
into an instance of the class Family. Additionally, the value
of the Person.famName attribute should be set to the value
of Family.label attribute and a link between Person instance
and Family instance should be created.

To express richer mappings between two schemas, a ded-
icated mapping language which is aware of schema hetero-
geneities can be used. For the mapping example in Fig-
ure 1(b) we have used the CAR mapping language [22],
which is an executable and declarative mapping language
that can cope with most common schema heterogeneities.
It is based on a combination of classes, attributes and ref-
erences. Hence, it is applicable to schemas which are based
on an object oriented core. But CAR is not an integral fea-
ture of the SmartMatcher. Each declarative mapping lan-
guage that can cope with schema heterogeneities and has a
binding to an execution environment can be used.

The two classes Person and its attributes Person.name
and Person.label can be mapped straightforwardly with
an class2class (C2C) and attribute2attribute (A2A) map-
ping. The attribute Person.famName is mapped with an
attribute2class (A2C) mapping to the class Family. This
means making an object of type Family from a value of the
Person.famName attribute. The aggregation flag of A2C is
set to true, hence, each distinct value of Person.famName is
transformed into one object of type Family. Additionally,
the value of Person.famName is transformed into the value
of Family.label, and the link between the instances of class
Person and Family must be set accordingly.

The interpretation of the CAR mappings allows to trans-
form instances of the LHS into instances of the RHS as de-
scribed in pseudo code in Figure1(d). Additionally to the
code shown on the LHS of Figure 1(c), the creation of fam-
ily instances and the linking between family instances and
person instances can be established. The operational se-
mantics of the A2C mapping operator is described in pseudo
code on the right hand side of Figure 1(d) from line 4 to 10.
The first step is to check wheather an instance of type fam-
ily with the value of the attribute Family.label which equals
the family name value of the actual person instance (cf. line
4) exists. If such an instance does not exist, a new instance
of type family is created (cf. line 5) and the value of the at-
tribute label is set to the value of the family name attribute
of the actual person (cf. line 6). In addition, the actual
person instance and the newly created family instance are
connected with a belongsTo link (cf. line 7). In the opposite
case, the correct matching family instance is selected (cf.
line 9) and only the link between the actual person and the
selected family instance must be set (cf. line 10).

Many automatic approaches produce alignments be-
tween schema elements, but lack the expressiveness to cope
with schema heterogeneity problems. More powerful map-
ping languages can tackle the schema heterogeneity prob-
lem, but no automatism for finding the correspondences is
provided. The SmartMatching approach will combine the
strength of both to automatically generate mappings with a
more powerful mapping language. Furthermore, an auto-
matic self-evaluation of the found mappings is provided.

3. The SmartMatching Approach

In this section, we give a detailed introduction to the
SmartMatcher. Figure 2 gives an overview of the Smart-
Matcher’s architecture and its integration process. It shows
the core components, namely, the Initial Matcher, Map-
ping Engine with its Mapping Language Repository, and
Fitness Function. As a prerequisite for using the Smart-
Matching approach, a Mapping Language with an a binding
to an Execution Environment must be provided. For the self-
evaluation feature, additionally instances representing a real
world domain modeled with both schemas are required. The
requirement for the mapping language in the SmartMatch-
ing approach is that the mapping operators have typed inter-
faces. Hence, the mapping operators can be used like pieces
of puzzles to build a bridge between two schemas. Finding
appropriate mappings between them can be seen as search-
ing a way through a search graph. Each node expresses the
state of the mapping, and each edge is the application of a
mapping operator. The aim of the SmartMatching approach
is to find heuristics to reduce the search space and find a
correct mapping quickly.

Section 3.1 gives a generic description of the workflow



of the matching process. Due to lack of space, a concrete
example is not presented in this paper, but may be found at
the project web-site [blinded]. In Section 3.2, we describe
the role of the core components in detail. In Section 3.3,
we give the motivation for using concrete examples and de-
scribe how they can increase the efficiency of the automated
matching.

3.1. The SmartMatcher Process

In the following, we describe the workflow of the Smart-
Matching process, which can be divided into 8 steps.
Step 1) Develop example instances. In this step, instances
are developed for each of the schemas to be integrated.
Figure 3 shows the general idea. The aim is to define
a real world example that uses most of the schema con-
cepts. Describing the same real world example with both
schemas produces instances which use semantically equiv-
alent schema concepts (see the right hand side of Figure
3). Hence, not overlapping schema elements can be filtered
out.
Step 2) Generate initial matching. In this step we use
existing matching tools to create basic alignments between
similar schema concepts. We require the alignments to be
expressed in the INRIA alignment format [8]. Due to the
INRIA alignment format, we can use all matching tools
which deliver such a format.
Step 3) Interprete initial mappings.. We can translate the
alignments produced in step 2 to an initial mapping model
based on the types of the elements referenced by the align-
ments. The use of the Initial Matcher increases the per-
formance, i.e., the search space for the SmartMatching ap-
proach is reduced if several correct mappings have been
found.
Step 4) Derive transformation. In this step a transforma-
tion is generated from the mapping model. The transforma-
tion is responsible to transform LHS instances into RHS in-
stances. Based on the schemas to be transformed, the map-
ping model can be convert into different kinds of transfor-
mations. For example, if XML Schema is used as schema
language, XSLT and XQuery can be used as transformation
environments for transforming the actual XML documents.
Step 5) Transform instances. The execution environment
is responsible for reading the instances conforming to the
LHS schema and transforming them into instances con-
forming to the RHS schema, based on the derived trans-
formations.
Step 6) Calculate differences. In this step the actual and
the target RHS instances are compared by means of their
attribute values and links. The differences are collected in
a diff model which can be used to evaluate the quality of
the mappings between Schema A and Schema B. Further-
more, in step 5 we have two termination conditions for the

CAR Mapping OperatorsCAR Mapping OperatorsCAR Mapping Operators

Mapping Language
Repository

Mapping Engine feed back

pp g pCAR Mapping OperatorsCAR Mapping Operators

Initial Matcher
8 7

2 3
pp g g

with CAR Mapping Language

Mapping Model

Matching Tool

load load

Execution Environment

Export to4

read write
5

S
ch

em
a

Schema A Schema B

st
an

ce

instanceOf

BankomatBankomatExample X cash dispenrcash disprExample Y
cascash dispens´Example Y´

target actual

instanceOf instanceOf

Real World
B k t

Real WorldReal World 

In
s

Fitness Function
Calculates the difference

BankomatExample X pcash disprExample Y cash dispensExample Y1 1

describedescribe

BankomatBankomatExample
Calculates the difference

6

Figure 2. Architecture and process of the
SmartMatching approach

SmartMatching process. The first one occurs if no more dif-
ferences between the actual and target instances exist, i.e.,
the mapping is complete. The second one occurs if the dif-
ferences remain the same during several iterations, i.e., a
final point is reached for a certain set of mapping operators
and example instances.
Step 7) Propagate differences. In this step, the differences
calculated by the Fitness Function are propagated back to
the Mapping Engine. More specifically, missing and wrong
values are propagated back, expressed in the diff model of
the actual and target instances.
Step 8) Interpret differences and adjust mapping model.
This step is responsible for analyzing the propagated dif-
ferences and for adapting the mappings between the LHS
and RHS schema by searching for and applying appropriate
mapping operators for missing or wrong mappings.

After step 8, a new iteration starts at step 4 until step 6.
In step 6 the actual and the target RHS models are com-
pared again. If there are no more differences, the process is
finished, else the iteration is continues until step 8, where a
new iteration begins.

3.2. The SmartMatcher Components

In this section, we give more insights into the compo-
nents of the SmartMatching approach.

Initial Matcher: The aim of the initial matching process
is to narrow the search-space. Without an initial match-
ing, the operators of a mapping language must be applied
randomly. This would increase the search time. The Ini-



tial Matcher component reuses existing matching tools like
COMA++, Alignment API, FOAM etc. The results of such
matching tools are equivalent alignments with a similarity
value delivered in the INRIA Alignment Format [8]. These
results are the input of the next component, the Mapping
Engine.

Mapping Engine: The Mapping Engine is the core com-
ponent of the SmartMatcher. Its role is twofold. First, it
must interpret the results of the Initial Matcher and gen-
erate mappings for them, Step 3 in Section 3.1. Due to
the fact that the Mapping Engine is aware of the mapping
language, appropriate mapping operators can be taken from
the Mapping Language Repository for the delivered align-
ments. Second, it must interpret the results of the Fitness
Function and adopt the given mappings, Step 8 in Section
3.1. The adoption is based on differences between the trans-
formed instances. This is the evaluation part of the ap-
proach. If no differences were found, the mapping ought
to be correct.

Fittness Function: The aim of the Fitness Function is to
calculate the differences between the actual and target in-
stances. Those differences are propagated back to the Map-
ping Engine to adopt the current mappings. The calculation
of differences is based on attribute values and the amount
of instances and their structure. The by-example approach,
discussed in Section 3.3, leads to semantically equivalent
instances, only the structure of the instances of the LHS and
the RHS schema can differ. After the transformation of the
LHS instances into the actual RHS instances, this instances
can be compared with the target RHS instances by counting
the amount of instances of a specific type, and by comparing
the values of attributes. The differences are marked in the
target RHS instances (the diff model) and can be propagated
back to the Mapping Engine.

3.3. How can Concrete Examples Improve
the Matching Process?

Concrete examples are the core elements of improv-
ing the mapping quality and supporting the self evaluation
mechanism. The bottom of Figure 2 shows a cloud which
stands for a concrete real world example of a specific do-
main. This example is described in natural language.

This real world example is modeled with each of the
schemas to be integrated with their schema concepts. To
find the overlapping parts of the schemas to be integrated,
both instances must describe the same parts of the real
world example.

Figure 3 gives an insight how the overlapping parts can
be modeled. The real world example is expressed in one of
the schemas to be integrated, e.g., schema A. The schema
elements used are marked as a filled circle. The part of the
real world example modeled with schema A is also depicted

Semantically equivalent parts of 
the schemas to be integrated

Schema A
Schema B

Semantically equivalent parts of 
the schemas to be integratedR l W ld E l

Schema A Schema B

Schema A

the schemas to be integratedReal World Example

Schema B

Real World Example

Figure 3. Building instances from a real world
example

in the real world example cloud. Now the same parts of
the real world example described with schema A must be
described with schema B. Parts of the real world example
that can be modeled with schema B but not with schema A
must be left out. If not all parts modeled with schema A can
be expressed in schema B, they must also be left out. The
overlapping part of both schemas is depicted on the right
hand side of Figure 3.

This process of describing the same real world exam-
ple with both schemas leads to instances which describe
the same concepts but with different schema elements, that
means we get the semantically overlapping part of both
schemas. Hence, we do not have to cope with semantic
schema heterogeneities.

Other instance-based approaches also compare values of
instances to find similarities between schema elements. Due
to term ambiguities like synonyms, homonyms, the results
of such a comparison cannot be trusted. By using the same
real world example and the same terms for the same con-
cepts the term ambiguities problem can be tackled.

The concrete examples can further be used to increase
the completeness and correctness of the found matchings.
The concrete examples serve to evaluate the mappings be-
tween two schemas by comparing the transformed exam-
ples. Thanks to the real world example, the actual and the
target instances on the RHS should be the same. If this is
the fact, all automatically found mappings are correct.

4. Related Work

In the last decades a lot of contributions have been pre-
sented in the field of schema integration [3, 10, 13]. Based
on those works, a lot of schema matching approaches have
been built [14, 19, 18].
To the best of our knowledge there is no equivalent ap-
proach to the SmartMatcher in respect to how instances are
used to find schema similarities and provide self-evaluation.
In general, we can classify our approach due to the dimen-
sions given in [14] as hybrid meta-matcher approach.

Matching approaches: The SmartMatching approach
is orthogonal to existing matching approaches, such as



COMA++ [2], FOAM [20], CROSI [9], Alignment API [8],
which produce alignments in the INRIA alignment format.
Hence, we can use them to increase the results of the ini-
tial matching phase. In contrast to given instance-based
approaches, we do not use given instances and try to find
the similarities in their values, as described for example in
[5, 7, 11]. We use dedicated real world examples to define
instances. Hence, we can be sure the same terms denote the
same concepts.

Schema heterogeneities: We use a dedicated mapping
language which can explicitly bridge the heterogeneity gap
for common heterogeneity problems. Clio [12] is a match-
ing tool from IBM which is also able to bridges heterogene-
ity problems, but in an implicit manner. They use value cor-
respondences (a kind of simple alignments) for mapping the
schemas and in a second step they interpret sets of value cor-
respondences and compute from these sets complex map-
pings for the most common schema heterogeneities known
from the database field. QuicMig [6], is another matching
approach which bridge schema heterogeneities to fulfill the
transformation scenario. Similar to the SmartMatching ap-
proach, QuicMig makes use of manually created example
instances. But the processing of these instances differs,
QuicMig uses existing instance-based matchers to gener-
ate alignments. The SmartMatching approach calculates the
differences between manually created instances, which are
transformed to adopt the mappings between the schemas to
be integrated.

Machine learning: The SmartMatcher is also related to
supervised machine learning [1]. In general, supervised ma-
chine learning tries to find a functional relationship model to
get the output instance from the input instance with the help
of a set of training instances. The actual and targeted out-
put are compared and the differences are propagated back to
adopt the functional relationship model. The resulting func-
tional relationship model is evaluated with a set of evalua-
tion examples. In case of the SmartMatcher the functional
relationship model is the mapping model between the LHS
and RHS schema. The prepared instances which describe
the real world example serve as input and output. The Fit-
ness Function is responsible for calculating differences and
feeding them back to adapt the mappings. At least one pair
of instances describing the same real world domain is used
to train the SmartMatcher. Further pairs can be used to
evaluate the mappings if they hold for different kind of in-
stances.

5. Conclusion and Further Steps

In this paper we have presented a generic approach
for improving the completeness and correctness of auto-
matically produced mappings for the transformation sce-
nario. Our approach is orthogonal to existing schema-

based, instance-based, and hybrid matching approaches and
can be tailored to different kinds of integration scenarios,
schema languages, and mapping languages. The contri-
bution of this paper is the usage of instances representing
the same real world domain and an initial mapping as a
starting point, combined with a feedback-driven iterative
approach. This iterative approach is used for improving
the initial mappings based on the differences between the
user defined target instances and the generated actual in-
stances. Furthermore, this test-driven approach enables the
automatic evaluation of the generated mappings. Due to the
permanent evaluation of the SmartMatching process, the fi-
nal mapping result can be treated as correct for the defined
set of example instances. Hence, the mapping results of ex-
isting matching tools can be improved. More specifically,
wrong mappings can be eliminated and missing mappings
can be explored. However, the side condition and critical
part of the approach is the definition of the instances which
describe the real world example.

In contrast to other automatic matching approaches, the
SmartMatching approach needs more work in the prepara-
tion phase, i.e., the establishment of the example instances,
but less in the reworking phase, i.e., the manual evaluation
and the adjustment of the mappings. Hence, our hypothesis
is that the effort building the instances for the real world ex-
ample is less than the evaluation and reworking phase of
other approaches. Furthermore, the real world examples
can be used in other integration scenarios. For example,
if schema A and B have been already integrated with the
SmartMatching approach, this means the real world exam-
ple instances have been created and therefore can be reused
when integrating schema A and B with schema C.

The SmartMatcher is already implemented prototypi-
cally for schemas defined in Ecore, the metamodelling lan-
guage of the Eclipse Modeling Framework (EMF) [4]. In
particular, we are using CAR as mapping language, and we
have implemented a simple initial matcher component. In
addition, we provide an import functionality for alignment
models based on the INRIA alignment format. Further-
more, we have implemented a FitnessFunction which com-
pares the target model with the transformed actual model.
The differences between target models and actual models
can be propagated back to the MappingEngine which pro-
duces CAR mapping models which can be transformed into
transformation definitions based on colored petri-nets [15].

Further steps are improving our current prototype, and
the evaluation of the aforementioned hypothesis that the
preparation phase is less work than the reworking phase.
Finally, we have to evaluate our matching approach exten-
sion regarding completeness and correctness of the map-
pings with empirical experiments.



References

[1] E. Alpaydin. Introduction to Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press, Oc-
tober 2004.

[2] D. Aumueller, H.-H. Do, S. Massmann, and E. Rahm.
Schema and ontology matching with COMA++. In SIG-
MOD ’05: Proceedings of the 2005 ACM SIGMOD interna-
tional conference on Management of data, pages 906–908,
New York, NY, USA, 2005. ACM Press.

[3] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative
analysis of methodologies for database schema integration.
ACM Comput. Surv., 18(4):323–364, 1986.

[4] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J.
Grose. Eclipse Modeling Framework (The Eclipse Series).
Addison-Wesley Professional, August 2003.

[5] A. Doan, Y. Lu, Y. Lee, and J. Han. Object matching for
information integration: A profiler-based approach. In Pro-
ceedings of IJCAI-03 Workshop on Information Integration
on the Web (IIWeb-03), pages 53–58, 2003.

[6] C. Drum, M. Schmitt, H.-H. Do, and E. Rahm. QuickMig -
automatic schema matching for data migration projects. In
Proceedings of the Sixteenth Conference on Information and
Knowledge Management (CIKM2007), Lisabon, November
2007.

[7] D. Engmann and S. Massmann. Instance matching
with COMA++. In Workshop: Model Management und
Metadaten-Verwaltung (BTW), pages 28–37, 2007.

[8] J. Euzenat. An API for ontology alignment. In Proceedings
of the third International Semantic Web Conference (ISWC
2004), volume 3298 of LNCS, pages 698–712, Hiroshima,
Japan, November 7-11 2004. Springer Berlin / Heidelberg.

[9] Y. Kalfoglou and B. Hu. Crosi mapping system (cms) re-
sults of the 2005 ontology alignment contest. In Proceedings
of the 3rd International Conference on Knowledge Capture
(KCap 2005) workshop on Integrating Ontologies, Banff,
Canada, Oct. 2005.

[10] V. Kashyap and A. Sheth. Semantic and schematic simi-
larities between database objects: a context-based approach.
The VLDB Journal, 5(4):276–304, December 1996.

[11] T. Kirsten, A. Thor, and E. Rahm. Instance-based match-
ing of large life science ontologies. In Proceedings of Data
Integration in the Life Sciences, 4th International Workshop
(DILS 2007), pages 172–187, 2007.

[12] R. J. Miller, M. A. Hernandez, L. M. Haas, L. Yan, H. C. T.
Ho, R. Fagin, and L. Popa. The Clio project: managing
heterogeneity. SIGMOD Rec., 30(1):78–83, March 2001.

[13] C. Parent and S. Spaccapietra. Issues and approaches of
database integration. Commun. ACM, 41(5es):166–178,
1998.

[14] E. Rahm and P. A. Bernstein. A survey of approaches to au-
tomatic schema matching. The VLDB Journal — The Inter-
national Journal on Very Large Data Bases, 10(4):334–350,
December 2001.

[15] T. Reiter, M. Wimmer, and H. Kargl. Towards a runtime
model based on colored petri-nets for the execution of model
transformations. In 3rd Workshop on Models and Aspects
- Handling Crosscutting Concerns in MDSD, Berlin, Ger-
many, July 2007.

[16] G. Salton and M. J. McGill. Information Retrieval. Grundle-
gendes für Informationswissenschaftler. McGraw-Hill,
Maidenh, 1987.

[17] A. P. Sheth and J. A. Larson. Federated database systems
for managing distributed, heterogeneous, and autonomous
databases. ACM Comput. Surv., 22(3):183–236, 1990.

[18] P. Shvaiko. et. al. OpenKnowledge Deliverable 3.1.: Dy-
namic ontology matching: a survey. Technical report, In-
formatica e Telecomunicazioni, University of Trento, 38050
Povo - Trento (Italy), Via Sommarive 14, July 2006.

[19] P. Shvaiko and J. Euzenat. A survey of schema-based match-
ing approaches. Journal on Data Semantics IV, pages 146–
171, 2005.

[20] Y. Sure and M. Ehrig. FOAM - framework for ontology
alignment and mapping - results of the ontology alignment
evaluation initiative. In Proceedings of the K-CAP 2005
Workshop on Integrating Ontologies, 2005.

[21] C. J. van Rijsbergen. Information retrieval. Online, 1979.
[22] M. Wimmer, H. Kargl, M. Seidl, T. Reiter, and M. Strom-

mer. Integration of ontologies with CAR mappings. In First
International Workshop on Semantic Technology Adoption
in Business – STAB’07, pages 27–38, Mai 2007.


