
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 31, 415-432 (2015)

415

Ontology Kernel  A Convolution Kernel
for Ontology Alignment*

JEONG-WOO SON§, HEE-GUEN YOON‡ AND SEONG-BAE PARK‡,+

§Broadcasting and Telecommunications Media Research Laboratory
Electronics and Telecommunications Research Institute

Daejeon, 305-700 Korea
E-mail: jwson@etri.re.kr

‡School of Computer Science and Engineering
Kyungpook National University

Daegu, 702-701 Korea
E-mail: {hkyoon; sbpark}@sejong.knu.ac.kr

 Every ontology entity such as a concept or a property has its own structural infor-

mation represented as a graph due to the relations with other entities. Therefore, it is im-
portant to consider not only its lexical similarity but also structural similarity in ontology
alignment. This paper proposes ontology kernel that computes both types of similarities
simultaneously. The idea of this kernel is to measure the structural similarity of ontology
entities by mapping their entity graphs into the space spanned by entity random walks.
The graph of an entity in the kernel expresses all relations with other entities. Thus, the
ontology kernel can compare the similarity between entities no matter how complex the
entities are and no matter how many kinds of relations they possess. A series of experi-
ments with the standard data sets prove the generality and the superiority of the ontology
kernel in ontology alignment.

Keywords: ontology alignment, ontology kernel, convolution kernel, graph similarity,
hyper graph

1. INTRODUCTION

Ontology is an explicit, machine-readable specification of a shared conceptualiza-
tion of a domain. It can be an information source for various applications. Especially in
Semantic Web, an ontology is essential not only as an information source but also for
supporting inter-operability among applications. One of the issues related with ontolo-
gies is that most ontologies are written separately and independently by human experts to
serve particular tasks or application domains. Thus, there are many ontologies even in a
single domain, and it causes semantic heterogeneity. This heterogeneity of ontologies for
a domain becomes an obstacle for inter-operability of applications. Therefore, a method
to merge the related ontologies is required to restore the inter-operability.

Ontology alignment aims to merge two ontologies which contain similar semantic
information by identifying semantic similarities between entities in the ontologies. Thus,

Received August 19, 2013; revised December 18, 2013 & February 13, 2014; accepted March 17, 2014.
Communicated by Chang-Shing Lee.
* This work was supported by the ICT R&D program of MSIP/IITP, Rep. of Korea (14-000-11-002, Develop-

ment of Object-based Knowledge Convergence Service Platform using Image Recognition in Broadcasting
Contents and the Industrial Strategic Technology Development Program (10035348, Development of a Cog-
nitive Planning and Learning Model for Mobile Platforms) funded by the Ministry of Knowledge Economy
(MKE, Korea).

+ Corresponding author.

JEONG-WOO SON, HEE-GUEN YOON AND SEONG-BAE PARK

416

it is essential to define the similarity between entities that reflects all information of enti-
ties. In general, an ontology entity has three kinds of information: lexical, structural, and
logical information. Lexical information is expressed in labels1 or values of some prop-
erties such as label and comment. The lexical similarity is then easily designed as a
comparison of character sequences in labels or property values. The structural similarity
is, however, difficult to obtain, since the structure of an entity is represented as a graph
due to its various relations with other entities. Therefore, a method to compare graphs is
needed to capture the structural similarity between entities. Logical information is also
valuable to describe entities in an ontology. Unlike ordinary database-like knowledge
repositories, some aspects of ontologies are represented with Description Logics. Thus,
logical information is quite important to obtain semantic similarities between entities in
the ontologies. Among three kinds of information, in this paper, we consider to handle
both lexical and structural information for computing semantic similarity. Especially, we
more focus on structural information in this paper.

The difficulty of comparing ontology entities with structural information can be
summarized in two aspects. First, an ontology entity is complex. Thus, in most previous
studies, the graph of an ontology entity has been transformed into a simpler and more
manageable structure such as a vector [1], a label-sequence [2], or a pre-defined simple
structure [3]. However, some structural information is lost during the transformation. For
instance, Son et al. transformed an ontology into three types of trees: a concept tree, a
property tree, and an instance tree [4]. Since the trees are transformed using only sub-
ClassOf, domain, range, and instanceOf, the information expressed with other relations
are lost. The other difficulty is that the graph of an entity consists of its neighbor entities,
while the neighbor entities are also graphs that have their own structural and lexical in-
formation. Therefore, not only the target entity but also neighbor entities should be es-
sentially considered in matching entity graphs.

In order to tackle the difficulties, this paper proposes ontology kernel, a novel ker-
nel function for ontology alignment. The ontology kernel is based on a random walk
graph kernel [5] which compares graphs efficiently without explicit feature enumeration.
When two graphs are given, the random walk graph kernel implicitly enumerates all
possible random walks, and then the similarity between the graphs is computed using the
shared random walks. As a result, it shows a good performance in comparing ordinary
graphs [6, 7]. However, the nodes of an entity graph have their own structure that is rep-
resented as another graph. Therefore, the random walk graph kernel also loses the struc-
tural information of neighboring entities, unless it considers their structures additionally.

The ontology kernel, a modified random walk graph kernel solves this problem.
This kernel computes the similarity of two ontology entities using not only their labels
but also the structures of their neighbor entities. In addition, it considers all kinds of on-
tology relations in the similarity computation of entities. Therefore, the ontology kernel
is robust to structural difference between the ontologies to be aligned. Especially, the
kernel aligns two ontologies, even when the lexical matching of the ontologies is not
trustworthy.

Evaluation of the ontology kernel is done with benchmark set and conference set from
OAEI (Ontology Alignment Evaluation Initiative) 2012 campaign. The benchmark set is

1 In this paper, the label of an entity denotes the value of the annotation property “rdfs:label”.

ONTOLOGY KERNEL

417

artificially-designed reference data, while the conference set is real data composed of the
ontologies used to organize conferences. When compared with other OAEI 2012 com-
petitors, the ontology kernel is the only method which shows high performance for both
sets. This result proves the effectiveness of the ontology kernel for ontology alignment.

The rest of the paper is organized as follows. Section 2 reviews the related works on
ontology alignment and graph kernel. Section 3 introduces the structure of ontology enti-
ties. Section 4 explains the random walk graph kernel, the most general graph kernel,
and then Section 5 addresses the proposed ontology kernel. Section 6 shows the experi-
mental results. Finally, Section 7 draws conclusions.

2. RELATED WORK

According to [8], the goal of ontology alignment is to generate an alignment of two
given ontologies, and in this case, those generated alignments should reflect semantic
relatedness of entity pairs. The alignment is composed of pairs of entities from the two
ontologies that satisfy a certain relation with a certain confidence. Normally concepts
and properties among various entities are aligned and the relation between entities is
restricted to equivalence relation. In addition, the similarity between entities is often used
instead of the confidence.

There have been proposed myriad alignment systems with their own similarity
measure. WikiMatch, one of participants of the OAEI campaign, compares a pair of enti-
ties based on their lexical information [9]. Since the lexical information expressed in the
entities is insufficient, WikiMatch expands the information with Wikipedia. It retrieves
Wikipedia articles by querying the labels in entities. Then, the similarity between entities
is replaced by that of the retrieved articles. WeSeE expands the lexical information in a
similar way to WikiMatch [10]. It queries the labels to a search engine rather than to
Wikipedia. These systems focus only on lexical information of entities. Thus, they ignore
the semantic information lying on the entity structure, even if it is critical. In order to
solve this problem, the structural information should be reflected into the alignment.
However, it is not easy, since the structure of an entity is normally complex.

Various methods have been designed to reflect structural information into their sim-
ilarity measure [11]. They are clustered into two categories according to the way of han-
dling structural information. The methods that use structural similarity as an auxiliary
measure belong to the first category. YAM++ [12], one of the state-of-the-art alignment
systems, first aligns entities based on their lexical similarity, and then updates the align-
ments using the similarities of their neighbor entities to consider the entities connected
with it. On the other hand, Optima+ [13] and HotMatch [14] use structure information to
refine alignments. They also align entities with lexical information first. Then, they re-
solve the inconsistency of the alignments based on their structural information. Once
structural information is used, it is helpful to performance improvement. However, it is
just a supplement of lexical similarity. That is, the structural information is not used at all,
if the initial alignments are consistent.

The methods that use structural information directly belong to the other category.
ASMOV computes the structural similarity between entities by decomposing an entity
graph into two subgraphs [15]. One subgraph expresses only ancestor-descendant rela-

JEONG-WOO SON, HEE-GUEN YOON AND SEONG-BAE PARK

418

tions among entities, while the other subgraph expresses all other relations given by ob-
ject type properties. Thus, it loses the structural information that lies between the two
subgraphs. RiMOM [2] takes a path-similarity as its structural similarity. A path of an
entity is defined in RiMOM as a sequence of labels from root entity to it. Then, RiMOM
uses the paths as structural information. In these methods, structural similarity is the
primary similarity. Thus, even when lexical information is not sufficient, they do align
ontologies. However, since their structural similarity uses just a few principal relations,
some important information that is contained in other relations can be lost. For example,
consider recent systems proposed by Acampora et al. [16, 17] or Bock and Hettenhausen
[18]. In these systems, structural similarity is determined by using hierarchy distance and
domain-range restriction distance. Hierarchy distance denotes the mean of the hierarchy
distance from a pair of entities to their already aligned super entities. On the other hand
domain-rage restriction distance is determined how many domains and ranges are shared
between two properties to be aligned. Even though these studies also suggested an effi-
cient way to combine several similarity measures and they proved effectiveness of their
systems empirically, they can not avoid information loss caused by other structural as-
pects of ontologies like instances of concepts, real values of properties, inverse relations
between properties, and so on should be ignored. Due to such structural information loss,
they can miss meaningful aligns between entities in ontology alignment.

The main reason why the legacy systems do not use whole structural information is
the difficulty of comparing graphs. Haussler proposed a solution to this problem, so-
called convolution kernel [19]. Kernel functions have been widely applied to various
applications for several decades [20, 21]. Among diverse kernels, the convolution kernel
is designed to determine the similarity between structural data with their shared sub-
structures. Since the structure of an ontology entity can be regarded as a graph, the simi-
larity between entities can be obtained by a convolution kernel for a graph. For instance,
the random walk graph kernel [5] can be used for ontology alignment. It regards random
walks of a graph as sub-structures of the graph. Thus, the similarity of two graphs is
computed by measuring how many random walks are shared by the graphs. Such graph
kernels compare graphs without any structural transformation [22], but they are designed
to deal with ordinary graphs whose nodes and edges are assumed to have only labels.
Since the graph of an ontology entity is composed of other ontology entities, the nodes in
this graph have their own structure. Therefore, the graph kernels also lose some structur-
al information of entities when directly applied to ontology alignment.

3. ONTOLOGY ALIGNMENT

3.1 Ontology as Graph

An ontology describes concepts on a specific domain with properties and instances.

Properties present relational information of concepts and they are categorized into two
types: data type property and object type property. Data type properties establish rela-
tions between concepts and data types such as integer, string, and so on. On the other
hand, relations among concepts are expressed with object type properties. Instances are
real-world objects of concepts.

ONTOLOGY KERNEL

419

Fig. 1. An example of ontology.

An ontology is regarded as a graph of which nodes and edges are ontology entities
[23], but we adopt an ontology representation that is slightly different from it. Our rep-
resentation regards every entity in an ontology as a node and every axiom as an edge of
the graph. Fig. 1 shows the graph structure of a simple ontology at the domain of con-
ference organizing. This figure contains the nodes generated from five types of ontology
entities: concepts, property, instances, property value types, and property values. The
edges are generated from all axioms such as SubClassOf,” in stanceOf, and so on. As
shown in this figure, the semantics of an entity like Conference Event is expressed with
all other related entities and relation types among them. In this paper, the graph which
represents an ontology is referred as ontology graph.

Each entity of an ontology has a structure, since it has relations with other entities.
Thus, it can be regarded as a subgraph of ontology graph. The subgraph for an entity is
called as an entity graph. The entity graph of a specific entity can be easily obtained by
extracting a subgraph from an ontology graph. It contains all nodes within a certain path
length, where these nodes are the neighbor entities of the entity. All edges between nodes
in the subgraph are inherited from the ontology graph. Fig. 2 depicts the entity graph of
the property, HasLocation, and it is equivalent to the dotted area of Fig. 1.

3.2 Ontology Alignment with Similarity

Let Ei be a set of concepts and properties in an ontology Oi, and Gg be a graph for

an entity e  Ei. The alignment of two ontologies O1 and O2 is a list of concept-to-con-
cept and property-to-property pairs. There are two ways to generate pairs of aligned enti-
ties. First, if one-to-one matching of entities is required, then, for each entity e1  E1, the
best matched entity e*

2 from O2 is determined by

1 2

*

2 argmax (,), g ge sim G G (1)

JEONG-WOO SON, HEE-GUEN YOON AND SEONG-BAE PARK

420

Fig. 2. An example of entity graph.

where
1 2

(,)g gsim G G is the similarity between two graphs.
If one-to-many matching is assumed, many entities from O2 can be matched to an

entity in O1. All entities in E2 whose similarity with e1  E1 is larger than a pre-defined
threshold  become the matched entities of e1. That is, for an entity e1  E1, a set E*

2 is
matched which satisfies

1 2

*

2 2 2{ | (,) }. g gE e E sim G G    (2)

Note that the key factor of Eqs. (1) and (2) is obviously the similarity,

1 2
(,).g gsim G G

4. GRAPH KERNEL

The main obstacle of computing
1 2

(,)g gsim G G is the graph structure of entities. One
feasible solution to this problem is a graph kernel. A graph kernel maps graphs onto a
feature space spanned by their subgraphs. Thus, for given two graphs G1 and G2, the
kernel is defined as

Kgraph(G1, G2) = (G1)  (G2), (3)

where (G) is a mapping function which maps G onto the feature space. The kernel
functions like Kgraph can be used as a similarity, since they are the inner product of two
parameter elements [24].

According to [5], it is as hard as deciding whether two graphs are isomorphic to
compute any complete graph kernel with an injective mapping function for all graphs,
where graph isomorphism is in NP-complete. Thus, most graph kernels focus on alterna-
tive feature representation of graphs. The random walk graph kernel, one of the most
general graph kernels is a practical kernel for graphs. It uses all possible random walks
as features for graphs. Let S be a set of all possible random walks. For each random walk
s  S whose length is n, the corresponding feature value of a graph G is given as

() | { () | , () ()} |, n

s n i iG w W G i l s l w     (4)

where n is a weight for the length n and Wn(G) is a set of random walks with length n in
G. l(si) and l(wi) are the ith labels in random walks s and w respectively.

ONTOLOGY KERNEL

421

With this mapping function, Eq. (3) defines the similarity between two graphs as a
summation of the frequencies of all possible random walks within the graphs. Thus, all
random walks should be enumerated in advance to compute the similarity. However, this
is computationally infeasible. Gärtner et al. adopted a direct product graph as a way to
avoid explicit enumeration of all random walks [5]. Let G = (V, E) be a graph with a
vertex set V and an edge set E. Then, the direct product graph of G1 = (V1, E1) and G2 =
(V2, E2) is denoted by G1  G2 = (V, E) where V and E are its node and edge sets that
are defined respectively as

V(G1  G2) = {(v1, v2)  V1  V2| l(v1) = l(v2)},
E(G1  G2) = {((v1, v1), (v1, v2))  E1  E2
 (v1, v1)  E1 and (v2, v2))  E2 and l(v1, v1) = l(v2, v2)},

where l(v) is the label of a node v and l(v, v) is the label of an edge between two nodes v
and v. Nodes and edges are compared basically by exact string matching, but other ap-
proximate string matching methods can be also adopted.

From the adjacency matrix

|||| XVVA  of G1  G2, the similarity of G1 and G2 can
be directly computed without explicit enumeration of all random walks. The adjacency
matrix A has a well-known characteristic. When the adjacency matrix is multiplied n
times, an element

n

vv
A ', 

 becomes the summation of similarities between random walks of
length n from v to v, where v  V and v  V [25]. Thus, by adopting a direct prod-
uct graph and its adjacency matrix, Eq. (3) is rewritten as

| |

1 2 , 1
0 ,

(,) .
V n n

graph i j
n i j

K G G A





    
  (5)

According to [25], the value of Kgraph(G1, G2) is converged as the iteration goes by.
However, in general, a pre-defined value is used to set the max iteration number.

5. ALIGNMENT WITH ONTOLOGY KERNEL

5.1 Ontology Kernel

The random walk graph kernel computes the similarity between graphs without ex-

plicit feature enumeration. However, by regarding a random walk as a sequence of labels
appearing on nodes and edges, its feature space spanned by random walks is not ideal for
ontology graphs. In the random walk graph kernel, s  S is a label sequence of length n,
which implies that all nodes and edges in graphs contain only lexical information. How-
ever, in the entity graphs, nodes contain not only lexical information but also structural
information. Therefore, the feature space by S fails in reflecting all information on the
entity graphs.

The ontology kernel overcomes this problem by adopting a different feature space.
The feature space of the ontology kernel is spanned by S, a set of entity random walks.
This set contains all random walks composed of ontology entities. That is, all nodes s 
S are ontology entities which have both a label and a graph structure. Therefore, s of
length n is defined as

JEONG-WOO SON, HEE-GUEN YOON AND SEONG-BAE PARK

422

s = e1 e2 …en (6)

where (,)i i i

g ge L G  is the ith entity in s.

i

gL  is the label of the entity ei and

i

gG  is its graph
structure. When the entity is a concept or a property, i

gG  becomes an entity graph again.
Otherwise,

i

gG  is a null graph which does not contain any node.
The ontology kernel computes the inner product of two ontology entities in the fea-

ture space spanned by S. Let SG  S be a set of entity random walks within a graph G.
The ontology kernel returns the inner product of two entity graphs G1 and G2 by sum-
ming all similarities between random walks sG1  SG1 and sG2  SG2. Assuming that the
similarity between sG1 and sG2 is computed by a walk kernel, the ontology kernel is de-
fined as

1 2 1 2

1 1 2 2

1 2
' ' ' '

(,) (') (') (' , '),
G G G G

graph G G walk G G
s S s S

K G G N s N s K s s
 

  

where N(sG) is the frequency of the random walk sG appearing in G, and Kwalk(sG1, sG2) is
a walk kernel which returns the similarity between sG1 and sG2.

One of the simple ways to define Kwalk is to decompose a random walk into ontolo-
gy entities as shown in Eq. (6). Then, the similarity between two walks is determined by
production of all inner products among entities along the walks. That is, Kwalk is defined
as

1 2 1 2
1

(,) .
n

i i

walk G G G G
i

K s s e e


   

If

i

gL  is independent of ,i

gG  the inner product of two entities is rewritten as

1 2 1 2 1 2
(,) (,).

G G G G

i i i i i i

G G l s s s s se e K L L K G G      (7)

Here, Kl determines the inner product of entity labels and Ks compares their graph
structures. Various string matching methods such as exact matching and Levenshtein
distance can be used for Kl. We use Jaro Winkler distance [26] as Kl in this paper. Since
Ks computes the structural similarity of two graphs, it can be replaced by Kgraph(G1, G2)
in Eq. (3). It is worth noting that, based on the definition of ei, the ontology kernel
should be defined recursively, however, in this paper, the kernel is defined by using only
single layered architecture. That is, the graph kernel in Eq. (7) determines a similarity
only with label sequences s  S.

In addition, there are two facts to note about the ontology kernel. The first one is
that the ontology kernel is also computed without explicit feature enumeration by adopt-
ing a direct product graph and its adjacency matrix. Thus, Eq. (5) can be used to compute
the ontology kernel. The second fact is that there is a way to reduce computational cost
in the ontology kernel. If we assume that only the entities with the same type can be
matched like concept-to-concept, property-to-property, and instance-to-instance, the
computational cost can be reduced. Under this assumption, the number of matched enti-
ties is reduced, which results in a sparse adjacency matrix. This leads to fast computation
of Eq. (5), since many elements in the adjacency matrix become 0. The implementation
of this assumption can be done by simply modifying Eq. (7) as

ONTOLOGY KERNEL

423

1 2 1 2 1 2 1 2
'(,)((,) (,)),

G G G G

i i i i i i i i

G G G G l s s s s se e I e e K L L K G G     (8)

where
1 2

()i i

G GI e e is an indication function defined as

1 2 1 2
(,) 1 if () (), otherwise 0.i i i i

G G G GI e e T e T e  (9)

Here,
1

()i

GT e returns the type of the entity
1

i

Ge such as concept, property, and instance.

Fig. 3. Overall process to generate alignment with the ontology kernel.

5.2 System Implementation

Fig. 3 shows the overall process to obtain the alignment between two ontologies by

using the ontology kernel. When two ontologies are given, graphs for all entities are ex-
tracted from the ontology graphs. Then, for each possible entity pair, lexical similarities

JEONG-WOO SON, HEE-GUEN YOON AND SEONG-BAE PARK

424

are measured and these similarities are stored with the lexical similarity matrix. Then, by
using the lexical similarity matrix, the graph similarity matrix is constructed by the graph
kernel in Eq. (5). Finally, the ontology kernel generates the entity structural similarity
matrix based on both lexical similarity matrix and the graph similarity matrix. Note that
all the similarity matrixes contain normalized similarities bounded from 0.0 to 1.0. In
case of similarities from the graph kernel and the ontology kernel, we use a general way
to normalize the kernel value. That is, similarities in a similarity matrix are measured
with (,) (,) / (,) (,)K x y K x y K x x K y y   to use a threshold  in the alignment generator.

The ontology kernel is recursively defined by using the graph kernel. Thus, in the
implementation of the ontology kernel, it is also adopted the kernel computation in Eq.
(5), while the values in the adjacency matrix are obtained from Eq. (8). Due to such im-
plementation, the graph similarity matrix is determined by the graph kernel in advance of
the ontology kernel.

6. EXPERIMENTS

6.1 Experimental Data and Setting

Experiments are performed with the biblio in the benchmark set and the conference

set prepared by Ontology Alignment Evaluation Initiative (OAEI). The biblio set is
composed of one reference ontology and 47 modified versions of the reference ontolo-
gy2. The reference ontology is numbered as 101. It has 33 named concepts, 24 object
type properties, 40 data type properties, and 112 instances. The ontologies numbered as
201 and 202 are those modified from the reference ontology by changing the labels of
the reference ontology randomly, but preserving its structure. On the other hand, the
ontologies numbered as 221-247 are obtained by distorting the structure of the refer-
ence ontology while preserving its lexical information. The remaining 248-266 ontolo-
gies are made by changing somewhat both lexical and structural information of the ref-
erence ontology. This biblio set is designed to evaluate the performance of ontology
alignment systems against diverse modifications of entities. Especially, the 248-266
ontologies are harshly modified from the reference ontology. They are difficult to align,
but the performance on them is important since they reveal the functionality of align-
ment systems in the rigorous environment.

Both 201-202 and 248-266 ontologies also have one more distinguishing character-
istic from other ontologies. These ontologies have their partial modification versions. For
instance, the 250 ontology have four more ontologies, 250-2, 250-4, 250-6, and 250-8
which mean that the random string replacement of entity labels is applied for 20, 40, 60,
and 80 percent of the entities respectively. However, structures of 250-2, 250-4, 250-6,
and 250-8 are not modified from the 250 ontology, thus, their structures are still equiva-
lent with the 250 ontology. These partial modified ontologies can disclose the perfor-
mance change of an alignment system as the information from the labels of entities is
reduced. On the other hand, these partial modified ontologies also can increase the per-
formance of a system with rich lexical knowledge which can obtain much higher per-
formance on less modified ontologies like xxx-2 and xxx-4. Thus, on the biblio set, we

2

 For more detail description of this data set, refer to http://oaei.ontologymatching.org/2012/benchmarks/index.html.

ONTOLOGY KERNEL

425

present both performances of a system with and without partial modified ontologies.
The conference set consists of seven ontologies describing organizing conferences

and 21 reference alignments among them. A simple statistics on these ontologies is given
in Table 1. As shown in this table, the ontologies have only concepts and properties. The
average number of concepts is 72, and that of properties is 44.43. Even if the ontologies
in this set come from the same domain, they are designed independently. As a result, the
entity expressions in each ontology are slightly but naturally different one another.
Therefore, the alignment results with this set show the real-world performance of align-
ment systems3. To measure performances on the conference set, the ra1 alignment is
used as a gold standard alignment.

The proposed method, ontology kernel is compared with other ontology alignment
systems that participated in the OAEI 2012 campaign [31]. All parameters of the pro-
posed method are set heuristically. The maximum length of random walks is set to be
two. In case of  in Eq. (4), it firstly set as 0.70, and as the iteration goes by, it is expo-
nentially decreased as  = 0.70n for the nth iteration. To handle ontologies with randomly
modified labels like 201 and 202 ontologies in the biblio set, the ontology kernel is
adopted a simple heuristic process: (1) determine the average lexical similarity between
two ontologies; (2) when the average lexical similarity is not exceeded the pre-defined
threshold (in experiments, we used 0.8 in this step), labels of all entities in both ontolo-
gies are changed with their entity type; (3) an indicator function which returns 1.0 when
two entities have the same type, or 0.0 is adopted as the label kernel in Eq. (8). The types
of entities used in the second step are {class, property, individual}. In case of the values,
we used primitive types of values such as {string, int, float, …}. The performance of
ontology alignment is measured by harmonic mean of precisions, recalls, and micro av-
erage F-measures, since they are standard in the OAEI campaign.

Table 1. Simple statistics of the conference set.
Ontology No. of concepts No. of properties

Cmt 36 59
Sofsem 60 64

ConfTool 38 36
Edas 104 50
Ekaw 77 33
Iasted 140 41
Sigkdd 49 28

Average 72.00 44.43

6.2 Experimental Results

Table 2 shows the performance of the ontology kernel against other competitors

with the biblio set. OntoK in this table is the proposed ontology kernel, while ‘edna’ is a
simple edit distance and is regarded as a baseline. In this table, performances of all sys-
tems are measured with F-measure and, the performances without partial modified on-

3

 The conference set is imported from SEALS platform directly with Conference testsuite-ID (http://oaei.onto-
logymatching.org/2012/conference/index.html).

JEONG-WOO SON, HEE-GUEN YOON AND SEONG-BAE PARK

426

Table 2. The performance of alignment systems on the biblio set in F-measure.
 YAM++ MapSSS AROMA WeSeE HotMatch

101 1.00 1.00 1.00 0.95 0.83
201, 202 0.92 (0.86) 0.94 (0.91) 0.89 (0.81) 0.78 (0.60) 0.77 (0.62)
221-247 1.00 1.00 1.00 0.98 0.92
248-266 0.76 (0.35) 0.81 (0.61) 0.67 (0.29) 0.56 (0.00) 0.54 (0.01)
Average 0.83 (0.79) 0.87 (0.86) 0.77 (0.77) 0.69 (0.68) 0.66 (0.64)

 Hertuda WikiMatch Optima ASE AUTOMSv2
101 0.94 0.91 1.00 1.00 0.94

201, 202 0.78 (0.62) 0.73 (0.56) 0.75 (0.60) 0.57 (0.45) 0.79 (0.62)
221-247 0.94 0.89 0.96 0.78 0.98
248-266 0.55 (0.00) 0.50 (0.00) 0.48 (0.00) 0.41 (0.00) 0.56 (0.00)
Average 0.68 (0.67) 0.62 (0.62) 0.63 (0.67) 0.51 (0.53) 0.69 (0.69)

 GOMMA LogMap LogMapLt MaasMatch MEDLEY
101 0.91 0.90 0.91 1.00 0.84

201, 202 0.80 (0.69) 0.49 (0.00) 0.51 (0.00) 0.52 (0.09) 0.45 (0.00)
221-247 0.87 0.86 0.88 0.97 0.86
248-266 0.57 (0.16) 0.46 (0.00) 0.49 (0.00) 0.46 (0.05) 0.46 (0.00)
Average 0.67 (0.65) 0.56 (0.56) 0.59 (0.58) 0.56 (0.52) 0.54 (0.55)

 ServOMap ServOMapLt edna OntoK
101 0.99 0.44 0.78 1.00

201, 202 0.56 (0.00) 0.21 (0.00) 0.31 (0.01) 0.94 (0.90)
221-247 0.87 0.59 0.82 1.00
248-266 0.48 (0.00) 0.28 (0.00) 0.33 (0.01) 0.78 (0.56)
Average 0.58 (0.58) 0.33 (0.34) 0.41 (0.42) 0.84 (0.81)

tologies are also represented by using parenthesis. As shown in Table 2, all competitors
and the ontology kernel outperform ‘edna’ except ServOMapLt that is a restricted ver-
sion of ServOMap. Thus, if we consider those restricted versions of particular systems
like ServOMapLt and LogMapLt, then all competitors of OAEI 2012 achieved better
performances than the performance of edna, 0.41. The ontology kernel achieves the sec-
ond best performance with 0.81 of average F-measure. The only system that outperforms
ontology kernel is MapSSS with 0.86 of average F-measure. However, MapSSS depends
on the lexical information heavily and uses only a few specific relations. Thus, when the
ontologies to be aligned contain many other relations, it is hard to reflect structural in-
formation in alignments. Actually, it is one of the worst systems for the conference set.

The alignment of the reference ontology with the 101 ontology is a self-alignment,
since 101 ontology is the reference ontology itself. Thus, F-score of 1.00 is expected for
all systems. However, surprisingly, among 19 systems, 12 systems fail in achieving the
complete alignment. They are the systems that expand the lexical information of entities
with an external resource such as Wikipedia or Bing, a web search engine. Their poor
performance implies that this kind of expansion works as a noise.

The ontologies numbered as 201 and 202 are those of which labels are changed
with a random string. Thus, the systems that use only the lexical information show low
performance in the alignment with these ontologies. WeSeE and Wiki-Match are such
alignment systems. One of interesting results is that most systems showed large gaps
between performance with and without partial modified ontologies. However, OntoK

ONTOLOGY KERNEL

427

showed the performance difference within 0.05. One of efficient way to achieve such a
small difference is to use structural information, because the effect of lexical information
for the alignments is diminished in 201-202 ontologies. Thus, this small difference de-
monstrates the superiority of OntoK on handling structural information.

The ontologies numbered as 221-247 are designed to see the ability of each system
to cope with the structural difference between ontologies. Thus, only the systems that
utilize the structural information are expected to achieve good performance. However,
contrary to our expectation, most systems show F-measure of over 0.90. Especially,
some systems including the ontology kernel achieve F-measure of 1.00 for them. This is
because these ontologies still possess the lexical information enough for the alignment,
even though their structures are a little bit distorted.

The 248-266 ontologies are most difficult to align, since they are generated by
modifying both lexical and structural information of the reference ontology. Thus, the
systems have to consider the lexical and structural difference of the ontologies at the
same time for the alignment of these ontologies. However, most systems consider just
one of them or process the lexical information first. As a result, their performances are
extremely low when lexical information is not available. On the other hand, the ontology
kernel achieves F-measure of 0.78 (0.56) for them, while F-measures of many other sys-
tems are lower than 0.30. This superiority of the ontology kernel comes from its simul-
taneous consideration of the lexical and structural information.

Table 3 compares the performances of the alignment systems on the conference set.
The ontology kernel is located on the fifth best position in this set. Unfortunately, the
performances of many other systems are lower than or equal to that of ‘baseline2’, the
baseline method which showed F-measure of 0.59. Especially, MapSSS and AROMA

Table 3. The performance of alignment systems on the conference set.

 YAM++ MapSSS AROMA WeSeE HotMatch
Prec. 0.81 0.50 0.33 0.76 0.71
Rec. 0.69 0.51 0.48 0.49 0.51

F-measure 0.75 0.50 0.39 0.60 0.59
 Hertuda WikiMatch Optima ASE AUTOMSv2

Prec. 0.74 0.74 0.62 0.63 0.67
Rec. 0.50 0.50 0.68 0.43 0.36

F-measure 0.60 0.60 0.65 0.51 0.47
 GOMMA LogMap LogMapLt CODI MEDLEY

Prec. 0.85 0.82 0.73 0.74 0.54
Rec. 0.47 0.58 0.50 0.57 0.50

F-measure 0.61 0.68 0.59 0.64 0.52

 ServOMap
ServO-
MapLt

MaasMatch Baseline24 OntoK

Prec. 0.73 0.88 0.63 0.79 0.81
Rec. 0.46 0.40 0.57 0.47 0.52

F-measure 0.56 0.55 0.60 0.59 0.63

4

 In OAEI 2012, there exist two baselines. Baseline1 denote the system with an exact matching, while baseline2
is one with the edit-distance based matching. Due to the lack of space, this paper only contains the perfor-
mance of baseline2, since baseline2 showed better performance than baseline1.

JEONG-WOO SON, HEE-GUEN YOON AND SEONG-BAE PARK

428

achieve lower performances than ‘edna’, even though their performances are very high
for the biblio set. On the other hand, systems like LogMap, CODI, and Optima showed
better performance than the ontology kernel in the conference set, while their perfor-
mances on the biblio set is worse than the ontology kernel. Onty the ontology kernel and
YAM++ achieve much high performances in both biblio and conference sets. Especially,
YAM++ shows the best performance for the conference set. However, note that YAM++
is worse than the ontology kernel for the biblio set. As explained in Section 2, YAM++
uses the structural information of entities as a supplement of the lexical information.
Thus, its performance gets low, when two ontologies to be aligned are much different
structurally. This is why it shows lower performance than the ontology kernel for 248-
266 ontologies of the biblio set.

On the other hand, the ontology kernel is not much affected from the structural dif-
ference of the ontologies. Rather, it manages the difference effectively, since it utilizes
all kinds of relations and structural information of entities. From the fact that the ontolo-
gy kernel achieves high performance consistently for both sets, its high generality is
proved. That is, the ontology kernel performs well regardless of the extent of ontology
difference.

6.3 Discussion for the Time Complexity of the Ontology Kernel

The ontology kernel showed its superiority through experiments with both the bib-

lio and conference sets. Even though its performances are always highly ranked among
various alignment systems, there still exists a room to enhance the ontology kernel with
respect to computational cost. Based on the graph kernel, the ontology kernel is designed
to reflect the structural characteristic of the ontology. In this case, the time complexity of
the ontology kernel, thus, is strongly governed by the complexity of the graph kernel.
Basically, the time complexity of the graph kernel is O(n6) and it can be reduced up to
O(n3) [27], where n is the number of nodes in two compared graphs. As a result, the on-
tology kernel that is the nested implementation of the graph kernel as shown in Fig. 3
have the time complexity of O(2n3).

In this paper, by using the entity type comparison in Eq. (9), the time complexity of
the graph kernel can be reduced up to O(n3

c + n3
p + n3

i), where nc, np, and ni are the num-
bers of concepts, properties, and instances in two ontologies respectively and n = nc + np
+ ni. In case of the ontology kernel, it has the time complexity of O(2  (n3

c + n3
p + n3

i)),
since the ontology kernel is implemented by nesting the graph kernel twice. Theoretical-
ly, n3  2  (n3

c + n3
p + n3

i) is not guaranteed. However, when an ontology contains similar
numbers of concepts, properties, or instances, the ontology kernel should be faster than
the graph kernel.

Fig. 4 shows actual computation time of both the ontology kernel and the graph
kernel on the conference set. As shown in this figure, the ontology kernel averagely
spends half of computation time comparing with the graph kernel. However, the time
complexity of the ontology kernel is still much high and it can be an obstacle to align
huge ontologies. Thus, further improvement is demanded to reduce the time complexity
of the ontology kernel and it is our future work. Fortunately, recent work on the graph
kernel suggests elegant ways to overcome this problem by using other sub-structure of
graphs [28, 29] or by adopting efficient data structures [30]. We will apply such tech-
nical advances in the ontology kernel.

ONTOLOGY KERNEL

429

Fig. 4. The computation time of the graph kernel and ontology kernel.

7. CONCLUSIONS

This paper proposed a novel graph kernel, the ontology kernel, to align ontologies
from the same domain. Since all entities in an ontology such as concepts and properties
are represented as graphs, the ontology kernel aligns the ontologies by comparing their
entity graphs. For accurate alignment of ontologies, it is essential to use both lexical and
structural information of the entity graphs in computing the entity similarity. One thing
to note especially for the use of structural information is that the neighbor nodes of an
entity graph are also ontology entities and thus they have their own structure. In order to
reflect this structural characteristic of entity graphs, the ontology kernel projects the en-
tity graphs onto the space spanned by entity random walks, the sequences of ontology
entities. Then, the similarity between entities is computed using shared random walks by
the entities. Since each of these entity random walks has its own lexical and structural
information, both kinds of information is considered simultaneously in the ontology
kernel. As a result, the ontology kernel showed high performance for two data sets used
in OAEI 2012 campaign. In addition, the ontology kernel utilizes all kinds of relations,
not just a few dominant relations. That is, it does not lose any information lying on the
entity graphs. Therefore, it aligns ontologies well even when their structure or lexical
information is much unalike. Its superiority over other OAEI competitors in 248–246
ontologies of the biblio set and the conference set prove its generality against the extent
of ontology difference.

REFERENCES

1. J. Madhavan, P. Bernstein, and E. Rahm, “Generic schema matching with Cupid,” in
Proceedings of the 27th International Conference on Very Large Data Bases, 2001,
pp. 49-58.

2. J. Tang, J. Li, B. Liang, X. Huang, Y. Li, and K. Wang, “Using Bayesian decision
for ontology alignment,” Journal of Web Semantics, Vol. 4, 2006, pp. 243-262.

3. P. Mitra, N. Noy, and A. Jaiswal, “OMEN: A probabilistic ontology mapping tool,”

JEONG-WOO SON, HEE-GUEN YOON AND SEONG-BAE PARK

430

in Proceedings of the 4th International Semantic Web Conference, 2005, pp. 537-
547.

4. J. Son, S. Park, and S. Park, “An ontology alignment based on parse tree kernel for
combining structural and semantic information without explicit enumeration of fea-
tures,” in Proceedings of IEEE/WIC/ACM International Conference on Web Intelli-
gence, 2008, pp. 468-474.

5. T. Gärtner, P. Flach, and S. Wrobel, “On graph kernels: Hardness results and effi-
cient alternatives,” in Proceedings of the 16th International Conference on Learning
Theory, 2003, pp. 129-143.

6. U. Lösch, S. Bloehdorn, and A. Rettinger, “Graph kernels for RDF data,” in Pro-
ceedings of the 9th Extended Semantic Web Conference, 2012, pp. 134-148.

7. K. Borgwardt, C. Ong, S. Schönauer, S. Vishwanathan, A. Smola, and H. Kriegel,
“Protein function prediction via graph kernels,” Bioinformatics, Vol. 21, 2005, pp.
i47-i56.

8. J. Euzenat, “Semantic precision and recall for ontology alignment evaluation,” in
Proceedings of the 20th International Joint Conference on Artificial Intelligence,
2007, pp. 348-353.

9. S. Hertling and H. Paulheim, “WikiMatch – using Wikipedia for ontology match-
ing,” in Proceedings of the 7th International Workshop on Ontology Matching, 2012,
pp. 37-48.

10. H. Paulheim, “WeSeE – match results for OEAI 2012,” in Proceedings of the 7th
International Workshop on Ontology Matching, 2012, pp. 213-219.

11. J. Euzenat and P. Shvaiko, Ontology Matching, Springer-Verlag, Berlin Heidelberg,
2007.

12. D. Ngo and Z. Bellahsene, “YAM++ – results for OAEI 2012,” in Proceedings of
the 7th International Workshop on Ontology Matching, 2012, pp. 266-233.

13. U. Thayasivam, T. Chaudhari, and P. Doshi, “Optima+ results for OAEI 2012,” in
Proceedings of the 7th International Workshop on Ontology Matching, 2012, pp.
181-188.

14. T. T. Dang, A. Gabriel, S. Hertling, P. Roskosch, M. Wlotzka, J. R. Zilke, F. Janssen,
and H. Paulheim, “Hotmatch results for OAEI 2012,” in Proceedings of the 7th In-
ternational Workshop on Ontology Matching, 2012, pp. 145-151.

15. T. Jean-Mary, E. Shironoshita, and M. Kabuka, “Ontology matching with semantic
verification,” Journal of Web Semantics, Vol. 7, 2009, pp. 235-251.

16. G. Acampora, V. Loia, S. Salerno, and A. Vitiello, “A hybrid evolutionary approach
for solving the ontology alignment problem,” International Journal of Intelligent
Systems, 2012, Vol. 27, pp. 189-216.

17. G. Acampora, V. Loia, and A. Vitiello, “Enhancing ontology alignment through a
memetic aggregation of similarity measures,” Information Sciences, Vol. 250, 2013,
pp. 1-20.

18. J. Bock and J. Hettenhause, “Discrete particle swarm optimisation for ontology
alignment,” Information Sciences, Vol. 192, 2012, pp. 152-173.

19. D. Haussler, “Convolution kernels on discrete structures,” Technical Report, No.
UCS-CRL-99-10, UC Santa Cruz, 1999.

20. S. Parsa and S. Naree, “A new semantic kernel function for online anomaly detec-
tion of software,” ETRI Journal, Vol. 34, 2012, pp. 288-291.

ONTOLOGY KERNEL

431

21. M. Ahmed, J. Kim, R. Mao, J. Song, and H. Li, “Distributed channel allocation us-
ing kernel density estimation in cognitive radio networks,” ETRI Journal, Vol. 34,
2012, pp. 771-774.

22. F. Costa and K. Grave, “Fast neighborhood subgraph pairwise distance kernel,” in
Proceedings of the 27th International Conference on Machine Learning, 2010, pp.
255-262.

23. P. Shvaiko and J. Euzenat, “A survey of schema-based matching approaches,” Jour-
nal on Data Semantics, 2005, pp. 146-171.

24. N. Srebro, “How good is a kernel when used as a similarity measure?” in Proceed-
ings of the 20th Annual Conference on Computational Learning Theory, 2007, pp.
323-335.

25. A. Airola, S. Pyysalo, J. Björne, T. Pahikkala, F. Ginter, and T. Salakoski, “All-
paths graph kernel for protein-protein interaction extraction with evaluation of cross-
corpus learning,” BMC Bioinformatics, Vol. 9, 2008.

26. M. Jaro, “Advances in record-linkage methodology as applied to matching the 1985
census of tampa,” Journal of the American Statistical Association, Vol. 84, 1989, pp.
414-420.

27. S. V. N. Vishwanathan, N. Schraudolph, R. Kondor, and K. Borgwardt, “Graph
kernels,” Journal of Machine Learning Research, Vol. 11, 2010, pp. 1201-1242.

28. F. Costa and K. Grave, “Fast neighborhood subgraph pairwise distance kernel,” in
Proceedings of the 27th International Conference on Machine Learning, 2010, pp.
255-262.

29. Y. Zhang, H. Lin, Z. Yang, and Y. Li, “Neighborhood hash graph kernel for protein-
protein interaction extraction,” Journal of Biomedical Informatics, Vol. 44, 2011, pp.
1086-1092.

30. S. Hido and H. Kashima, “A linear-time graph kernel,” in Proceedings of the 9th
IEEE International Conference on Data Mining, 2009, pp. 179-188.

31. J. L. Aguirre, K. Eckert, J. Euzenat, A. Ferrara, W. R. v. Hage, L. Hollink, C. Mei-
licke, A. Nikolov, D. Ritze, F. Scharffe, P. Shvaiko, O. Šváb-Zamazal, C. Trojahn, E.
Jiménez-Ruiz, B. C. Grau, and B. Zapilko, “Results of the ontology alignment eval-
uation initiative 2012,” in Proceedings of the 7th ISWC Workshop on Ontology Mat-
ching, 2012, pp. 73-115.

Jeong-Woo Son received his MS and Ph.D. degrees in Com-
puter Science from Kyungpook National University, Korea in 2007
and 2012 respectively. Now, he is a Researcher in Electronics and
Telecommunications Research Institute, Korea. His research fo-
cuses on machine learning, natural language processing, informa-
tion retrieval and semantic web.

JEONG-WOO SON, HEE-GUEN YOON AND SEONG-BAE PARK

432

Hee-Guen Yoon is a Ph.D. candidate in Kyungpook National
University, Korea. He received his MS in 2009. His main research
interests include machine learning and natural language process-
sing.

Seong-Bae Park received his MS and Ph.D. degree in Com-
puter Science from Seoul National University, Korea in 1996 and
2006 respectively. Now, he is an Associated Professor in the
School of Computer Science and Engineering, Kyungpook Na-
tional University. He focuses on machine learning, natural lan-
guage processing, text mining, and bioinformatics.

