
QuickMig - Automatic Schema Matching for Data Migration
Projects

Christian Drumm
SAP Research, Karlsruhe,

Germany
christian.drumm@sap.com

Matthias Schmitt
SAP AG, St.Leon-Rot,

Germany
ma.schmitt@sap.com

Hong-Hai Do
SAP Research, Dresden,

Germany
hong-hai.do@sap.com

Erhard Rahm
Universität Leipzig, Leipzig,

Germany
rahm@informatik.uni-

leipzig.de

ABSTRACT
A common task in many database applications is the mi-
gration of legacy data from multiple sources into a new one.
This requires identifying semantically related elements of
the source and target systems and the creation of mapping
expressions to transform instances of those elements from
the source format to the target format. Currently, data
migration is typically done manually, a tedious and time-
consuming process, which is difficult to scale to a high num-
ber of data sources. In this paper, we describe QuickMig, a
new semi-automatic approach to determining semantic cor-
respondences between schema elements for data migration
applications. QuickMig advances the state of the art with
a set of new techniques exploiting sample instances, domain
ontologies, and reuse of existing mappings to detect not only
element correspondences but also their mapping expressions.
QuickMig further includes new mechanisms to effectively
incorporate domain knowledge of users into the matching
process. The results from a comprehensive evaluation using
real-world schemas and data indicate the high quality and
practicability of the overall approach.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases

General Terms
Algorithms, Experimentation

Keywords
Schema Matching, Mapping Discovery, Schema Mapping,
Data Transformation, Data Migration

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’07, November 6–8, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-803-9/07/0011 ...$5.00.

KUNNR : string
(ABC123)

ANRED : string
(Company)

NAME1 : string
(ACME)

Customer

Name

FormOfAddressCode : token
(01)

FirstLineName : string
(ACME)

AddressInfromation

StreetName : string
(5th Avenue)

HouseID : token
(1)

Source Schema: Target Schema:
DEBMAS

STRAS : string
(1, 5th Avenue)

LAND1 : string
(US)

InternalID : token
(XYZ456)

CountryCode : code
(US)

Figure 1: Running example showing a mapping of
customer data

1. INTRODUCTION
Data migration is the task of transforming and integrating

data originating from one or multiple legacy applications or
databases into a new one. Whenever a new software applica-
tion is introduced to replace existing legacy applications or
whenever the application landscape is consolidated the re-
quirement to migrate data between applications arises. Dur-
ing the migration process, data needs to be extracted from
the source systems, transformed and loaded into the target
system. This process requires solving two difficult tasks: i)
schema matching to identify similar or semantically related
elements between the source and target systems and ii) map-
ping discovery to determine mapping expressions capable of
transforming instance data from the source format to the
target format.

As an example, consider the schemas depicted in Fig.
1. The DEBMAS schema describes the data format used by
the legacy system to represent a customer, whereas the
Customer schema describes the data format used by the
target system. The values in brackets show example ele-
ment values for one customer instance. Furthermore, the
dotted lines indicate corresponding elements in the two
schemas. For example, the ANRED element in the source
schema corresponds to the FormOfAddressCode element in
the target schema as they contain the same semantic in-

formation namely the form of address. However, detecting
this correspondence and determining a mapping expression
to transform values of the ANRED element to those of the
FormOfAddressCode element remains a challenge as the for-
mer uses a textual representation whereas the latter utilizes
specific codes. Another example is the complex correspon-
dence between the source element STRAS and the target el-
ements StreetName and HouseID, in which a value of the
former needs to be split in order to form valid entries of the
latter.

As surveyed in [7, 19], previous research work mostly fo-
cuses on the schema matching task to semi-automatically
identify semantic correspondences between schema elements.
To determine the similarity, i.e. degree of relatedness, be-
tween schema elements, proposed techniques exploit vari-
ous kinds of information, including schema characteristics
such as element names, data types and structural proper-
ties, characteristics of data instances, as well as background
knowledge from dictionaries and thesauri. However, only a
few approaches, e.g. [12, 21, 6], have addressed the task
of semi-automatic discovery of mapping expressions. They
typically use the available data instances in data sources
and apply sophisticated machine learning techniques to de-
termine mapping expressions between the matching schema
elements.

In this paper, we propose a new and integrated approach
for schema matching and mapping discovery to support mi-
gration and transformation of data between heterogeneous
sources. Compared to previous work, our approach exhibits
the following improvements:

Novel use of sample instances: Instead of exploit-
ing unrelated instances between source and target system,
we propose to define and use a uniform set of standard in-
stances. The availability of such instances in the source and
target system makes it possible to use much more efficient
methods to detect matching elements.

New instance-based matchers: Exploiting the avail-
ability of the same instances in the source and the target sys-
tem, we developed a set of relatively simple instance-based
matchers, which however are able to detect complex corre-
spondences and mapping expressions in real-world schemas.

Comprehensive set of mapping categories: To cap-
ture such mapping expressions for data transformation, we
have developed a comprehensive set of mapping categories,
indicating how instance data has to be transformed from the
source to the target format. The majority of the categories
can be automatically detected by our new matchers.

Enhanced mapping reuse: Based on the mapping reuse
idea of [7, 9], we have developed a new reuse matcher that
is able to derive new mappings with mapping expressions
from existing ones. The reuse matcher can be easily com-
bined with the other matchers for improved match results.

Schema reduction based on domain knowledge: To
deal with large and complex schemas, we developed a new
questionnaire technique for schema reduction. Specified in
domain nomenclature, the questionnaire allows the user to
specify portions of the schemas relevant for data migration
according to his understanding of the domain.

Real-world evaluation: We have implemented our novel
concepts in a prototype and performed a comprehensive
evaluation with large schemas taken from real SAP busi-
ness applications. The evaluation results indicate the high
quality and practicability of our approach for real-world sce-

narios.
The remainder of the paper is organized as follows. Sec-

tion 2 briefly describes existing research related to our ap-
proach. Next, Section 3 presents an overview of the Quick-
Mig approach. After this, sections 4 and 5 further detail
important aspects of the approach before an evaluation is
presented in Section 6. The paper ends by providing a sum-
mary and an outlook on future work in Section 7.

2. RELATED WORK
The work most closely related to ours is the recent schema

matching tool COMA++ [7, 9]. COMA++ supports a large
spectrum of schema- and reuse-based matchers and employs
composition to combine the results of individually executed
matchers. The result of a match operation in COMA++ is
a structural mapping consisting of correspondences with a
similarity value to indicate their plausibility. To deal with
large schemas, COMA++ supports a fragment-based match
approach, in which the input schemas are reduced to rele-
vant schema fragments either chosen manually or identified
automatically according to fragment similarity.

QuickMig is a further development of COMA++ and im-
proves it in several aspects. First, it supports schemas with
instances and includes a number of new instance-based match-
ers which can be combined with the existing matchers in
COMA++. Second, it provides new techniques exploiting
sample instances and domain-specific knowledge to detect
mapping expressions for match correspondences and com-
plex matches, such as string splitting and concatenation.
Third, the mapping reuse approach of COMA++ has been
enhanced to support not only mappings with similarity val-
ues, but also mappings with mapping expressions. Fourth, a
new technique based on questionnaires in natural language
is employed for schema reduction. The user can choose rel-
evant fragments for matching according to his understand-
ing of the business domain, and not based on the technical
knowledge of the schemas as expected by the manual frag-
ment selection in COMA++.

To determine corresponding schema elements, previous
work typically exploits either schema information, such as
element names, data types, and schema structure [1, 7, 9,
14, 15, 16, 18], or instance data [3, 2, 4, 6, 10, 11, 12, 13,
17]. So far, only a few approaches try to combine both
schema- and instance-based techniques [6, 10, 21]. Inherit-
ing the composite combination approach from COMA++,
QuickMig is able to combine schema-based, instance-based
and reuse matchers in a flexible way.

Previous instance-based approaches mostly rely on the
availability of real instance data and apply sophisticated
machine learning, statistical or information retrieval tech-
niques to determine instance similarity of schema elements.
However, the resulting quality of such approaches essentially
depends on the quality of the available instance data. Our
approach to provide and use sample instances makes it pos-
sible to achieve high match quality independently from the
availability and quality of real instance data.

Utilizing representative instances for schema matching was
also proposed for the DUMAS prototype [4]. However, un-
like in QuickMig, such instances are determined in DUMAS
using automatic duplicate identification, which may mis-
lead the match operation with wrong duplicates. Further-
more, QuickMig is able to determine mapping expressions
for match correspondences and to identify different kinds of

complex matches, such as string splitting and concatenation,
which are not supported by DUMAS.

To date, only a few matching approaches address the task
of finding mapping expressions or at least try to return cor-
respondences with a higher semantics. DIKE [18] can detect
semantic relationships, like synonymy and hypernymy, be-
tween schema elements. iMap [6] uses machine learning and
[21] exploits a domain ontology to suggest complex matches,
such as string concatenations and arithmetic operations.
Starting from a set of correspondences provided by either
the user or (semi-) automatic match, Clio [12] and HepTox
[5] try to infer query mappings to query and transform in-
stances of one schema to another one.

Unlike these prototypes, QuickMig employs several dis-
tinct techniques to identify mapping expressions and com-
plex matches. First, sample instance data makes it possible
to identify string split and concatenation using simple string
comparison. Second, sample instance data combined with
domain knowledge, such as standard formats and structures
for modeling date, time, address, phone, fax data, enables
the detection of complex matches between these formats and
structures. Finally, QuickMig is also able to derive mapping
expressions for match correspondences by reusing existing
mappings and the associated mapping expressions.

3. OVERVIEW
This section gives an overview of the QuickMig approach

for schema matching and mapping discovery. We start by
discussing the observations driving the design of our ap-
proach (3.1) before presenting our migration process (3.2),
the architecture (3.3) and the mapping categories (3.4).

3.1 Observations
The design of our approach to schema matching and map-

ping discovery is driven by several observations which we
made by analyzing practical data migration scenarios of var-
ious SAP customers:

Limited value of schema information: We generally
observed that legacy systems are mostly not optimized to-
wards fostering system interoperability. The schemas typi-
cally make extensive use of technical names, abbreviations,
and proprietary structure (cf. the running example). This
makes it difficult to determine correspondences, not to men-
tion mapping expressions, between schema elements. As a
consequence, additional kinds of information, especially in-
stance data, domain knowledge, and previously determined
mappings, need to be considered in order to achieve reason-
able quality in the schema matching and mapping discovery
process.

Availability of domain knowledge: The migration
process needs knowledge about both the source and the tar-
get system. Unfortunately, such knowledge is not always
available at one place. The knowledge about the target sys-
tem is available at its vendor, while only customers can pro-
vide detailed knowledge about their source systems. As a
consequence, a migration solution developed by a vendor of a
target system, e.g. SAP, should exploit the knowledge about
the target system, and at the same time support effective
mechanisms to incorporate the customers’ knowledge about
their source systems. In particular, the knowledge about the
target system, e.g. field semantics, sample instances, data
formats and code lists, can be specified in an ontology for
automatic analysis. This manual effort is needed only once

Answer
question-

naire

Sample
data

injection

Import
source

schema &
instances

Execute
matching

algorithms

Review
mapping &
complete
mapping

expressions

Figure 2: The QuickMig matching process

and can be quickly amortized over many migration projects.
Scope of data migration projects: Typically, the data

sources involved in data migration projects are complex, re-
sulting in large schemas to be matched. Depending on the
need of the particular customer, only certain parts of the
target system need to be populated with source data, which
results in different target schemas for different migration
projects, even for the same target system. This potential
for schema reduction needs to be exploited as much as pos-
sible in order to reduce the complexity of the data migration
tasks; Schema reduction can be performed with suitable in-
volvement of the customer at the beginning of the migration
process.

Accumulated mapping knowledge: In a given mi-
gration project usually many different mapping tasks need
to be solved, e.g. for customer data, supplier data, pur-
chase orders, etc. As these schemas usually contain common
parts, like address data, there is a high reuse potential for
the results from previous mapping tasks, especially regard-
ing complex mapping expressions which otherwise have to
be developed manually. In our approach we consider this
opportunity by the means of a dedicated matcher.

3.2 The QuickMig Migration Process
The problems and opportunities mentioned in the previ-

ous paragraphs led to the migration process depicted in Fig.
2.

1. Answering a Questionnaire. This first step is man-
ually performed by a person with some knowledge of the
capabilities of the source system. The purpose of the ques-
tionnaire is to collect as much information about the source
system as possible. This information will be used to auto-
matically reduce the complexity of the target schemas and
thereby reduce the complexity of the matching process. A
detailed discussion of the schema reduction will be given in
Section 4.1.

2. Injection of Sample Instances. In the second step
instances already existing in the target system are manually
created in the source system by a user. These sample in-
stances are used by the instance-based matching algorithms
(see also Section 5.1) in order to determine correspondences
between the source and the target schemas. A detailed de-
scription of the sample data creation in the source system is
given in Section 4.2.

3. Schema and Instance Import. The third step in
the migration process is the import of the source schemas as
well as the corresponding sample instances into the Quick-
Mig system.

4. Matcher Execution. In the fourth step the schema
matching algorithms will be executed and automatically de-
termine a mapping proposal using different matching algo-
rithms. This mapping proposal includes similarities between
elements of the source and target schemas as well as a pro-
posal for the mapping categories.

5. Review. A developer reviews and corrects the map-
ping proposal in the final step. When the mapping proposal
is accepted real mapping code is generated and the map-

Input Data

Source
Schema

Source
Schema
Instance

Target
Schema

Target
Schema
Instance

QuickMig

Equality Matcher

Ontology-Based Matcher

Reuse Matcher

Mapping
Repository

Result-
Combination

Schema
Mapping

After user review
and completion

Split-Concat Matcher

Figure 3: QuickMig architecture

ping is stored in a mapping repository for later execution or
reuse.

3.3 The QuickMig Architecture
The QuickMig system is based on COMA++ [7, 9]. An

overview of the architecture of the QuickMig system is given
in Fig. 3. QuickMig extends COMA++ by implementing
three new instance-based matching algorithms, namely the
Equality, the Split-Concat and the Ontology-based matcher,
and by improving the reuse matcher. A detailed description
of these algorithms can be found in Section 5. Each match-
ing algorithm creates a list of correspondences between the
source and the target schema as well as the associated map-
ping category. The results of all algorithms are combined
in order to create the final mapping presented to the user.
Furthermore QuickMig adds functionalities to support in-
stance data and the creation and management of mapping
categories.

3.4 Mapping Categories
As described in the previous section the matching process

not only returns correspondences between schema elements
but also mapping categories associated to these correspon-
dences. These mapping categories can be used to create
parts of the necessary mapping expressions automatically
or at least to provide a mapping expression template that
can easily be completed by a developer.

As an example consider the NAME1 element in the run-
ning example. This element corresponds to the element
FirstLineName. The correct mapping category is Move.
This means that the content of the source element can be
copied into the target element without modification. There-
fore the mapping expression for this category can be cre-
ated automatically. In contrast to this consider the KUNNR

element. This element corresponds to the InternalID ele-
ment. The associated mapping category is InternalID mean-
ing that an internal ID, which depends on the content of the
source element, needs to be created in the target system. In
this case only parts of the mapping expression can be gen-
erated automatically. A developer needs to complete the
expression with the code to create a correct internal ID.

Based on an examination of mapping expressions common
in migration projects, we identified 11 mapping categories.
Table 7 in the appendix provides an overview of these map-
ping categories, together with a short explanation of each
category. Furthermore, the table indicates in the third col-
umn if the mapping code for this category can be created
automatically by the QuickMig system, and in the fourth
column if the category can be identified automatically. The
next paragraph briefly explains the most important mapping
categories.

Move is the most simple and also the most frequent map-
ping category which we observe in a typical mapping. When

this mapping category is assigned to a correspondence, in-
stance data is simply copied from the source to the tar-
get schema element. Other common mapping categories are
Split and ValueMapping. In the case of Split, the contents
of a source schema element has to be split into several tar-
get schema elements. The ValueMapping category indicates
that the source values need to be mapped to specific target
values. This mapping can either be performed using a stan-
dard code list, if applicable, or using a custom translation
table. Such a custom translation table maps certain source
to certain target values and needs to be maintained manu-
ally. The mapping category Complex indicates the need for
a complex function to translate the source instance data. In
this case no automatic suggestion is provided by the Quick-
Mig system. Instead, a user needs to create the necessary
mapping expression manually.

For those mapping categories for which mapping expres-
sions can be generated automatically, the QuickMig system
creates the correct ones. In the other cases, a user either has
to complete the mapping expression (e.g. in the case of Val-
ueMapping) or has to create the whole mapping expression
from scratch (in the case of Complex). With this approach
no work at all is necessary for the simple cases, the user only
needs to take care of the complex ones.

4. SCHEMA REDUCTION AND SAMPLE
DATA

This section describes, in more detail, the two manual
steps of the QuickMig process, i.e. the answering of a ques-
tionnaire in order to reduce the target schema and the cre-
ation of sample data in the source system.

4.1 Target Schema Reduction
Usually not all complexity supported by a target system

is necessary in a given migration project. In order to deal
with large schemas, we suggest to identify and leave out
irrelevant parts of a schema and to simplify complex sub-
structures by exploiting the domain knowledge of the user.
In particular we propose to provide a (electronic) question-
naire for every target schema (or set of closely-related target
schemas). Based on the answers to the questionnaire, the
target schema(s) are reduced to the relevant parts, which in
turn leads to a reduction of the complexity of the match-
ing task. Examples of questions in such a questionnaire are:
“Shall bank account data be migrated for a customer?” or
“Shall multiple addresses be migrated for each customer?”.
If these questions are answered with no, the BankDetails

sub-structure of the target schema can be removed and the
Address sub-structure can be merged with the CustomerT

sub-structure of the target schema. This approach is de-
picted in Fig. 4.

The mapping between the reduced target schema and the
original target schema is generated automatically. As both
the target schema and the questionnaire, including all pos-
sible answers, are known in advance, the necessary mapping
expressions resulting from certain answers to the question-
naire are stored together with the questionnaire. The initial
development of the mappings is performed during the devel-
opment of the questionnaire. Consequently, no additional
matching effort arises from the schema reduction in a given
migration project. Furthermore, these mappings are reused
in many migration projects, therefore the effort of initially

Source Schema: Target Schema:

CustomerS
● Name
● Country
● KeyAccount

CustomerT
● Name

Address
● AddressID
● Country

1:n

BankDetails
● AccountNr.
● AccountHolder

1:n

CustomerS
● Name
● Country
● KeyAccount

CustomerT
● Name
● Country

Source Schema: Reduced Schema:

Shall bank details be migrated? NO!
Shall multiple addresses be migrated?NO!

Necessary
mapping
can be
created
automatically

Figure 4: Reduction of the target schema

creating them will be amortized over time.

4.2 Sample Data
Various previous schema matching approaches already make

use of instance data [3, 6, 10, 11, 12, 13, 17]. However,
they mostly apply sophisticated statistical, machine learn-
ing approaches to unrelated instances available in source and
target systems in order to identify matching elements. Un-
fortunately, similar instances, such as phone/fax numbers
typically result in wrong matches, e.g. between customer
and supplier phone and fax numbers as reported in [10].

Therefore we propose to deliver one sample instance for
every target schema instead of analyzing sets of unrelated
instances. This sample instance contains data for all rele-
vant fields of the target schema. In the second step of the
migration process relevant sample instances will be automat-
ically selected based on the answers to the questionnaire and
presented in a user-friendly way. A business user will then
manually create the same instances in the source system.
Note that creating these instance in these legacy systems
can be done quickly by business users, as entering this kind
of information into the system is their daily business.

Using sample data this knowledge can be exploited by
the matching algorithms. By injecting sample data into the
source system the matching algorithms do not only have ar-
bitrary instances available but one dedicated instance which
maps exactly to a specific instance of the target schema.
This feature is later exploited by the matchers. Instead of
comparing unrelated instances, the matchers use instances
based on the same data to identify related schema elements.

The idea of injecting sample data into the source system
also helps to verify concrete mapping expressions. After a
complete mapping has been created, the sample instance of
the source system can be translated using this mapping. If
the result of this translation differs from the existing sam-
ple instance in the target system, it is very likely that the
mapping function is wrong and needs to be revised. As an
example consider the ANRED element of the running exam-
ple. If execution of a mapping does not result in the value
01 for the target schema element FormOfAddressCode, the
mapping expression is wrong.

However, providing sample data may not make sense for
all schema elements. The reasons for this are twofold. First,
the sample data needs to be easily understandable by a busi-
ness user, who has to create the data in the source system.

Second, the sample data should not contain similar values
for different schema elements as this leads to wrong match-
ing proposals. Both features can only be guaranteed for a
subset of elements.

5. NEW MATCHERS
We implemented a number of new instance-based match-

ers which have been added to the matcher library of COMA++.
This allows combining the matchers in a flexible way. Fur-
thermore, we enhanced the reuse matcher of COMA++
to support mappings containing similarity-based correspon-
dences as well as correspondences with mapping categories.
The following sections explain the new instance-based and
reuse matchers (5.1, 5.2), and the combination of their re-
sults (5.3).

5.1 Instance-based Matchers
In the QuickMig system three instance-based matchers

were developed, namely i) an Equality matcher, ii) a Split-
Concat matcher and iii) an Ontology-based matcher. In
the following we will briefly introduce the Equality and the
Split-Concat matcher and then focus on the more complex
Ontology-based matcher.

5.1.1 Equality Matcher
The equality matcher is the most simple instance-based

matcher. This matcher tries to identify equal instance val-
ues in the source and target schema. By this approach only
matches with the mapping category Move can be identified.
Although this matcher is rather simple, it fits nicely to the
sample data injection as this approach leads to many iden-
tical instance values in the source and the target schema.

5.1.2 SplitConcat Matcher
In addition to the equality matcher the SplitConcat matcher

checks the instance data for splitting or concatenation rela-
tionships. As an example consider the STRAS element of the
running example. Given the sample instance data shown,
the SplitConcat matcher would be able to identify that the
element containing 1, 5th Avenue matches to the elements
containing the substrings 1 and 5th Avenue because the first
value can be split into the latter two. Furthermore the Split-
Concat matcher would identify Split as the correct mapping
category. In general the SplitConcat matcher is able to iden-
tify the Split and Concatenate mapping categories depend-
ing on the direction of the identified substring relationship.

5.1.3 Ontology-Based Matcher
The Ontology-based matchers exploit background knowl-

edge provided in a domain ontology in addition to instance
data in order to identify corresponding schema elements.
The Ontology-based matcher currently exploits the follow-
ing types of background knowledge:

Modeling alternatives for common data structures.
For some forms of data a set of well known model-
ing alternatives exist. As an examples consider tele-
phone numbers. They could either be represented as
<CountryCode> (<AreaID>) <SubscriberID> or sim-
ply as <Number>. Other data with well known mod-
eling alternatives are date and time information and
address data.

Available standard code lists. For certain information
a set of standard, pseudo-standard and proprietary
code lists exist. As an example of such a code list con-
sider the SAP code list of form-of-address codes. Using
this code list the correspondence between Company and
01 in the running example can be identified based on
the given sample data.

The following paragraphs describe how these types of back-
ground knowledge are modeled in a domain ontology and
how they are exploited by QuickMig.

The goal for the usage of a domain ontology was not only
to support the mapping process but also to make the in-
formation understandable for a human user. Therefore, the
ontology was not modeled according to either of the used
schemas. Instead we first conceptually modeled the do-
main (information related to business partners in this case)
using OWL DL [20] and annotated the target schema us-
ing the resulting ontology. The background knowledge was
added to the domain ontology using annotations of the re-
spective concepts or properties. As an example consider
the FormOfAddressCode element in the running example.
This element would be annotated with the object property
hasFormOfAddressCode of the concept Name. The object
property hasFormOfAddressCode has an additional anno-
tation property usedStandardCodeList which is linked to
an instance of a StandardCodeList representing the specific
SAP code list for the form of address codes. Listing 1 in the
appendix shows this example in abstract owl syntax.

The Ontology-based matcher uses the information mod-
eled in the ontology to find additional correspondences based
on the available instance data. For each target schema el-
ement the Ontology-based matcher checks the annotation
properties of the ontology entity it is annotated with. If the
annotation property contains information regarding a code
list, the Ontology-based matcher uses this code list to trans-
late the sample data related to the element. If a description
of a modeling alternative is found, the matcher also checks
for this alternative based on the sample data related to the
element.

In the example presented previously, the specific SAP
code list for form of address codes would be used to translate
the string Company to its code representation 01. Thereby
the Ontology-based instance matcher is able to identify
matching elements based on the set of instances consisting
of Company and 01.

It is important to note that the ontology, as well as the
questionnaire and the sample data, only depends on the tar-
get system. Therefore it only needs to be developed once per
system and can be delivered as part of QuickMig.

5.2 Reuse Matcher
The reuse of existing mappings represents a promising

approach for solving new matching tasks, which are sim-
ilar to already solved matching tasks, in an efficient way.
COMA++ [7, 9] already includes a matcher applying map-
ping reuse. The proposed approach assumes the transitivity
of the similarity relationships and uses a special compose
operation to aggregate the similarity of the identified tran-
sitive match correspondences [9]. The Reuse Matcher in
QuickMig is based on the same assumption of transitivity of
match relationships. However, we have extended it in two
ways. First, we provide an optimized pre-selection of the
mapping path. Second, the representation of mappings and

StreetName
STRAS

HouseID HouseID

StreetNameSplit

Split

Move

MoveSTRAS

S 2 S1 T 1 T 2

Move

Figure 5: Combination of mapping categories

the compose operation are enhanced in order to support not
only similarity-based correspondences but also correspon-
dences with mapping categories.

The quality of the reuse matcher essentially depends on
the quality of the mapping path selected for the compose
operation. In our migration scenarios we observed that mi-
gration projects typically cover different kinds of data such
as customer data, supplier data, which, despite their differ-
ence in semantics, often have a very similar structure. How-
ever, this structural similarity typically exists only within
the source and target systems, respectively, as they have
been designed and evolved independently from each other.
This intra-system similarity can be exploited in order to de-
termine a good mapping path for our reuse matcher. In
particular, to derive a mapping between a source schema S2

and a target schema T2, we first match the source schema S2

to a previously matched schema S1 to obtain a mapping m1.
Assuming that the mapping m2 between S1 and another tar-
get schema T1 was constructed in a previous migration task,
and the mapping m3 between the target schemas T1 and T2

has been specified and maintained during the development
of the target system, we can compose m1, m2 and m3 to
obtain a mapping between S2 and T2.

The implementation of the compose operation is based on
Table 8, which describes how a mapping category can be
composed with another one in case of transitive correspon-
dences. In this table the column headings are the mapping
categories of the mapping between T1 and T2 and the row
headings the mapping categories between S1 and T1. Be-
tween S2 and S1 no mapping categories are calculated as
only schema based matching approaches are used. Further-
more LookUp, Code2Text, Default, Split, Concatenate and
Complex should not occur between the target schemas as
in the target system similar data will be stored consistently
(e.g. using the same codes). As an example for the com-
bination of mapping categories consider Fig. 5. The map-
ping category resulting from the combination of Split and
Move is the category Split again. Consequently Split is the
mapping category that is assigned to the correspondence be-
tween STRAS in schema S2 and StreetName and HouseID in
schema T2 respectively.

Our reuse approach is particularly promising due to three
reasons. First, compared to directly matching S2 and T2,
only one, potentially much simpler match operation is re-
quired, in particular to obtain the mapping m1 between the
source schemas S1 and S2. With the expected structure
similarity within the source system, efficient schema-level
matchers considering schema information, such as element
names, data types, and structural neighborhood, may al-
ready be sufficient to derive m1 with a high quality. Second,
the inter-system heterogeneity, which actually makes it dif-
ficult to directly match S2 and T2, is intelligently solved
by reusing the previously determined mapping m2 between
S1 and T1. m2 contains only confirmed correspondences
and mapping expressions, also in cases which are difficult or
impossible to detect automatically. Third, the mapping m3

between the target schemas can be specified and maintained
along with the development of the target system. Such map-
pings can be delivered as part of the data migration solution
and are thus readily available for reuse.

5.3 Matcher Combination
In this step, the individual results of the Equality, the

SplitConcat, the Ontology-based and the Reuse matcher
are combined. The results of the instance-based matchers
can be simply merged as the matchers focus on identify-
ing correspondences with different mapping categories and
thus complement each other. For the Reuse Matcher, we
observe that it still delivers some wrong matches due to two
reasons. First, the schema based matching of the source
schemas might result in wrong matches. Second, the transi-
tivity property does not hold, as already reported in regard
to COMA in [9]. Using sample data we can easily identify
potentially wrong matches. Element pairs with provided
but unequal sample instances are most likely mismatches if
they are not involved in some complex matches identified
by the SplitConcat and Ontology matchers. Such element
pairs are obtained by inverting the merged results of the
three instance-based matchers, and are then removed from
the results of the Reuse matcher. Finally, the cleansed re-
sult of the Reuse matcher is merged with the results of the
instance-based matchers.

6. EVALUATION
In order to assess the effectiveness of the developed ap-

proach, an evaluation with real-world schemas and data was
performed. The schema mapping process was executed au-
tomatically and results were compared against the correct
mapping. The correct mappings were extracted from ex-
isting code implementing these mappings. To quantify the
quality of the automatically obtained matching result, the
standard measures Precision, Recall and F-Measure[8] were
used. The precision with which the correct mapping cate-
gories are proposed was also evaluated.

Note that even though the evaluation of QuickMig was
only performed using XML schemas, the system is not lim-
ited to them. As it is based on COMA++, it is, for example,
also capable of supporting relational schemas.

6.1 Evaluation Set-up
To evaluate our approach the following SAP schemas were

used as examples of possible source schemas1 i) SAP R/3,
Release 4.0, Customer Master Data IDoc and Vendor Mas-
ter Data IDoc, ii) SAP ERP, Release 2005, Customer Mas-
ter IDoc and Vendor Master IDoc and iii) SAP B1, Business
Partner Data Model. The target schema in all our experi-
ments was the Business Partner schema of new SAP solu-
tions. Note that in the cases where two or more schemas are
mentioned in the list above, the information regarding busi-
ness partners is split across several schemas. Consequently
all of these schemas need to be matched against the target
schema. For the evaluation we will in the following treat
each set of schemas as one evaluation scenario.

These schemas were chosen to evaluate QuickMig because
they exhibit most of the characteristics expected in com-
plex migration projects. The naming of the elements ranges

1The schemas used for evaluating QuickMig can be down-
loaded at: http://tinyurl.com/2f99vk

Table 1: Complexity of schemas used for evaluation
Scenario Number of Number of

elements elements
w. cardinality 0..*

Target Schema 4639 4111
R/3 4.0 953 648
SAP ERP 2150 1691
SAP B1 480 293

Table 2: Complexity of the target schema after the
reduction

Scenario Number of Number of
elements elements

w. cardinality 0..*

Target schema 4639 4111
reduced to 645 395
R/3 4.0
reduced to 612 494
SAP ERP
reduced to 639 279
SAP B1

from cryptic eight letter names in the first schema to very
verbose naming in the target schema. Also the structure of
the schemas ranges from flat structures in the case of the
first schema to deeply nested structures in the case of the
target schema. In addition, each schema groups the infor-
mation differently. Finally, the selected schemas are quite
large with respect to the number of schema elements. The
size of the schemas used in the evaluation is given in table
1. The table shows the number of elements in each scenario
as well as the number of elements that can occur multiple
times.

6.2 Target Schema Reduction
As described in Section 3.2 the first step in the Quick-

Mig process is to reduce the target schema by answering
a questionnaire. We answered the questionnaire according
to the capabilities of the different source schemas. The re-
sults of our evaluation can be found in table 2. It shows the
complexity of the reduced target schema based on source
system capabilities. Generally speaking the schema reduc-
tion approach reduces the target schema to about 10-15%
of its original size and many of the complex cases can be
removed.

It is not possible to state exactly what elements of the
target schema were removed as this largely depends on the
scenario. However, a typical example is that the used target
schema supports storing multiple, time dependent addresses
per business partner. Some of the source systems in our
experiments do not support that. Consequently these parts
of the target schema could significantly be reduced.

As the original target schema contains about 4600 ele-
ments which turned out to be difficult to handle, we only ex-
ecuted the following experiments with the reduced schemas.
Therefore we can only point out that the complexity of
the target structure can be reduced significantly with the
schema reduction approach, but we do not have absolute
numbers on the increase of the mapping quality. Even if
the automated mapping process would not be improved by

Table 3: Evaluation results using only sample data
Scenario Prec. Recall F-Meas.

R/3 4.0 1 0.27 0.43
SAP ERP 1 0.38 0.55
SAP B1 1 0.58 0.7
Average 1 0.41 0.56

Table 4: Evaluation results using domain-specific
background knowledge

Scenario Prec. Recall F-Meas.

R/3 4.0 1 0.5 0.66
SAP ERP 1 0.49 0.65
SAP B1 1 0.65 0.79
Average 1 0.55 0.70

the schema reduction approach, at least the benefits for the
manual review of the resulting mappings are obvious.

6.3 Schema-level matching approaches
In order to see how our approaches perform in com-

parison to existing schema matching approaches we tested
COMA++ [9] in the data migration use case. COMA++
mainly exploits schema information such as element names,
description, data type, and schema structure. These
schema-level matching approaches did not perform well on
the used schemas. The explanation for this can be found by
taking a close look at the used schemas. As in the introduc-
tory example, the schemas use cryptic elements names and
differ largely in their structure. Identifying corresponding
elements in these schemas is very difficult even for a human.

6.4 Use of Sample Data
Table 3 shows the matching results achieved by the Equal-

ity matcher exploiting sample data. Depending on the sce-
nario, the instance-based matcher achieves f-measure values
between 0.43 and 0.74. Note that the precision in all cases
is 1. This means that the instance-based matcher does not
produce any false positives. The relatively low recall val-
ues in some of the scenarios originate from two facts. First,
sample data is only provided for a subset of elements (cf.
Section 4.2). Second, some matches are not found as Equal-
ity and SplitConcat matchers only identify mappings of the
categories Move, Split and Concatenate.

6.5 Domain-specific Background Knowledge
Table 4 shows the matching results achieved by QuickMig

using the Equality and the SplitConcat matcher in com-
bination with the Ontology-based matcher. The combina-
tion of these two approaches achieved F-measure values be-
tween 0.66 and 0.79, while still retaining a precision of 1.
This is a significant increase over just using the instance-
based matcher. The results shows that by using background
knowledge modeled in an ontology the matchers were able
to find more complex matches which could not be identified
based on sample data only.

6.6 Reuse
In order to evaluate the performance of the Reuse matcher,

the correct mapping between the source and the target schemas
for vendor data (see 6.1) as well as between the target schemas

Table 5: Result achieved by the reuse matcher
Scenario Prec. Recall F-Meas.

R/3 4.0 0.80 0.50 0.61
SAP ERP 0.81 0.43 0.56
SAP B1 1 0.80 0.89
Average 0.87 0.58 0.69

Table 6: Result achieved by matcher combination
Scenario Prec. Recall F-Meas.

R/3 4.0 0.99 0.67 0.80
SAP ERP 0.99 0.70 0.82
SAP B1 1 0.80 0.89
Average 0.99 0.72 0.84

were created. These mappings were available in the map-
ping repository for reuse. The Reuse matcher therefore had
to perform one matching task between the source schemas
for vendor and customer data. Table 5 shows the results
achieved by the Reuse matcher. It is important to note
that, in contrast to the instance-based and ontology-based
matchers, this matcher sometimes only achieves a precision
of 0.80. The reason for the lower precision is that both
source schemas are unknown and are matched using only
schema based approaches.

6.7 Combination of Sample Data, Background
Knowledge & Reuse

The final experiment evaluates the performance of the
combination of the Equality matcher, the SplitConcat
matcher, the Ontology-based matcher and the Reuse
matcher.

The result of this experiment is shown in table 6. The re-
sults show that the approach of using the sample instances
in order to remove wrong matching proposals of the reuse
matcher is valid. Furthermore, the Equality, the SplitCon-
cat, the Ontology-based and the Reuse matcher cover dif-
ferent kinds of matches. Consequently, the superset covers
significantly more matches than the single matcher results.

6.8 Mapping Categories
In the experiments using real SAP schemas the Move

mapping category was assigned to about 60% of the matches.
Another 15% of the matches were of the category Complex,
and 14% of the category ValueMapping. All other mapping
categories occurred with a much lower frequency.

The evaluation of the quality with which the mapping cat-
egories are proposed by QuickMig was performed differently
than the evaluation of the matcher results. As mapping cate-
gories are only proposed for matches identified by QuickMig,
missing matches were not counted as false negatives when
evaluating the quality of the proposed mapping categories.
Consequently only the precision of finding the correct map-
ping category for the proposed matches was calculated.

For the matches proposed by QuickMig the correct map-
ping category was proposed with a precision of 0.98 in the
R/3 4.0 scenario, with a precision of 0.99 in the SAP ERP
scenarios and with a precision of 0.93 in the SAP B1 sce-
nario. Furthermore, it is important to note that all the
mapping categories introduced in sec. 3.4 occurred in the
evaluation scenarios.

6.9 Evaluation Summary
Taking all the results together we think that the effort to

find and implement the mappings necessary in data migra-
tion scenarios can be reduced significantly. Using the schema
reduction approach, the complexity of the target structure
can be reduced significantly, simplifying the verification of
the matching results. Combining sample data, background-
knowledge and reuse of existing mappings, about 75% of the
matches are found automatically.

Of course, as we have a semi-automatic approach, we
also have to consider the effort to answer the questionnaire
and maintain sample data instances in the source system.
Our experience is that these tasks are relatively simple, and
could, in our case, be done in less than one hour per source
system.

To summarize, we are convinced that our approach can
provide a real benefit for migration projects.

7. CONCLUSION AND FUTURE WORK
This paper presented QuickMig, a system for the semi-

automatic creation of schema mappings in data migration
scenarios. The system uses a 5-step migration process. In
the first step, the complexity of the mapping problem is re-
duced by answering a questionnaire. Next, sample instance
data is manually created in the source system and imported
into QuickMig. In the fourth step instance, ontology and
reuse based matching algorithms are used to create an ini-
tial mapping, which is reviewed and completed in the fifth
step.

The approach was experimentally evaluated using real
SAP schemas. In these experiments the QuickMig approach
achieved an average precision of 0.99, an average recall of
0.72 and an average F-measure of 0.84. Furthermore, Quick-
Mig not only returns matches between schema elements but
also assigns mapping categories to these matches, enabling
the automatic creation of parts of the mapping. In the
experiments with real SAP schemas QuickMig was able to
identify the correct mapping categories with an average pre-
cision of 0.97.

In the future we plan to prototypically integrate the Quick-
Mig approach into SAP data migration tools and apply it
in further scenarios.

8. REFERENCES
[1] S. Bergamaschi, S. Castano, M. Vincini, and

D. Beneventano. Semantic integration of
heterogeneous information sources. Data & Knowledge
Engineering, 36(6):215–249, 2001.

[2] J. Berlin and A. Motro. Autoplex: Automated
discovery of content for virtual databases. In Proc. 9th
Intl. Conf. on Cooperative Information Systems
(CoopIS), 2001.

[3] J. Berlin and A. Motro. Database schema matching
using machine learning with feature selection. In Proc.
14th Intl. Conf. on Advanced Information Systems
Engineering (CAiSE), 2002.

[4] A. Bilke and F. Naumann. Schema matching using
duplicates. In Proc. 21. Intl. Conf. Data Engineering
(ICDE), 2005.

[5] A. Bonifati, E. Chang, T. Ho, L. Lakshmanan, and
R. Pottinger. HePToX - marrying xml and
heterogeneity in your p2p databases (software

demonstration). In Proc. 31rst Intl. Conf. Very Large
Databases (VLDB), 2005.

[6] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and
P. Domingos. imap - discovering complex semantic
matches between database schemas. In Proc. of the
ACM SIGMOD Intl. Conf. on Management of Data
(SIGMOD), 2004.

[7] H.-H. Do. Schema Matching and Mapping-based Data
Integration. Verlag Dr. Müller (VDM), 2006. ISBN
3-86550-997-5.

[8] H.-H. Do, S. Melnik, and E. Rahm. Comparison of
schema matching evaluations. In 2nd Int. Workshop
on Web Databases (German Informatics Society),
2002.

[9] H.-H. Do and E. Rahm. COMA - a system for flexible
combination of schema matching approaches. In Proc.
28th Intl. Conf. on Very Large Data Bases (VLDB),
2002.

[10] A. H. Doan, P. Domingos, and A. Halevy. Reconciling
schemas of disparate data sources - a machine-learning
approach. In Proc. of the ACM SIGMOD Intl. Conf.
on Management of Data (SIGMOD), 2001.

[11] A. H. Doan, J. Madhavan, P. Domingos, and
A. Halevy. Learning to map between ontologies on the
semantic web. In Proc. 11th Intl. World Wide Web
Conf. (WWW), 2002.

[12] L. Haas, M. Hernandez, H. Ho, L. Popa, and M. Roth.
Clio grows up: From research prototype to industrial
tool. In Proc. ACM SIGMOD Intl. Conf. Management
of Data, pages 805–810, 2005.

[13] W. Li and C. Clifton. Semint - a tool for identifying
attribute correspondences in heterogeneous databases
using neural network. Data and Knowledge
Engineering, 33(1):49–84, 2000.

[14] J. Madhavan, P. Bernstein, and E. Rahm. Generic
schema matching with cupid. In Proc. 27th Intl. Conf.
on Very Large Data Bases (VLDB), 2001.

[15] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
flooding a versatile graph matching algorithm. In
Proc. 18th Intl. Conf. on Data Engineering (ICDE),
2002.

[16] T. Milo and S. Zohar. Using schema matching to
simplify heterogeneous data translation. In Proc. 24th
Intl. Conf. on Very Large Data Bases (VLDB), 1998.

[17] F. Naumann, C. Ho, X. Tian, L. Haas, and
N. Megiddo. Attribute classification using feature
analysis (poster). In Proc. 18th Intl. Conf. on Data
Engineering (ICDE), 2002.

[18] L. Palopoli, Terracina, and D. Ursino. The system
dike - towards the semi-automatic synthesis of
cooperative information systems and data warehouses.
In ADBIS-DASFAA, 2000.

[19] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. VLDB Journal: Very
Large Data Bases, 10(4):334–350, 2001.

[20] W3C. Owl web ontology language. online, 2004.
http://www.w3.org/TR/owl-guide/.

[21] L. Xu and D. Embley. Discovering direct and indirect
matches for schema elements. In Proc. 8. Intl. Conf.
Database Systems for Advanced Applications
(DASFAA), 2003.

Table 7: The mapping categories supported by QuickMig

Category Description Mapping
code gener-
ation

Category
determi-
nation

CreateInstance A new entry in the target system is created for every entry in the source
instance or whenever the source element is not empty.

automatic automatic

KeyMapping Source schema element and target schema element are the identifiers of an
instance. A Mapping of this identifier is required.

automatic automatic

InternalID The target schema element contains the internal ID of an instance. Depen-
dent on the applied strategy, the internal ID must be drawn from a number
range or the content of the source schema element is used as the internal
ID of the target instance (e.g. KUNNR mapping in running example).

semi-
automatic
(strategy
needs to be
chosen)

automatic

LookUp The target schema element contains an internal identifier of another object.
In this case multiple fields of the source schema are used in order to find
the correct identifier.

automatic automatic

Move Move source schema element content to target schema element (e.g. ANRED). automatic automatic
ValueMapping The target schema element contains a code according to a specific code list.

Therefore a value mapping is needed. If the source element text is found in
the the code list associated to the target schema element, the corresponding
code is used; if not a translation table is necessary (e.g. ANRED is a value
mapping using a custom translation table, whereas LAND1 uses a standard
code list).

semi-
automatic
(translation
table to be
maintained)

automatic

Code2Text The source schema element contains a code, the target schema element a
text. A translation table is necessary to translate the code values into text.
This translation table needs to be maintained manually (or imported from
the source system code list).

semi-
automatic
(translation
table to be
maintained)

manual

DefaultValue The target schema element is defaulted with a special value whenever the
source schema element is not empty.

automatic automatic

Split The source schema element content is split into multiple target schema
elements based on a specific split algorithm

automatic automatic

Concatenate Multiple source schema elements are concatenated into one target schema
element.

automatic automatic

Complex A complex mapping expression is required. manual manual

Listing 1: Excerpt of the used ontology - showing annotations
Class (Name partial owl : Thing restr ict ion (hasFormOfAddressCode someValuesFrom(FormOfAddressCode)))

Class (StandardCodeList partial owl : Thing restr ict ion (isManagedBy c a r d i n a l i t y (1))
restr ict ion (a : hasName c a r d i n a l i t y (1)))

Individual (StandardCodeList FormOfAddress type (StandardCodeList)
value (hasName ”FormOfAddressCodes”ˆˆ s t r i n g)
value (isManagedBy ”SAP”ˆˆ s t r i n g))

Class (FormOfAddressCode partial)
AnnotationProperty (usedStandardCodeList)
ObjectProperty (hasFormOfAddressCode)
ObjectProperty (usedStandardCodeList)
DatatypeProperty (hasName)
DatatypeProperty (isManagedBy)

Table 8: Composition of mapping categories in the reuse matcher. The column headings represent the
mapping categories between T1 and T2 and the row headings the mapping categories between S1 and T1

CreateInstance KeyMapping InternalID LookUp Move ValueMapping

CreateInstance CreateInstance - - - - -
KeyMapping - KeyMapping - - - -
InternalID - - InternalID - - -
LookUp - LookUp - - - -
Move CreateInstance KeyMapping InternalID - Move ValueMapping
ValueMapping - - - ValueMapping ValueMapping -
Code2Text - - - - Code2Text -
Default - - - - Default Default
Split - - - - Split -
Concatenate - - - - Concatenate -
Complex Complex Complex Complex - Complex Complex

	Introduction
	Related Work
	Overview
	Observations
	The QuickMig Migration Process
	The QuickMig Architecture
	Mapping Categories

	Schema Reduction and Sample Data
	Target Schema Reduction
	Sample Data

	New Matchers
	Instance-based Matchers
	Equality Matcher
	SplitConcat Matcher
	Ontology-Based Matcher

	Reuse Matcher
	Matcher Combination

	Evaluation
	Evaluation Set-up
	Target Schema Reduction
	Schema-level matching approaches
	Use of Sample Data
	Domain-specific Background Knowledge
	Reuse
	Combination of Sample Data, Background Knowledge & Reuse
	Mapping Categories
	Evaluation Summary

	Conclusion and Future Work
	References

