
Schema AND Data: A Holistic Approach to
Mapping, Resolution and Fusion in Information

Integration

Laura M. Haas1, Martin Hentschel2, Donald Kossmann2, and Renée J. Miller3

1 IBM Almaden Research Center, San Jose, CA 95120, USA
2 Systems Group, ETH Zurich, Switzerland

3 Department of Computer Science, University of Toronto, Canada
laura@almaden.ibm.com, martin.hentschel@inf.ethz.ch,

donald.kossmann@inf.ethz.ch, miller@cs.toronto.edu

Abstract. To integrate information, data in different formats, from dif-
ferent, potentially overlapping sources, must be related and transformed
to meet the users’ needs. Ten years ago, Clio introduced nonprocedural
schema mappings to describe the relationship between data in heteroge-
neous schemas. This enabled powerful tools for mapping discovery and
integration code generation, greatly simplifying the integration process.
However, further progress is needed. We see an opportunity to raise the
level of abstraction further, to encompass both data- and schema-centric
integration tasks and to isolate applications from the details of how the
integration is accomplished. Holistic information integration supports it-
eration across the various integration tasks, leveraging information about
both schema and data to improve the integrated result. Integration inde-
pendence allows applications to be independent of how, when, and where
information integration takes place, making materialization and the tim-
ing of transformations an optimization decision that is transparent to
applications. In this paper, we define these two important goals, and
propose leveraging data mappings to create a framework that supports
both data- and schema-level integration tasks.

1 Introduction

Information integration is a challenging task. Many or even most applications
today require data from several sources. There are many sources to choose from,
each with their own data formats, full of overlapping, incomplete, and often
even inconsistent data. To further complicate matters, there are many infor-
mation integration problems. Some applications require sub-second response to
data requests, with perfect accuracy. Others can tolerate some delays, if the data
is complete, or may need guaranteed access to data. Depending on the applica-
tion’s needs, different integration methods may be appropriate, but application
requirements evolve over time. And to meet the demands of our fast-paced world
there is increased desire for rapid, flexible information integration. Many tools

II

have been created to address particular scenarios, each covering some subset of
goals, and some portion of the integration task.

Integration is best thought of not as a single act, but as a process [Haa07].
Since typically the individuals doing the integration are not experts in all of
the data, they must first understand what data is available, how good it is, and
whether it matches the application needs. Then they must determine how to
represent the data in the application, and decide how to standardize data across
the data sources. A plan for integrating the data must be prepared, and only then
can they move from design to execution, and actually integrate the data. Once
the integration takes place, users often discover problems – expected results may
be missing, strange results appear – or the needs may change, and they have
to crawl through the whole process again to revise it. There are different tools
for different (overlapping) parts of the process, as well as for different needs.
Figure 1a illustrates the current situation. Information integration is too time-
consuming, too brittle, and too complicated. We need to go beyond the status
quo, towards a radically simplified process for information integration.

Ten years ago, a new tool for information integration introduced the idea
of schema mappings [MHH00]. Clio was a major leap forward in three respects.
First, it raised the level of abstraction for the person doing the integration, from
writing code or queries to creating mappings, from which Clio could generate the
code. This higher level of abstraction enabled Clio to support many execution
engines from a common user interface [PVM+02]. Second, Clio let users decom-
pose their integration task into smaller pieces, building up complex mappings
from simpler ones. Finally, it allowed for iteration through the integration design
process, thus supporting an incremental approach to integration. The user could
focus first on what they knew, see what mappings were produced, add or adjust,
and so on, constantly refining the integration design [FHH+09].

Clio simplified the schema mapping part of the integration process and made
it more adaptive. But we need to do more. There is room for improvement in two
respects: we need to extend the benefits of a higher level of abstraction to cover
both data-centric and schema-centric integration tasks, and we need to make
the design phases (and the applications) independent of the actual integration
method. We call the first of these holistic information integration, and the second
integration independence.

Holistic information integration. Clio only deals with schema-level rela-
tionships between a data source and a target (though Clio does data transforma-
tion at run-time based on these relationships). Today, other tools are needed to
handle data-level integration tasks. Such tasks include entity resolution, which
identifies entities in a data source that may represent the same real-world ob-
ject, and data fusion, which creates a consistent, cleansed view of data from
potentially multiple conflicting representations. There is little support for itera-
tion between schema-level and data-level tasks in the integration process. This is
unfortunate, because there is no perfect ordering of the tasks. Sometimes, map-
ping can help with understanding the data and hence with entity resolution and
data fusion. But those tasks can also provide valuable information to a mapping

III

process. By handling both schema and data-level tasks in a common framework,
holistically, we hope to enable easier iteration among these phases, and hence, a
smoother integration process.

Integration Independence. There are two radically different integration
methods: virtualization and materialization. Virtualization (aka, data integra-
tion) leaves the data where it is, as it is, and dynamically retrieves, merges
and transforms it on request. Materialization (data exchange) does the integra-
tion up front, creating a new data set for requests to run against. Each has its
strengths. Virtualization always gets the freshest data, and does no unnecessary
work, since the data is integrated only if needed (a lazy form of integration).
Materialization often provides better performance, but may process data that
will never be requested (an eager approach). Often, the best solution will re-
quire a combination of these two approaches. In fact, virtualization cannot solve
the whole integration problem today, as we simply do not understand how to
do much of integration, including data fusion and entity resolution, virtually.
The materialization process handles these data-specific tasks, but it is too heavy
duty for some use cases, and a materialization often takes too long to design and
build. The decision of which approach to use, and when, must be made early in
the integration design process, and, as different integration tools must then be
used for the different pieces, is difficult to change. Ideally, applications should
be independent of how, when, and where information integration takes place.

Integration independence is analogous to the well-understood concept of data
independence. Clio took a large step towards integration independence, by pro-
viding a declarative representation of how schemas differ. As a result, applica-
tions can be written in a way that is independent of the structural representation
of the data. Furthermore, since Clio mappings can be used with either the vir-
tual, data integration, approach or the materialized, data exchange, approach,
schema differences may be reconciled either eagerly or lazily. However, current
integration engines force the user to choose between the two approaches. For full
integration independence, the timing of when structural heterogeneity is recon-
ciled should be an optimization decision that is transparent to applications.

While progress may be made on holistic information integration and inte-
gration independence separately, together they hold the potential for truly rad-
ical simplification. It would clearly be a leap forward to have a single engine
that could move seamlessly between virtualization and materialization, with no
changes to the application program [Haa07], and we are currently working to-
wards that goal. However, as long as we continue to need different tools at the
design level to handle the schema- and data-specific portions of the integra-
tion task, there will always be confusion, overlap, and complexity. If we can,
in fact, tackle both schema and data-related integration issues within the same
framework, we can use all available information to improve and refine the inte-
gration without changing the application. We will be able to move easily among
such tasks as understanding, mapping, fusion, and entity resolution, and even
to execution and back. It will enable us to handle the ever-changing dynamics
of application needs for performance, completeness, and accuracy, and to react

IV

virtualization

materialization

understanding standardization specification runtime

Holistic Information Integration

Integration

Independence

understanding standardization specification runtime

virtualization

materialization

(a) Today’s Tool Space

virtualization

materialization

understanding standardization specification runtime

Holistic Information Integration

Integration

Independence

understanding standardization specification runtime

virtualization

materialization

(b) Tomorrow’s?

Fig. 1: Effect of Holistic Information Integration and Integration Independence

quickly to data and schema evolution. Rapid prototyping and what-if scenarios
will be more effectively supported. We expect that a unified framework will also
reduce the knowledge needed by the integrator – of different tools, schemas and
the data itself. Holistic information integration and integration independence
together can lead to the simplicity of Figure 1b.

This paper is organized as follows. In the next section we describe some
foundational work. Section 3 proposes leveraging data mappings to extend the
benefits of nonprocedural mappings to the data level. We illustrate the benefits
and the challenges through a detailed example. Finally, we conclude with some
thoughts on next steps and our current work in Section 4.

2 Foundations: Schema and Data Mapping

Up until ten years ago, most metadata management research focused on the
schema matching problem, where the goal was to discover the existence of possi-
ble relationships between schema elements. The output of matching was typically
modeled as a relation over the set of elements in two schemas (most often as a
set of attribute pairs) [RB01]. Often such work was agnostic as to the semantics
of the discovered relationships. At best, a matching had very limited transfor-
mational power (for example, a match might only allow copying of data, but
no joins or complex queries). Indeed this feature was viewed as a virtue as it
enabled the development of generic matchers that were independent of a specific
data model.

However, the last decade has shown how important the semantics of these
relationships are. During this period, we have made remarkable progress, due

V

to the development and wide-spread adoption of a powerful declarative schema
mapping formalism with a precise semantics. Clio [HMH01] led the way in both
developing this formalism and in providing solutions for (semi)-automatically
discovering, using and managing mappings. The benefits of considering seman-
tics are clear. First, having a common agreement on a robust and powerful
transformation semantics enables the exploitation of schema mappings for both
virtual and materialized integration. Second, schema mapping understanding
and debugging tools rely on this semantics to help elicit nuanced details in map-
pings for applications requiring precise notions of data correctness. Third, having
a widely adopted semantics has enabled a large and growing body of research
on how to manage schema mappings, including how to compose, invert, evolve,
and maintain mappings. Indeed, schema mappings have caused a fundamental
change in the research landscape, and in the available tools.

2.1 Schema Mappings

Informally, schema mappings are a relationship between a query over one schema
and a query over another. A query can be as simple as an expression defining
a single concept (for example, the set of all clients) and the relationship may
be an is-a or containment relationship stating that each member of one concept
is-a member of another. We will use the arrow→ to denote an is-a relationship,
e.g., Client -> Guest. Since queries can express powerful data transformations,
complex queries can be used to relate two concepts that may be represented
completely differently in different data sources.

To precisely define the semantics of a schema mapping, Clio adapted the
notion of tuple-generating dependencies or referential constraints from relational
database theory [BV84]. A schema mapping is then a source-to-target tuple-
generating dependency from one schema to another (or in the case of schemas
containing nesting, a nested referential constraint) [PVM+02]. Such constraints
(which express an is-a or containment relationship) were shown to have rich
enough transformational power to map data between complex independently-
created schemas. Furthermore, this semantics was useful in not only (virtual)
data integration [YP04], but it also fueled the development of a new theory of
data exchange [FKMP05]. This theory provides a foundation for materialized in-
formation integration and is today one of the fastest growing areas in integration
research.

Because Clio mappings have the form Q(S)→ Q(T), they are declarative and
independent of a specific execution environment. Early in its development, Clio
provided algorithms for transforming mappings into executable data exchange
programs for multiple back-end integration engines [PVM+02]. Specifically, Clio
mappings can be transformed into executable queries (in SQL or Xquery), XSLT
scripts, ETL scripts, etc. This is one of the key aspects to Clio’s success as it freed
application writers from having to write special-purpose code for navigating and
transforming their information for different execution environments.

In addition, this clean semantics forms the foundation for a new genera-
tion of user front-ends that support users developing applications for which the

VI

correctness of the data (and hence, of the integration) is critical. Tools such
as data-driven mapping GUIs [YMHF01,ACMT08] help users understand, and
possibly modify, what a mapping will do by showing carefully chosen examples
from the data. Likewise, tools for debugging mappings [CT06,BMP+08] help a
user discover how mappings have created a particular (presumably incorrect)
dataset. Visual interfaces like Clip [RBC+08] permit users to develop mappings
using a visual language. There has also been a proliferation of industry mapping
tools from companies including Altova, IBM, Microsoft and BEA. The exis-
tence of a common mapping semantics has enabled the development of the first
mapping benchmark, STBenchmark [ATV08], which compares the usability and
expressibility of such systems.

2.2 Data Mappings

Schema mappings permit data under one schema to be transformed into the
form of another. However, it may be the case that two schemas store some of
the same information. Consider a simple schema mapping that might connect
two hotel schemas:

M: Client -> Guest

Given a Client tuple c, this mapping states that c is also a Guest tuple. How-
ever, we may want to assert something stronger. We may know that c actually
represents the same real world person as the Guest tuple g. (For example, entity
resolution techniques can be used to discover this type of relationship.) Ideally,
we’d like to be able to make the assertion: c same-as g, as an ontology language
such as OWL would permit.

This is a common problem, so much so that it has been studied not only
in ontologies, but also in relational systems where the data model does not
provide primitives for making same-as assertions and where there is a value-
based notion of identity. Kementsietsidis et al. [KAM03,KA04] explored in depth
the semantics of data mappings such as this. They use the notion of mapping
tables to store and reason about sets of data mappings. Mapping tables permit
the specification of two kinds of data mappings, same-as and is-a. If c same-as
g, then any query requesting information about client c will get back data for
guest g as well, and vice versa. However, for the latter, if c is-a g, then for
queries requesting information about g the system will return c’s data as well,
but queries requesting c will not return values from g. A given mapping table can
be declared to have a closed-world semantics meaning that only the mappings
specified in the table are permitted. This is a limited form of negation which we
will discuss further in the next section.

2.3 Mapping Discovery

Clio pioneered a new paradigm in which schema mapping creation is viewed as
a process of query discovery [MHH00]. Given a matching (a set of correspon-
dences) between attributes in two schemas, Clio exploits the schemas and their

VII

constraints to generate a set of alternative mappings. Detailed examples are given
in Fagin et al. [FHH+09] . In brief, Clio uses logical inference over schemas and
their constraints to generate all possible associations between source elements
(and all possible associations between target elements) [PVM+02]. Intuitively,
Clio is leveraging the semantics that is embedded in the schemas and their con-
straints to determine a set of mappings that are consistent with this semantics.

Since Clio laid the foundation for mapping discovery, there have been several
important advances. First, An et al. [ABMM07] showed how to exploit a concep-
tual schema or ontology to improve mapping discovery. Their approach requires
that the relationship of the conceptual schema to the schemas being mapped is
known. They show how the conceptual schema can then be used to make better
mapping decisions.

An interesting new idea is to use data mappings (specifically same-as rela-
tionships) to help in the discovery of schema mappings. Suppose we apply an
entity-resolution procedure to tuples (entities) stored under two schemas to be
mapped. We then also apply a schema mapping algorithm that postulates a set
of possible mappings. For a given schema mapping m : A→ B, suppose further
that mapping m implies that two entities (say e1 from A and e2 from B) must
be the same entity (this may happen if e1 and e2 share a key value). If the
similarity of e1 and e2 is high, then the entity-resolution procedure will likely
come to the same conclusion, agreeing with the schema mapping algorithm. This
should increase the confidence that mapping m is correct. If however, e1 and e2

are dissimilar, then this should decrease confidence in the mapping m. This is
the basic idea behind Iliads [UGM07]. Evidence produced by entity-resolution
is combined with evidence produced by schema mapping using a concept called
inference similarity. This work showed that combining the statistical learning
that underlies entity-resolution algorithms with the logical inference underlying
schema mapping discovery can improve the quality of mapping discovery.

Iliads is a step towards our vision for holistic information integration. As we
explore in the next section, there is much more that can be done.

3 A Holistic Approach to Information Integration

We would like to bring to the overall information integration process the benefits
of a higher level of abstraction and a unified framework. We envision a holis-
tic approach, in which all integration tasks can be completed within a single
environment, moving seamlessly back and forth between them as we refine the
integration. A key element in achieving this vision will be data mappings. In this
section, we define this concept, and illustrate via an example how data mappings
enable holistic information integration.

3.1 Our Building Blocks

By analogy to schema mappings, a data mapping defines a relationship between
two data elements. It takes the form of a rule, but rather than identifying the

VIII

(ID) Name Home Income TotalSpent Comps

@GuestRM Renée Miller Toronto 1.3M 250K Champagne

@GuestLA Laurence Amien Toulouse 350K 75K None

@GuestDK Donald Kossmann Munich 575K 183K Truffles

@GuestLH Laura Haas San Jose 402K 72K None

Table 1: Las Vegas schema for Guest and sample data

(ID) Prénom Nom Ville Logements Casino RV Cadeau

@ClientRM René Miller Toronto 300 10K 100K rien

@ClientLA Laurence Amiens Toulouse 5K 250K 350K chocolate

@ClientDK Donald Kossmann Munich 15K 223K 575K truffles

@ClientMH Martin Hentschel Zurich 10K 95K 250K bicycle

@ClientLH Laura Haas San Jose 1K 50K 402K rien

Table 2: French schema for Client and sample data

data it refers to by that data’s logical properties (as would a schema mapping),
it uses object identifiers to refer directly to the data objects being discussed. A
data mapping, therefore, relates together two objects. The simplest relationship
we can imagine might be same-as, e.g., Object34 same-as ObjectZ18 (where Ob-
ject34 and ObjectZ18 are object identifiers in some universe). Data mappings
could be used for specifying the results of entity resolution, or as part of data
fusion.

It is not enough to add such rules; we also need an integration engine that
can work with both data mappings and schema mappings, and allow us to move
seamlessly from integration design to integration execution and back again. We
are currently building such an engine, exploiting a new technique that interprets
schema mappings at integration runtime [HKF+09]. Conceptually, as the engine
sees data objects in the course of a query, it applies any relevant rules (schema
or data mappings) to determine whether the objects should be returned as part
of the data result. Enhancements to improve performance via caching, index-
ing, pre-compiling, etc., can be made, so that the engine provides integration
independence as well. This in turn enables a single design environment. In this
paper, we assume the existence of such an engine, without further elaboration.

3.2 Holistic Information Integration: An Example

Suppose a casino in Las Vegas has just acquired a small casino in France. The
management in Las Vegas would like to send a letter to all the “high rollers”
(players who spend large amounts of money) of both casinos, telling them the
news, and inviting them to visit. They do not want to wait a year while the two
customer records management systems are integrated. Fortunately, they have
available our new integration engine. Jean is charged with doing the integration.

Table 1 and Table 2 show the existing (highly simplified) schemas, and a
subset of data, for the Las Vegas and French customer management systems,

IX

respectively. Jean’s first step is to define “high roller”. To this end, she creates
the following rules:

Client [Logements+Casino > 100K] -> HighRoller
Guest [TotalSpent > 100K] -> HighRoller

The above syntax is used for illustration only. The first rule says that when we
see a Client object, where the lodging plus the casino fields total more than 100K,
then that Client is a high roller – it should be returned whenever HighRoller’s
are requested. Likewise, the second says that Guests whose TotalSpent is over
100K are also HighRollers. Such rules can be easily expressed in most schema
mapping rule languages. With these two rules, it is possible to enter a query
such as “Find HighRollers” (this might be spelled //HighRoller in XQuery, for
example), with the following results:

Guest: [Renée Miller, Toronto, 1.3M, 250K, Champagne]
Guest: [Donald Kossmann, Munich, 575K, 183K, Truffles]
Client: [Laurence, Amiens, Toulouse, 5K, 250K, 350K, chocolats]
Client: [Donald, Kossmann, Munich, 15K, 223K, 575K, truffles]
Client: [Martin, Hentschel, Zurich, 10K, 95K, 250K, bicycle]

Note that a mixture of Guests and Clients are returned, since there has been
no specification of an output format. We believe that this type of tolerance
of heterogeneity is important for a holistic integration system, as it preserves
information and allows for later refinement of schema and data mappings.

Jean notices that there are two entries for Donald Kossmann, one a “Guest”,
from the Las Vegas database, and the other a “Client” from the French one. She
decides they are the same (they come from the same town, receive the same gift,
etc). She only wants to send Donald one letter, so she’d like to ensure that only
one entry comes back for him. Ideally, she would just specify a rule saying that
the guest and client Donald Kossmann are the same.

We enable Jean to do this by the following rule (again, syntax is for illustra-
tion only):

@GuestDK <- @ClientDK

where the two sides represent the “addresses” or unique ids of the two objects
she wants to equate. This rule says that the guest Donald Kossmann is really
the same as the client, and that the merge of the two nodes should be returned,
with the Client fields being added to the Guest. In other words, the Client
object is merged into the Guest object, creating an asymmetric merge into se-
mantics. Other semantics are definitely possible. For example, the objects could
be merged into a new object (symmetric merge semantics), or not merged at all,
but treated as one during query processing (equivalence semantics) so that only
one is returned. From an implementation perspective, merge into is simpler to
model, and seems to offer sufficient power for the scenarios we have worked with
so far, but more investigation is clearly needed. With this new rule, Jean gets
the following query result:

X

Guest: [Renée Miller, Toronto, 1.3M, 250K, Champagne]
Guest: [Donald Kossmann, Munich, 575K, 183K, Truffles, Donald, Kossmann,
Munich, 15K, 223K, 575K, truffles]
Client: [Laurence, Amiens, Toulouse, 5K, 250K, 350K, chocolats]
Client: [Martin, Hentschel, Zurich, 10K, 95K, 250K, bicycle]

Note that Donald is only returned once, as a Guest, but with all the fields of both
guests and clients, preserving all the information associated with the object.

With a simple query and just a few schema and data mapping rules, Jean has
found the high rollers and all the available information about each. Or has she?
Seeing Donald in both lists reminds her that there could be customers who have
visited both casinos, not spending enough in either to qualify as high rollers,
but in total spending across the two casinos clearly qualifying. She would like
to add these folks, if any, to the list. This requires entity resolution to detect
when two entities (here casino visitors) are the same. Many algorithms for entity
resolution exist; most do some form of clustering of records, often with user input
on which fields are important, or how to measure similarity. Jean runs such an
algorithm, and accepts the results when they are shown to her, creating the
following additional rules.

@GuestLA <- @ClientLA
@GuestLH <- @ClientLH
@GuestRM <- @ClientRM

She then can add her new schema mapping rule, to wit:

Guest [TotalSpent+Logements+Casino > 100K] -> HighRoller

Find HighRollers now returns:

Guest: [Renée Miller, Toronto, 1.3M, 250K, Champagne, René, Miller, Toronto,
300, 10K, 100K, rien]
Guest: [Donald Kossmann, Munich, 575K, 183K, Truffles, Donald, Kossmann,
Munich, 15K, 223K, 575K, truffles]
Guest: [Laura Haas, SJ, 402K, 72K, None, Laura, Haas, SJ, 1K, 50K, 402K, rien]
Guest: [Laurence Amien, Toulouse, 350K, 75K, None, Laurence, Amiens, Toulouse,
5K, 250K, 350K, chocolats]
Client: [Martin, Hentschel, Zurich, 10K, 95K, 250K, bicycle]

Jean is happy with this result; now she wants to transform it into a simple
form for the two casinos to use. At this point, she is more familiar with the data,
so she can create an output schema and map the Guest and Client schemas to
that. She does this by replacing our earlier, simple mapping rules by the refined
versions in Figure 2. This pair of rules not only specify that Clients and Guests
that spend a certain amount are HighRollers, but tells how to construct a High
Roller instance from a Client or Guest instance. Note that the Guest rule, in
concert with the earlier data mappings, completes data fusion, by telling how
the various fields from the merged objects should be reconciled. For example,

XI

Client [Logements+Casino > 100K] as $c -> <HighRoller>

<FullName>$c.Prenom ||$c.Nom </FullName>

<City>$c.Ville </City>

<Spent>$c.Logements + $c.Casino </Spent>

<Gift>$c.Cadeau </Gift>

</HighRoller>

Guest [TotalSpent+Logements+Casino > 100K] as $g -> <HighRoller>

<FullName>$g.Name </FullName>

<City>$g.Home </City>

<Spent>$g.TotalSpent + $g.Logements + $g.Casino </Spent>

<Gift>$g.Comps || $g.Cadeau</Gift>

</HighRoller>

Fig. 2: Mapping Rules

the Spent field of HighRoller is defined to be the sum of all the fields that
have anything to do with spending in Guest (+ the merged Client) objects. The
Gift field is defined as the concatenation of the Comps and Cadeau fields for
simplicity; Jean could, of course, have used a fancier rule to resolve the Gift
values, for example, preferring a value other than “Rien” or “None”, or choosing
one gift based on its monetary value.

Now if Jean runs the query again, with these new rules, her result would be:

HighRoller: [Renée Miller, Toronto, 260.3K, Champagne rien]
HighRoller: [Donald Kossmann, Munich, 421K, Truffles truffles]
HighRoller: [Laurence Amien, Toulouse, 330K, None chocolats]
HighRoller: [Laura Haas, SJ, 123K, None rien]
HighRoller: [Martin Hentschel, Zurich, 105K, bicycle]

The integration is now ready to use. These results could be saved in a ware-
house for reference, or the query could be given to the two casinos to run as
needed, getting the latest, greatest information. This in itself is a major ad-
vance over the state of the art, where totally different design tools and runtime
engines would be used depending on whether the goal was to materialize or
federate (provide access to the virtual integration). Further, Jean was able to
do this with minimal knowledge of the French schema, leveraging the mapping
rules, the data, and the flexibility to iterate. The two types of rules work well
together. Schema mapping rules gather the data; they can be used to transform
it when ready. Data mapping rules record decisions on which entities are the
same, and ensure that the query results contain all available information about
each entity.

Another benefit of this holistic integration approach is that data-level and
schema-level operations can be interwoven. In our example, defining some sim-
ple schema-level mappings between Guest and Client (e.g., Client/(Prénom ||
Nom) -> Guest/Name might make it easier to do comparisons for entity resolu-

XII

tion. However, if we’ve done entity resolution and can observe that for each pair
that we’ve found, the Client RV field is the same as the Guest Income field, we
may be able to guess that RV (for revenu) should be mapped to Income if we
wanted that value.

Of course, life is not this simple, and we need to explore what cases our
holistic framework should handle. Continuing our example, let’s suppose that
René Miller visits the French casino again, and an alert clerk notes that René
is a guy, while Renée is a woman’s name. Not wishing to waste champagne on
the wrong person, he investigates, and discovers that this is, indeed, a different
person, although both are from Toronto. Thus the rule

@GuestRM <- @ClientRM

is wrong, and must be removed. However, without changes to the entity resolu-
tion logic, it is quite possible that such a rule would be re-produced sometime
in the future, and no one would notice. In addition to the champagne issue, it
could be dangerous financially to extend to Mr. Miller the type of credit that Ms.
Miller legitimately enjoys. Hence, it would be useful to be able to have negative
data mapping rules, i.e.,

@GuestRM !<-! @ClientRM

Where !<-! means “under no circumstances merge these entities”, here the
client entity René Miller with the guest entity Renée Miller. Such rules seem
quite useful, but adding negation into rule languages has typically proven to
add complexity to query processing. We need to understand whether this very
specific form of negation causes similar problems.

3.3 Further Opportunities

While the above example shows the immediate value that could be provided by
data mappings, we believe that the concept will enable new tools that can pro-
vide further value. An obvious place to start is with discovering various types of
data mappings. Entity resolution essentially discovers same-as relationships to-
day, and data mappings allow us to harness that power and include it within our
holistic framework. But other types of relationships between entities are possible,
and can be useful for the integration process. For example, understanding part-of
relationships can help with schema mapping. The linked open data community
is providing typed links between objects, where the types may come from a data
model or an ontology, specifying any type of relationship. Specialized discovery
tools for certain domains and relationships could be valuable, as semantics of
those constructs could be leveraged [HXK+09]. For example, the same-as rela-
tionship between genes is quite different than same-as between people.

Along similar lines, we may consider generalizing the notion of schema map-
pings, which today focus on contained-in relationships. There may be other types
of schema-level relationships we may be able to discover that could aid the inte-
gration process. Meanwhile, the principles of open linked data include not only

XIII

using URIs, but also providing useful information when someone looks up a URI
or dereferences an HTTP URI. Clearly mappings, data and schema, can be a
key to providing semantically relevant information.

4 Conclusions

In this paper, we have argued that holistic information integration and integra-
tion independence are important, inter-related goals for research in information
integration. Ten years ago we took a big step towards integration independence
by enriching our modeling capabilities with schema-level mappings. That gave
us a nonprocedural expression of the differences between schemas, allowing us
to produce code to reconcile those differences automatically, for different inte-
gration engines, whether a data integration engine using virtualization, or an
engine for data exchange that uses materialization. However, the engines re-
mained distinct, with differing capabilities. Further, the schema and data worlds
have for the most part been considered independently, forcing separate tools to
be developed for each, and fragmenting the integration design process. Hence,
applications have continued to be impacted by the choice of integration methods,
and users have been baffled by the variety of tools.

This paper proposed a step towards holistic information integration. By
adding data mappings, we enable both schema and data issues to be addressed
within a single integration framework, opening the door to new tools, and a
more iterative approach to integration. Still, much work remains to be done. It
is not trivial to build an integration engine that can move easily between vir-
tualization and materialization of integrated data, especially one that can also
deal with the implications of data mappings. Algorithms to handle typical data-
level tasks such as data fusion and entity resolution must be made efficient and
effective during data integration, when the end result will not be materialized.
Research is also needed on the semantics, limits and types of data mappings,
and on tools that leverage these mappings to make the integration task easier.
These are doubtless just a few of the challenges ahead, on our path to integration
independence and holistic information integration.

References

[ABMM07] Y. An, A. Borgida, R. J. Miller, and J. Mylopoulos. A Semantic Approach
to Discovering Schema Mapping Expressions. In IEEE ICDE Conf., pages
206–215, 2007.

[ACMT08] B. Alexe, L. Chiticariu, R. J. Miller, and W.-C. Tan. Muse: Mapping
Understanding and deSign by Example. In IEEE ICDE Conf., pages 10–
19, 2008.

[ATV08] B. Alexe, W.-C. Tan, and Y. Velegrakis. STBenchmark: towards a bench-
mark for mapping systems. Proceedings of the VLDB Endowment, 1(1):230–
244, 2008.

[BMP+08] A. Bonifati, G. Mecca, A. Pappalardo, S. Raunich, and G. Summa. Schema
Mapping Verification: The Spicy Way. In EDBT Conf., pages 85–96, 2008.

XIV

[BV84] C. Beeri and M. Y. Vardi. A Proof Procedure for Data Dependencies.
Journal of the ACM, 31(4):718–741, 1984.

[CT06] L. Chiticariu and W.-C. Tan. Debugging Schema Mappings with Routes.
In VLDB Conf., pages 79–90, 2006.

[FHH+09] R. Fagin, L. M. Haas, M. Hernández, R. J. Miller, L. Popa, and Y. Vele-
grakis. Clio: Schema Mapping Creation and Data Exchange. In A. T.
Borgida, V. K. Chaudhri, P. Giorgini, and E. S. Yu, editors, Conceptual
Modeling: Foundations and Applications, Essays in Honor of John My-
lopoulos, volume 5600. Springer, 2009.

[FKMP05] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange: Seman-
tics and Query Answering. Theoretical Computer Science, 336(1):89–124,
May 2005. Extended version of ICDT 2003.

[Haa07] L. M. Haas. Beauty and the Beast: The Theory and Practice of Information
Integration. Lecture Notes in Computer Science, 4353, 2007. ICDT Conf.

[HKF+09] M. Hentschel, D. Kossmann, D. Florescu, L. Haas, T. Kraska, and R. J.
Miller. Scalable Data Integration by Mapping Data to Queries. Technical
Report 633, ETH Zurich, Systems Group, Dept. of Computer Science, 2009.

[HMH01] M. A. Hernández, R. J. Miller, and L. M. Haas. Clio: A Semi-Automatic
Tool For Schema Mapping. In ACM SIGMOD Conf., page 607, 2001.
System Demonstration.

[HXK+09] O. Hassanzadeh, R. Xin, A. Kementsietsidis, L. Lim, R. J. Miller, and Min
Wang. Linkage Query Writer. In VLDB Conf., 2009. System Demonstra-
tion.

[KA04] A. Kementsietsidis and M. Arenas. Data Sharing Through Query Transla-
tion in Autonomous Sources. In VLDB Conf., pages 468–479, 2004.

[KAM03] A. Kementsietsidis, M. Arenas, and R. J. Miller. Mapping Data in Peer-to-
Peer Systems: Semantics and Algorithmic Issues. ACM SIGMOD Conf.,
32(2):325–336, 2003.

[MHH00] R. J. Miller, L. M. Haas, and M. Hernández. Schema Mapping as Query
Discovery. In VLDB Conf., pages 77–88, 2000.

[PVM+02] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and R. Fagin. Trans-
lating Web Data. In VLDB Conf., pages 598–609, 2002.

[RB01] E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic
Schema Matching. The VLDB Journal, 10(4):334–350, 2001.

[RBC+08] A. Raffio, D. Braga, S. Ceri, P. Papotti, and M. A. Hernández. Clip: a
Visual Language for Explicit Schema Mappings. In IEEE ICDE Conf.,
pages 30–39, 2008.

[UGM07] O. Udrea, L. Getoor, and R. J. Miller. Leveraging Data and Structure in
Ontology Integration. In ACM SIGMOD Conf., pages 449–460, 2007.

[YMHF01] L.-L. Yan, R. J. Miller, L. Haas, and R. Fagin. Data-Driven Understanding
and Refinement of Schema Mappings. ACM SIGMOD Conf., 30(2):485–
496, 2001.

[YP04] C. Yu and L. Popa. Constraint-Based XML Query Rewriting For Data
Integration. ACM SIGMOD Conf., 33(2):371–382, 2004.

