
Generating and Integrating Evidence
for Ontology Mappings

Ludger van Elst and Malte Kiesel

German Research Center for Artificial Intelligence
– Knowledge Management Department –
{elst,kiesel}@dfki.uni-kl.de

Abstract. For more than a decade, ontologies have been proposed as a means
to enable sharing and reuse of knowledge. While originally relatively narrow
information landscapes have been in mind (e.g., knowledge sharing between a
few expert systems) the application areas proposed nowadays (e.g., organizational
knowledge management or the Semantic Web) are rather broad and open.

From abstract considerations about the distributed nature of knowledge as well
as from observation of actual (human) ontology negotiation processes it seems
clear that globally agreed-upon conceptualizations are probably not obtainable.
Therefore, ontology matching and mapping procedures play an essential role in
more open information landscapes.

In this paper, we present a framework that collects and integrates heuristic
evidence for ontology mappings, allows a knowledge engineer to browse a space
of (assessed) mapping candidates in order to select adequate candidates and then
leverage them to a level of formal statements for ontology merging. A simple
example session shows the intended handling of the prototype and demonstrates
strengths and weaknesses of particular sources of matching evidence.

1 Motivation

Within the sharing and reuse effort, ontologies have been widely proposed as a means
to alleviate model mismatches at the knowledge level [17]. The scenarios envisioned
more than a decade ago were relatively narrow: Knowledge sharing between a few
expert systems on the one hand and reuse of knowledge models by a couple of system
engineers on the other. Nowadays, ontologies are proposed for much broader and more
open information landscapes, e.g., as backbone technology for organizational knowledge
management (KM) systems [1] or even as silver bullet in e-commerce applications and
for the semantic web [10]. While already much research has been carried out in the areas
of ontology representation, acquisition and inferencing, the broadening of the scope of
ontology technology leads to (at least) two additional challenges:

1. Involvement of end users in ontology–related processes: While with the “expert
system scenario” mainly knowledge engineers were the contributors and costumers
of ontologies, in the broader application areas often also end users have to understand
them (at least at a certain level of abstraction, e.g., in the case of web portals) or even
are a valuable source for their maintenance (e.g., KM in product development).

E. Motta et al. (Eds.): EKAW 2004, LNAI 3257, pp. 15–29, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



16 L. van Elst and M. Kiesel

2. Scaling–up the idea of ontologies: From the viewpoint of the topology of commu-
nication, the “shared conceptualization approach” tries to reduce the exponentially
growing number of one-to-one mappings between models by introducing the ontol-
ogy as a “hub” or mediator, resulting in a star–shaped topology. However, in more
open worlds a centralized “knowledge topology” is hardly reachable. While having
OWL as a W3C recommendation1 is a significant achievement with respect to a rep-
resentation ontology for the semantic web, for conceptual as well as for pragmatic
reasons it is unlikely that we will see a similarly high agreement on specific do-
main ontologies2. Consequently, the question of mediating between several domain
ontologies will become more and more important.

Although we will concentrate on the latter topic we believe that for a viable approach
to ontologies in more open information landscapes, in the long term both issues have to
be tackled in an integrated manner3.

Fig. 1. Examplary Operation Points in the “Ontology Matching Continuum”

Ontology matchings can be seen as statements about relationships between elements
(e.g., concepts) of two or more ontologies. Figure 1 exemplifies that these statements
can occur on various levels of formalization: Similarities are relatively informal as the
semantics of this relation is typically ill–defined or application specific (see, e.g., the
discussion about similarity and utility in case-based reasoning [3]). Mappings can take
various forms, from more heuristics-like to formally grounded ones (e.g., “class C is
a subclass of class W”, or “concept Y is a combination of the concepts B and C”).
Equivalences state that (parts of) the ontologies indeed intend to express the same con-
ceptualizations. The ultimate result of ontology matching may be a shared ontology that
comprises the conceptualizations captured by the input ontologies.

Ontology matching procedures perform transitions along this continuum, from het-
erogeneous ontologies to shared conceptualizations. More logics-oriented approaches,
for example, try to formally infer mappings from the input ontologies. It is well known
that such a semantic unification is a complex, highly knowledge–intensive task that is
in general not solvable (see [23] for recent results in this area). While these approaches
have the attractiveness of being logically sound, they are quite heavy–weight and—even
more important—rely on some common vocabulary in the definitions of the input ontolo-
gies. This pre–requisite might be satisfied relatively easily on closed–world scenarios

1 see http://www.w3.org/News/2004#item14
2 For an extended discussion on the distributed nature of knowledge, see, e.g., [8].
3 With the notion of ontological societies we have made a first step into that direction [6, 21].

Multiple
Ontologies Similarities Mappings

Shared
OntologyEquivalences

A

B C

D

W

X Y

Sim(B,X)=0.8
Sim(B,Y)=0.6
Sim(B,W)=0.8

C subclass W
Y ← B•C

D ≡ X
Y ≡ C

W

D Y



Generating and Integrating Evidence for Ontology Mappings 17

(e.g., schema matching in federated databases), but it is a serious problem in the case of
more open information landscapes (like the semantic web and organizational knowledge
management) with their continuously evolving domain ontologies.

The approach presented in this paper therefore abandons the path of formally sound
reasoning for matching ontologies and instead establishes a framework that collects
and integrates heuristic evidence for ontology mappings. As the sources of evidence are
various forms of similarities in the input ontologies, the framework comprises the whole
range depicted in Figure 1. The prototypical implementation computes these evidences
and allows a knowledge engineer to browse a space of (assessed) mapping candidates in
order to select adequate candidates and then leverage them to a level of formal statements
for ontology merging.

The remainder of this paper is organized as follows: Section 2 gives an overview
of the framework and its algorithmic basics. In section 3, we describe a prototypical
implementation of the framework on top of the Protégé ontology environment. A simple
example session shows the intended handling of the tool and demonstrates strengths and
weaknesses of particular sources of matching evidence. Finally, we summarize the basic
features of the approach and give a brief outlook on future work.

2 An Evidence-Based Framework for Ontology Mapping

The main task in merging ontologies is to identify relationships between elements of
the input ontologies, most basically between the ontologies’ classes. These relationships
are necessary to determine which actions to perform in order to create a merged on-
tology (see Figure 2). As already stated above, in this paper we will not formally infer
class relationships, but gather evidence for such relationships. In the literature, ontology
merging operations are mainly based on two sources of evidence:

– Term–based evidence considers similarities in the the textual description (i.e., the
“name”) of concepts in the source ontologies. Examples are the Chimaera ontology
environment [15, 14] and Protégé’s PROMPT tab [18].

– Topology–based evidence considers the structure of the source ontologies, e.g., by
determining similarities of the graphs representing concepts and their relationships,
as done by the Similarity Flooding algorithm [16].

The charm of term–based evidence is that a variety of well–understood algorithms for
the determination of string similarities makes this approach easy to implement. However,
all precision and recall problems known from string–based information retrieval (e.g.,
due to synonyms or homonyms) directly apply here. Therefore, thesauri or lexica are
sometimes incorporated as additional background knowledge to alleviate these problems.

Most methods that focus on topology–based evidence are, strictly speaking, hybrid:
Approaches using formal logic apply matching and unification procedures that rely
on some common vocabulary (i.e., they rely basically on term identity); the similarity
flooding algorithm presented in [16] is hybrid as it derives its initial activation values
from term similarities.



18 L. van Elst and M. Kiesel

Fig. 2. Merging Ontologies

A third source of evidence for detecting ontology mappings are similarities in the
instances. Two basic forms of underlying heuristics for instance–based mapping are

– “IF the instances of class A in ontology O1 are very similar to the instances of class
B in O2 THEN suggest A ≈ B”, and

– “IF the instances of class A in ontology O1 are classified as class B instances with
respect to O2 THEN suggest A ⊆ B”.

The keys to these heuristics are obviously the definition of instance similarity and
the classifier, respectively, without presupposing a shared terminology. How can we
determine the similarity of instance a, formulated in terms of ontology O1, and instance
b, formulated in terms of ontology O2? How can we classify instance a, formulated with
the O1 vocabulary, with respect to O2? In general, we here face the same mapping and
matching problems on the instance level that we actually wanted to solve on the ontology
level. A first idea would be to step another level down and determine local similarities
on the basic datatypes (e.g., number or string similarity) of properties. However, it is
very unlikely that these basic property similarities really contain enough knowledge to
reflect semantical similarity of the instances. Is an object o1 that has a slot foo1 with
a value of 50 really similar to an object o2 with a foo2 slot value of 51? Without any
additional knowledge this similarity would look rather random.

Fortunately, we are in the position that in many application areas envisioned in the
semantic web and in organizational knowledge management, we actually can rely on
better similarity and classifier functions. In these scenarios, domain ontologies are often
not primarily used to manage “real” instances with the proper is-a semantics (“Allan is-a
researcher”), but to annotate (text) documents or parts of them for better retrieval (“This
document is about ontology mapping, semantic web, and knowledge management”). On
these text documents we can, from experiences in information retrieval (e.g., [2]), rightly
expect to obtain the required classification and similarity functions that also capture
some semantics of the “instances”. So, the above sketched heuristics for instance–based
mappings can be re-formulated as

– “IF the documents annotated with concept A (of ontology O1) are very similar to
the documents annotated with concept B (of O2) THEN suggest A ≈ B”.

This similarity can for example be defined as vector similarity (typically the co-
sine measure) in a vector space model as is often used in document retrieval [20, 2].



Generating and Integrating Evidence for Ontology Mappings 19

– “IF the documents annotated with concept A (of ontology O1) are classified as class
B documents in O2 THEN suggest A ⊆ B”.

Such text classifiers can be automatically learned from the example documents
that are annoted with B and than easily be applied to previously unknown docu-
ments, e.g., those documents that are annotated with A.

Examples for instance–based ontology mapping in document–centered applications
can be found in [5, 13, 19]. For an overview of some merging tools and algorithms along
with the kind of information they exploit, see table 1.

Table 1. Comparison of Ontology Merging Approaches

Reference Term Topology Instance
COMA [4] x x4

Chimaera [14] x
CAIMAN [13] x5 x
Similarity Flooding [16] x6 x
PROMPT [18] x

The three basic sources of evidence, term–based, topology–based, and instance–
based are of course not completely independent; certainty coming from one of the
sources may reinforce or eliminate other evidence, and approval of instance– or term–
based mapping evidence, for example, has direct impact on the topology. Which of
the sources is to most adequate seems highly dependant on the input ontologies (and
instances). This fact and the awareness that, by now, we just gather evidence, but not
construct mappings, leads to the following two additional elements of the framework:

– Evidence Integration: The goal of this step is to generate a comprehensive view on
the various interacting and potentially conflicting evidences. Possible integration
techniques range from relatively light–weight voting procedures, like they are often
used in classification tasks (e.g., Borda Count or Highest–Rank) [11], to more heavy–
weight approaches like logic–based formalisms for evidences. An example for the
latter is the Dempster–Shafer theory of evidence that also explicitly handles the
absence of evidence (for an overview see [12]). A middle course would be to use
global similarity measures known from case–based reasoning. [9] presented this
approach for alignment of OWL-lite ontologies. COMA [4] is a system that also
allows for combining different matchers for database schemas.

– User Interaction: It is unlikely that there is only one “true” solution to the problem
of mapping ontologies. Every ontology is founded on design decisions. Therefore,
incorporating a knowledge engineer’s feedback is reasonable to catch an adequate
representation bias (or: the right ontological commitment) in the merged ontology.
Conceiving ontology merging as transitions in a continuum as described in section
1 suggests to have this interaction right at the interfaces of these transitions. This
means the user decides if and when an integrated evidence for a relation between
elements of the input ontologies is really leveraged to a mapping (which then may
influence other evidences again) and how the mappings are used for an actual merger.



20 L. van Elst and M. Kiesel

Figure 3 gives an overview of the framework for evidence–based ontology merging
described in this section. One of its main features is that the conceptually quite different
sources of evidence are also separated in the framework. The only point where combina-
tion of the approaches takes place is when combining the results of evidence generation
algorithms. Thereby, one can on the one hand estimate the usefulness of the separate
algorithms without any interference caused by the early combination of the approaches,
and, on the other hand, more easily tune the overall system to the characteristics of par-
ticular input ontologies. Moreover, our approach emphasizes the need for user feedback,
incorporating and enhancing its match proposals with every match the user confirms or
rejects. If, for example, the user confirms that two classes match, the algorithm considers
it more likely that subclasses of these two classes match, too.

no

yes

Fig. 3. Framework for Evidence-based Ontology Merging



Generating and Integrating Evidence for Ontology Mappings 21

In the next section, we describe a prototype implementation of the proposed frame-
work. This implementation is realized as a plug-in for the Protégé ontology engineering
environment.

3 PHASE: A Prototypical Implementation of the Merging
Framework

The prototype presented in this section implements the general framework described in
section 3. It is realized on three building blocks:

1. The Protégé7 ontology environment is used for the representation of the source and
result ontologies as well as for representing the mappings.

2. The PROMPT tab [18] is a tool for ontology merging and alignment with Protégé.
As it already supports the main methodology and interaction cycle of framework,
we used it as a backbone for our implementation.

3. The classification and document similarity procedures for the instance–based match-
ing were realized on top of the NextBot engine that is the core of ProFiler, a com-
mercial tool for information organization and retrieval by brainbot technolgies AG8.

3.1 Basic Algorithms

In the following, we briefly sketch how the elements of the framework were instantiated.
As we were mainly interested in the integration of the various sources of evidence we
did not concentrate much on the optimization of the basic evidence generators.

Term-Based Matching. From the many well–known algorithms for determining string
similarities we chose the n–gram approach to replace to original substring matcher in
PROMPT. n-grams compute the similarity of two strings by comparing all substrings
of length n. The degree of fitness of a particular match candidate is determined by the
number of n-grams it matches. A threshold for the minimal n-gram similarity leads to
match pairs, tuples of matching classes and a respective confidence value.

Structure-Based Matching. A structure-based algorithm that is already used in the
area of databases for schema mapping is Similarity Flooding [16]. Similarity Flood-
ing is a generic approach for determining matching nodes in graphs, taking two graphs
as input and returning a set of match pairs with corresponding similarity values. The
main part of Similarity Flooding is execution of a fixpoint calculation. In the original
approach, Similarity Flooding uses a set of similarity values obtained by string com-
parison of the classes’ names as an initial value of the similarity vector. However, as
we do not want to mix name-based and structure-based approaches, we use a canoni-
cal vector for initialization. Also, the initialization vector is used to inject knowledge of
user-confirmed matches. Match pairs which have been confirmed by the user get a higher

7 http://protege.stanford.edu
8 http://brainbot.com



22 L. van Elst and M. Kiesel

initial similarity value than pairs which have not been confirmed. Accordingly, potential
match pairs which the user rejected get an initial similarity value of zero.

Instance-Based Matching. Instance-based matching exploits similarities of the
instances associated with the ontologies’ classes. For example, instances of the class
“car” can be named “VW Beetle”, “Porsche 911”, and so on, and it is likely that in
another ontology that features the class “automobile” similar instances can be found.
In our prototype, we do not compare “real” instances of the ontologies, but use text
or HTML documents that are annotated with the concepts of the ontologies. Thereby,
the documents define a kind of “semantic context” of the concepts. The commercial
NextBot engine that was used for document classification and document similarities is
based on the vector space model [20] and standard information retrieval methods [2]
(mainly the TF–IDF weighting schema and the cosine similarity measure). This engine
can automatically learn text classifiers with respect to a concept taxonomy. Input for the
learning algorithm are examples that explicitly relate documents to one ore more con-
cepts. Additionally, we use a simple algorithm for determining class similarities shown
in figure 4. Again, examples of a class are documents that are a priori used for learn-
ing the classifier for a class in the vector space model. Soft matches are a document’s
(previously unknown) matches to other classes. These are automatically determined by
applying the learned document classifier. So, the algorithm takes as input the examples,
the (automatically learned) soft matches and their resemblance values (i.e., the strength
of a soft match) and delivers pairwise similarities of classes that belong to different on-
tologies9. Basically, the algorithm aggregates all evidence that the example documents
ei for a class c of ontology O1 also belong to class d of ontology O2 and delivers this
aggregate as similarity(c, d).

Fig. 4. Algorithm for Instance–based Evidence Generation

Detecting Different Kinds of Relationships. In many ontology merging approaches,
detection and handling of relationships is limited to one-to-one matchings with “is-
equal” semantics. This means that merging algorithms only search for direct semantic
correspondence of classes of the ontologies to merge. However, due to the semantics
of the subclass relation that is typically defined as set inclusion, subclasses and super-
classes can be discovered by the instance-based matcher. If many instances of class a

9 For convenience reasons, one NextBot engine is used to store all input ontologies. This accounts
for the test into which ontology a soft match points (see Figure 4).

for every class c in ontology On

i = 0, s = {}
for every example e of class c

i = i + 1
for every soft match m of example e

if m.class is not in On /* no mappings within one ontology */
inc(similarity(c, m.class), m.resemblanceV alue)
s = s ∪ m.class

for every class d in s
similarity(c, d) = similarity(c, d)/i



Generating and Integrating Evidence for Ontology Mappings 23

in ontology O1 match class b in ontology O2, but only few instances of class b match
class a, it is likely class b represents a superclass of class a. Also, name-based match-
ers can be used for discovering evidence for subclass/superclass relationships as the
names of subclasses often include the name of their respective superclass. However, as
the classes reside in separate ontologies that probably use varying diction, discovery
of subclass/superclass relationships using name-based approaches needs sophisticated
synonym handling. Therefore, name-based discovery of subclass and superclass rela-
tionships is not used in our approach.

Handling Confirmed Matches. As knowledge of confirmed or rejected matches shall
be incorporated in subsequent matching steps, we need to find a way to feed this know-
ledge into the matching process. The structure–based matching algorithm, Similarity
Flooding, offers a way to achieve this by adjusting the algorithm’s initial similarity
vector according to the confirmed or rejected matches. However, while handling of con-
firmed “is-equal” matches is straightforward this way, handling of confirmed subclass
or superclass matches is more difficult. In order to represent these matchings, we create
virtual classes in the ontologies (see figure 5). Now, we can set the initial similarity value
of the virtual class and the respective subclass to a higher value than normal, causing the
Similarity Flooding matching algorithm to use the subclass relationship for improving
its matching results by a certain degree.

Fig. 5. Handling confirmed subclasses

Superclass relationships are handled accordingly. Note, that confirmed “is-equal”
matches take precedence over subclass and superclass relationships of the same classes
when building the initial similarity vector of Similarity Flooding.

Aggregation of Match Results. Typically, the output of the matching algorithms is
ambiguous. Term–based matchers for example may conclude that class “University”
from ontology A matches class “University” from ontology B while a structure-based
matcher does not assign a high similarity value to this pair, perhaps because when taking
the ontologies’ structures into consideration it becomes clear that class “University”
of ontology A means a set of buildings while in the context of ontology B, the class
“University” denotes an organizational structure.

We apply a modified Borda Count method for combining matcher results using
rankings. In the following, we will briefly explain the approach (for an overview see



24 L. van Elst and M. Kiesel

[11]): A ranking is a list of match pairs, ordered by similarity value. Aggregation based
on rankings is not affected by problems with different scales of the similarity values.
Rankings are common scales for the matchers, regardless of the algorithms the matchers
use or the scale of the similarity values the matchers return. The Borda Count method
uses the rankings of match pairs computed by the matchers as input and outputs an real
number (score) associated with every match pair as output. The real number can be used
to construct a combined ranking of match pairs. Basically, the Borda Count for a match
pair is the sum of the number of pairs ranked below it by each matcher. In order to account
for ties in the input rankings, we group all pairs with the same similarity values on one
rank when constructing the input rankings. In order to compensate for the fact that now
each matcher’s ranking probably has a different number of ranks, we assign a ranking
score to each rank. The ranking score is 1− (rank − 1)/(ranks− 1). For each pair, we
sum up its ranking scores as each pair gets a separate score for each matcher. The pairs,
ordered by summed-up ranking scores, represent the resulting aggregated ranking.

3.2 The PHASE Tab

The PROMPT tab [18] is an extension to Protégé and allows to manage multiple ontolo-
gies. Specifically, it provides means to compare and merge ontologies, extracts parts of
an ontology and to move frames between including projects. PROMPT’s merging part
tries to identify semantically corresponding classes solely by using a simple term–based
matcher. The PHASE tab depicted in figure 6 builds on PROMPT by replacing the orig-
inal term—based matching algorithm by the evidence generation algorithms described
above.

Fig. 6. The PHASE Tab

As we want to differentiate between matching evidence the matching algorithms
gather and the actions that may result from them, a new subtab is present in the PHASE
tab that does not exist in PROMPT (see figure 6). The tab is named “relations”. Its
content is a list of (probably) matching classes. Along with the two classes’ names,
the similarity values for the three sources of evidence are shown. Also, the (modified)
Borda Count value is shown. There is a column that shows the assumed relationship type
(equal/subclass/superclass) between the classes which the user may change in case the



Generating and Integrating Evidence for Ontology Mappings 25

estimate is wrong. Finally, there is a “verdict” column in which the user can confirm or
reject the respective class pair.

3.3 An Example Session

Having described the software environment, we will go through an example merging
session, outlining the typical steps necessary for merging ontologies and following the
general framework depicted in Figure 3. We try to merge two ontologies that model
data from the domain of science and teaching. These ontologies have been constructed
in order to meet certain requirements that enable us to show strengths and weaknesses
of the algorithm. Part of the ontologies we try to merge are depicted in figure 7. The
ontologies each consist of about 30 classes.

Note that while both ontologies are roughly similar, there are also small differences
that render most approaches that are solely based on one aspect (be it the classes names
or the ontology structure) ineffective. As a start, many class names do not match directly.
Also, the ontologies’ structure is not identical. Some classes cannot be matched at all.
Instances are not shown in the figure. The instances are HTML documents taken from
the “ 4 Universities Data Set”10.

Fig. 7. Example Ontologies

In figure 6, the initial list of proposed matches can be seen, sorted using the modified
Borda Count. The user should now confirm or reject matches. When assigning verdicts,
it is important to verify that the proposed relationship types are correct or, if this is not
the case, to select the proper relationship type. This is especially true if we confirm a
match.

After having assigned verdicts to a number of matches, the user can decide to let the
structural similarity values get recalculated using the new information.

10 http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/



26 L. van Elst and M. Kiesel

Generally, discovering matching classes is done using the following steps:

– Browse/sort the relation list in order to find matches. At the beginning, using the
Borda Count for sorting is most promising. Later, sorting by single matcher’s values
should be considered, too.

– Confirm or reject a number of match pairs. Adjust relationship types if necessary.
– Let the PHASE tab recalculate the structure-based similarity.
– Repeat until no more matches remain.

Then, the list of confirmed matches can be used for building a list of merging actions
to perform. From then on, everything works as known from PROMPT.

As seen in figure 8, structure–based matching smoothly works where the other match-
ers cease to work. Neither the name-based matcher nor the instance–based matcher (due
to lack of instances for the respective classes) can match “Human” and “Person” or
“Science” and “Research”. However, as can be seen in figure 7, the ontologies’ topology
in the vicinity of these classes is very similar. The structure-based matcher discovers
this. Note that at the time the structure-based matcher computed the values shown in the
figure, the user already confirmed some other matches, contributing to the structure–
based matcher’s accuracy. Also note that there is no matching class for “Room” in
ontology B.

Fig. 8. Structure-based Matcher

Not surprisingly, every match pair proposed by instance–based matching(see figure
9) represents a semantic match or at least denotes some semantic relationship. This
probably looks even better when using corpora including more documents, as the zero
values shown in the right instance–based similarity column are due to missing example
documents for the respective classes.

4 Summary and Outlook

In this paper, we presented a framework that collects and integrates heuristic evidence
for ontology mappings, allows a knowledge engineer to browse a space of (assessed)
mapping candidates in order to select adequate candidates and then leverage them to a
level of formal statements for ontology merging. The framework employs three basic
sources of evidence for ontology mappings, namely term–based, topology–based, and
instance–based evidence. In the prototypical implementation that is based on Protégé



Generating and Integrating Evidence for Ontology Mappings 27

Fig. 9. Instance-based Matcher

and the PROMPT tab, we use a rather simple voting schema for the aggregation of
evidence, the so–called Borda Count.

Further work will comprise

– more flexible aggregation of evidence, e.g., by using logic–based evidence integra-
tion and by adaptive aggregations functions whose parameters may be learned,

– support for other types of relationships, e.g., by additional heuristics for the instance–
based evidence generation, and

– richer mapping languages that also allow for mapping composed concepts.

In addition to a more systematical evaluation of the ontology evidence framework,
we also aim at an integration with the concept of ontology societies [5], leading to
a comprehensive view on ontology negotiation which integrates both, the knowledge
formalization aspect and the social aspect that are contained in the definition of ontologies
as “explicit, shared conceptualizations”. We think that such a comprehensive view on
ontologies really makes them adequate tools for handling knowledge in today’s open
information landscapes.

Acknowledgement. The work described here has been supported by the German Min-
istry for Research under grant 01 IW 901 FRODO and 01 IW C01 EPOS. We thank
brainbot technology AG for providing us with the NextBot engine and Björn Endres for
implementing the JAVA API for the engine. We also thank the anonymous reviewers for
their valuable feedback.

References

1. A. Abecker and L. van Elst. Ontologies for knowledge management. In [22], pages 435–454.
Springer, 2004.

2. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison Wesley, New
York, 1999.

3. R. Bergmann, M. M. Richter, S. Schmitt, A. Stahl, and I. Vollrath. Utility-oriented matching:
A new research direction for case-based reasoning. In S. Schmitt, I. Vollrath, and U. Reimer,
editors, Proceedings of the 9th German Workshop on Case-Based Reasoning, 2001.



28 L. van Elst and M. Kiesel

4. H. H. Do and E. Rahm. COMA — A system for flexible combination of schema matching
approaches. In Philip A. Bernstein et al., editors, VLDP 2002: proceedings of the Twenty-
Eighth International Conference on Very Large Data Bases, Hong Kong SAR, China, 20–
23 August 2002, pages 610–621, Los Altos, CA 94022, USA, 2002. Morgan Kaufmann
Publishers.

5. L. van Elst and A. Abecker. Negotiating domain ontologies in distributed organizational
memories. In Paolo Bouquet, editor, Meaning Negotiation (MeaN-02). Technical Report
WS-02-09, pages 32–35. AAAI Press, 2002.

6. L. van Elst and A. Abecker. Ontologies for information management: Balancing formality,
stability, and sharing scope. Expert Systems with Applications, 23(4):357–366, November
2002.

7. L. van Elst, V. Dignum, and A. Abecker, editors. Agent Mediated Knowledge Management,
International Symposium AMKM 2003, Stanford, CA, USA, March 24-26, 2003, Revised and
Invited Papers, volume 2926 of LNAI. Springer, 2004.

8. L. van Elst, V. Dignum, and A. Abecker. Towards agent-mediated knowledge management.
In [7], pages 1–31, 2004.

9. J. Euzenat and P. Valtchev. An integrative proximity measure for ontology alignment. In
A. Doan, A. Halevy, and N. Noy, editors, Proceedings of the 1st Intl. Workshop on Semantic
Integration, volume 82 of CEUR, 2003.

10. D. Fensel. Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce.
Springer, 2001.

11. T.K. Ho. A Theory of Multiple Classifier Systems And Its Application to Visual Word Recog-
nition. PhD thesis, State University of New York at Buffalo, 1992.

12. J. Kohlhas and P.A. Monney. References theory of evidence – a survey of its mathemat-
ical foundations, applications and foundational aspects. ZOR – Mathematical Methods of
Operations Research, 39:35–68, 1994.

13. M.S. Lacher and G. Groh. Faciliating the exchange of explicit knowledge through ontology
mappings. In I. Russell and J. Kolen, editors, Fourteenth International FLAIRS conference,
pages 305–309, 2001.

14. D.L. McGuinness, R. Fikes, J. Rice, and S. Wilder. The chimaera ontology environment. In
Proc. of the 17th National Conf. on Artificial Intelligence (AAAI 2000), Austin, Texas, 2000.

15. D.L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for merging and testing
large ontologies. In Proc. of the Seventh Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR2000), Breckenridge, Colorado, USA, 2000.

16. S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity Flooding: A Versatile Graph Matching
Algorithm and ist Application to Schema Matching. In Proceedings 18th ICDE, San Jose,
CA, February 2002.

17. R. Neches, R. Fikes, T. Finin, Th. Gruber, R. Patil, T. Senator, and W.R. Swartout. Enabling
technology for knowledge sharing. AI Magazine, 12(3):36–56, 1991.

18. N. Fridman Noy and M. Musen. PROMPT: Algorithm and tool for automated ontology
merging and alignment. In Proceedings of the 7th Conference on Artificial Intelligence
(AAAI-00) and of the 12th Conference on Innovative Applications of Artificial Intelligence
(IAAI-00), pages 450–455, Menlo Park, CA, July 30– 3 2000. AAAI Press.

19. S. Prasad,Y. Peng, and T. Finin. A tool for mapping between two ontologies using explicit in-
formation. In Paolo Bouquet, editor, Meaning Negotiation – Papers from the AAAI Workshop,
volume WS–02–09 of Technical Report. AAAI, 2002.

20. G. Salton. Automatic information organization and retrieval. McGraw Hill, NewYork, 1968.



Generating and Integrating Evidence for Ontology Mappings 29

21. M. Schaaf and L. van Elst. An approach to cooperating organizational memories based
on semantic negotiation and unification. In AAAI-2002 Workshop on Meaning Negotiation,
Technical Report WS-02-09, pages 13–16. AAAI Press, 2002.

22. S. Staab and R. Studer. Handbook on Ontologies. International Handbooks on Information
Systems. Springer Verlag, Heidelberg, 2004.

23. H. Wache. Semantische Mediation für heterogene Informationsquellen. Akademische Ver-
lagsgesellschaft Aka GmbH, Berlin, 2003.


	Motivation
	An Evidence-Based Framework for Ontology Mapping
	PHASE: A Prototypical Implementation of the Merging Framework
	Basic Algorithms
	The PHASE Tab
	An Example Session

	Summary and Outlook

