
Ontology Matching

OM-2013

Proceedings of the ISWC Workshop

Introduction

Ontology matching1 is a key interoperability enabler for the semantic web, as
well as a useful tactic in some classical data integration tasks dealing with the
semantic heterogeneity problem. It takes the ontologies as input and determines
as output an alignment, that is, a set of correspondences between the seman-
tically related entities of those ontologies. These correspondences can be used
for various tasks, such as ontology merging, data translation, query answering
or navigation on the web of data. Thus, matching ontologies enables the knowl-
edge and data expressed in the matched ontologies to interoperate.

The workshop has three goals:

• To bring together leaders from academia, industry and user institutions

to assess how academic advances are addressing real-world requirements.
The workshop will strive to improve academic awareness of industrial and
�nal user needs, and therefore direct research towards those needs. Simul-
taneously, the workshop will serve to inform industry and user represen-
tatives about existing research e�orts that may meet their requirements.
The workshop will also investigate how the ontology matching technology
is going to evolve.

• To conduct an extensive and rigorous evaluation of ontology matching
approaches through the OAEI (Ontology Alignment Evaluation Initiative)
2013 campaign2. The particular focus of this year's OAEI campaign is on
real-world speci�c matching tasks as well as on evaluation of interactive
matchers. Therefore, the ontology matching evaluation initiative itself will
provide a solid ground for discussion of how well the current approaches
are meeting business needs.

• To examine similarities and di�erences from database schema matching,
which has received decades of attention but is just beginning to transition
to mainstream tools.

The program committee selected 5 submissions for oral presentation and 11
submissions for poster presentation. 23 matching system participated in this
year's OAEI campaign.

Further information about the Ontology Matching workshop can be found
at: http://om2013.ontologymatching.org/.

1http://www.ontologymatching.org/
2http://oaei.ontologymatching.org/2013

i

Acknowledgments. We thank all members of the program committee, au-
thors and local organizers for their e�orts. We appreciate support from the
Trentino as a Lab (TasLab)3 initiative of the European Network of the Living
Labs4 at Informatica Trentina SpA5, the EU SEALS (Semantic Evaluation at
Large Scale)6 project and the Semantic Valley7 initiative.

Pavel Shvaiko

Jérôme Euzenat

Kavitha Srinivas

Ming Mao

Ernesto Jiménez-Ruiz

October 2013

3http://www.taslab.eu
4http://www.openlivinglabs.eu
5http://www.infotn.it
6http://www.seals-project.eu
7http://www.semanticvalley.org/index_eng.htm

ii

Organization

Organizing Committee

Pavel Shvaiko, TasLab, Informatica Trentina SpA, Italy
Jérôme Euzenat, INRIA & LIG, France
Kavitha Srinivas, IBM, USA
Ming Mao, eBay, USA
Ernesto Jiménez-Ruiz, University of Oxford, UK

Program Committee

Manuel Atencia, INRIA &LIG, France
Michele Barbera, SpazioDati, Italy
Zohra Bellahsene, LRIMM, France
Chris Bizer, University of Mannheim, Germany
Olivier Bodenreider, National Library of Medicine, USA
Marco Combetto, Informatica Trentina, Italy
Gianluca Correndo, University of Southampton, UK
Isabel Cruz, The University of Illinois at Chicago, USA
Jérôme David, INRIA & LIG, France
AnHai Doan, University of Wisconsin, USA
Al�o Ferrara, University of Milan, Italy
Bin He, IBM, USA
Wei Hu, Nanjing University, China
Ryutaro Ichise, National Institute of Informatics, Japan
Antoine Isaac, Vrije Universiteit Amsterdam & Europeana, Netherlands
Krzysztof Janowicz, University of California, USA
Anja Jentzsch, Wikimedia Deutschland, Germany
Yannis Kalfoglou, Ricoh Europe plc, UK
Anastasios Kementsietsidis, IBM, USA
Patrick Lambrix, Linköpings Universitet, Sweden
Monika Lanzenberger, Vienna University of Technology, Austria
Vincenzo Maltese, University of Trento, Italy
Fiona McNeill, University of Edinburgh, UK
Christian Meilicke, University of Mannheim, Germany
Peter Mork, Noblis, USA
Axel-Cyrille Ngonga Ngomo, University of Leipzig, Germany
Andriy Nikolov, Open University, UK
Leo Obrst, The MITRE Corporation, USA
Heiko Paulheim, University of Mannheim, Germany
Yefei Peng, Google, USA
Andrea Perego, European Commission - Joint Research Centre, Italy
François Schar�e, LIRMM & University of Montpellier, France

iii

Juan Sequeda, University of Texas at Austin, USA
Luciano Sera�ni, Fondazione Bruno Kessler - IRST, Italy
Umberto Straccia, ISTI-C.N.R., Italy
Ond°ej Zamazal, Prague University of Economics, Czech Republic
Cássia Trojahn, IRIT, France
Raphaël Troncy, EURECOM, France
Giovanni Tummarello, Fondazione Bruno Kessler - IRST, Italy
Lorenzino Vaccari, Autonomous Province of Trento, Italy
Ludger van Elst, DFKI, Germany
Shenghui Wang, Vrije Universiteit Amsterdam, Netherlands
Baoshi Yan, LinkedIn, USA
Songmao Zhang, Chinese Academy of Sciences, China

iv

Table of Contents

PART 1 - Technical Papers

Rapid execution of weighted edit distances
Tommaso Soru, Axel-Cyrille Ngonga Ngomo . 1

To repair or not to repair:
reconciling correctness and coherence in ontology reference alignments
Catia Pesquita, Daniel Faria, Emanuel Santos, Francisco M. Couto 13

Unsupervised learning of link speci�cations:
deterministic vs. non-deterministic
Axel-Cyrille Ngonga Ngomo, Klaus Lyko . 25

IncMap: pay as you go matching of
relational schemata to OWL ontologies
Christoph Pinkel, Carsten Binnig, Evgeny Kharlamov, Peter Haase 37

Complex correspondences for query patterns rewriting
Pascal Gillet, Cássia Trojahn, Ollivier Haemmerlé, Camille Pradel 49

v

PART 2 - OAEI Papers

Results of the Ontology Alignment Evaluation Initiative 2013
Bernardo Cuenca Grau, Zlatan Dragisic, Kai Eckert,

Jérôme Euzenat, Al�o Ferrara, Roger Granada, Valentina Ivanova,

Ernesto Jiménez-Ruiz, Andreas Oskar Kempf, Patrick Lambrix,

Andriy Nikolov, Heiko Paulheim, Dominique Ritze,

François Schar�e, Pavel Shvaiko, Cássia Trojahn, Ond°ej Zamazal61

AgreementMakerLight results for OAEI 2013
Daniel Faria, Catia Pesquita, Emanuel Santos,

Isabel F. Cruz, Francisco M. Couto .101

Monolingual and cross-lingual ontology matching with CIDER-CL:
evaluation report for OAEI 2013
Jorge Gracia, Kartik Asooja .109

CroMatcher - results for OAEI 2013
Marko Guli¢, Boris Vrdoljak . 117

IAMA results for OAEI 2013
Yuanzhe Zhang, Xuepeng Wang, Shizhu He, Kang Liu,

Jun Zhao, Xueqiang Lv .123

LogMap and LogMapLt results for OAEI 2013
Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ian Horrocks 131

Summary of the MaasMatch participation in the OAEI-2013 campaign
Frederik C. Schadd, Nico Roos . 139

StringsAuto and MapSSS results for OAEI 2013
Michelle Cheatham, Pascal Hitzler .146

ODGOMS - results for OAEI 2013
I-Hong Kuo, Tai-Ting Wu .153

RiMOM2013 results for OAEI 2013
Qian Zheng, Chao Shao, Juanzi Li, Zhichun Wang, Linmei Hu 161

ServOMap results for OAEI 2013
Amal Kammoun, Gayo Diallo . 169

SLINT+ results for OAEI 2013 instance matching
Khai Nguyen, Ryutaro Ichise . 177

vi

System for Parallel Heterogeneity Resolution (SPHeRe)
results for OAEI 2013
Wajahat Ali Khan, Muhammad Bilal Amin,

Asad Masood Khattak, Maqbool Hussain, Sungyoung Lee184

SYNTHESIS: results for the Ontology Alignment
Evaluation Initiative (OAEI) 2013
Antonis Koukourikos, George Vouros, Vangelis Karkaletsis 190

WeSeE-Match results for OAEI 2013
Heiko Paulheim, Sven Hertling . 197

XMapGen and XMapSiG results for OAEI 2013
Warith Eddine Djeddi, Mohamed Tarek Khadir . 203

YAM++ results for OAEI 2013
DuyHoa Ngo, Zohra Bellahsene .211

vii

PART 3 - Posters

Collective ontology alignment
Jason B. Ellis, Oktie Hassanzadeh, Kavitha Srinivas, Michael J. Ward . . . 219

Uncertainty in crowdsourcing ontology matching
Jérôme Euzenat . 221

Mix'n'Match: iteratively combining ontology matchers
in an anytime fashion
Simon Steyskal, Axel Polleres . 223

An ontology mapping method based on support vector machine
Jie Liu, Linlin Qin, Hanshi Wang . 225

PLATAL - a tool for web hierarchies extraction and alignment
Bernardo Severo, Cássia Trojahn, Renata Vieira . 227

Is my ontology matching system similar to yours?
Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ian Horrocks 229

Ontological quality control in large-scale, applied ontology matching
Catherine Legg, Samuel Sarjant . 231

Variations on aligning linked open data ontologies
Valerie Cross, Chen Gu, Xi Chen, Weiguo Xia, Peter Simon 233

LOD4STAT: a scenario and requirements
Pavel Shvaiko, Michele Mostarda, Marco Amadori, Claudio Giuliano 235

Interlinking and visualizing linked open data
with geospatial reference data
Abdelfettah Feliachi, Nathalie Abadie,

Fayçal Hamdi, Ghislain Auguste Atemezing . 237

Matching geospatial instances
Heshan Du, Natasha Alechina, Michael Jackson, Glen Hart239

viii

ix

Rapid Execution of Weighted Edit Distances

Tommaso Soru and Axel-Cyrille Ngonga Ngomo

Department of Computer Science
University of Leipzig

Augustusplatz 10, 04109 Leipzig
{tsoru|ngonga}@informatik.uni-leipzig.de

Abstract. The comparison of large numbers of strings plays a central
role in ontology matching, record linkage and link discovery. While sev-
eral standard string distance and similarity measures have been devel-
oped with these explicit goals in mind, similarities and distances learned
out of the data have been shown to often perform better with respect
to the F-measure that they can achieve. Still, the practical use of data-
specific measures is often hindered by one major factor: their runtime.
While time-efficient algorithms that allow scaling to millions of strings
have been developed for standard metrics over the last years, data-
specific versions of these measures are usually slow to run and require
significantly more time for the same task. In this paper, we present an
approach for the time-efficient execution of weighted edit distances. Our
approach is based on a sequence of efficient filters that allow reducing
the number of candidate pairs for which the weighted edit distance has
to be computed. We also show how existing time-efficient deduplication
approaches based on the edit distance can be extended to deal with
weighted edit distances. We compare our approach with such an exten-
sion of PassJoin on benchmark data and show that we outperform it by
more than one order of magnitude.

1 Introduction

The computation of string similarities plays a central role in manifold disciplines,
especially in ontology matching and link discovery on the Web of Data1 [20].
Over the last decades, manifold domain-specific string similarities have been
developed for improving the accuracy of automatic techniques that rely on them.
For example, the Jaro-Winkler similarity was developed especially to perform
well on person names [22]. Still, newer works in machine learning have shown
that learning string similarities directly from data can lead to algorithms with a
performance superior to that of those which rely on standard similarity measures.
Especially, work on link discovery on the Web of Data has shown that data-
specific weighted edit distances can lead to higher F-measures [21].

One main problem has yet plagued the approaches which rely on string simi-
larity measures learned from data: their runtime. While dedicated algorithms for

1 Throughout this paper, we use the expression “link discovery” to mean the discovery
of typed relations that link instances from knowledge bases on the Web of Data.

the time-efficient comparison of large volumes of data have been developed over
the last years (e.g., PPJoin+ [24], EDJoin [23], PassJoin [12] and TrieJoin [6]),
the time-efficient computation of data-specific string similarities has been paid
little attention to. Thus, running the data-specific counterparts of standard sim-
ilarity measures is often orders of magnitude slower. Previous work have circum-
vented this problem in manifold ways, including the execution of approximations
of the data-specific similarity measure. For example, weighted edit distances
are sometimes approximated by first computing the edit distance between two
strings A and B and only subsequently applying the weight of each of the edit
operations [10]. Other approximations can be found in [3, 2].

In this paper, we address the problem of the time-efficient computation of
weighted edit distances by presenting a novel approach, REEDED. Our approach
uses weight bounds on the input cost matrix to efficiently discard similarity
computations that would lead to dissimilar pairs. By these means, REEDED can
outperform state-of-the-art approaches for the computation of edit distances by
more than one order of magnitude on real datasets. We explain our approach
by using an example from link discovery based on the data shown in Table 1.
Here, the task is to detect possible pairs (s, t) ∈ S×T such that s owl:sameAs t,
where S is a set of source resources and T is a set of target resources.

This paper is structured as follows: In Section 2, we present preliminaries to
our work. Thereafter, we present the REEDED approach for the time-efficient
computation of weighted edit distances (Section 3). In Section 4, we evaluate
our approach on four datasets and show that we outperform a weighted version
of the state-of-the-art approach PassJoin by more than one order of magnitude.
Finally, we conclude with Section 6 after giving a brief overview of related work
in Section 5.

2 Preliminaries

2.1 Notation and Problem Statement

Let Σ be an alphabet and Σ∗ be the set all sequences that can be generated by
using elements of Σ. We call the elements of Σ characters and assume that Σ
contains the empty character ε. The edit distance – or Levenshtein distance –
of two strings A ∈ Σ∗ and B ∈ Σ∗ is the minimum number of edit operations
that must be performed to transform A into B [11]. An edit operation can be
the insertion or the deletion of a character, or the substitution of a character
with another one. In a plain edit distance environment, all edit operations have
a cost of 1. Thus, the distance between the strings “Generalized” and “Gener-
alised” is the same as the distance between “Diabetes Type I” and “Diabetes
Type II”. Yet, while the first pair of strings is clearly semantically equivalent
for most applications, the elements of the second pair bears related yet signif-
icantly different semantics (especially for medical applications). To account for
the higher probability of edit operations on certain characters bearing a higher
semantic difference, weighted edit distances were developed. In a weighted edit
distance environment, a cost function cost : Σ × Σ → [0, 1] assigned to each of

the possible edit operations. The totality all of costs can be encoded in a cost
matrix M . The cost matrix is quadratic and of dimensions |Σ| × |Σ| for which
the following holds:

∀i ∈ {1, . . . , |Σ|} mii = 0 (1)

The entry mij is the cost for substituting the ith character ci of Σ with the jth

character cj of the same set. Note that if ci = ε, mij encode the insertion of cj .
On the other hand, if cj = ε, mij encode the deletion of ci.

In most applications which require comparing large sets of strings, string
similarities are used to address the following problem: Given a set S of source
strings and a set T of target strings, find the setR(S, T, δp, θ) of all pairs (A,B) ∈
S × T such that

δp(A,B) ≤ θ (2)

where θ is a distance threshold and δp is the plain edit distance. Several scal-
able approaches have been developed to tackle this problem for plain edit dis-
tances [12, 24, 23]. Still, to the best of our knowledge, no scalable approach has
been proposed for finding all (A,B) ∈ S × T such that δ(A,B) ≤ θ for weighted
edit distances δ. In this paper we address exactly this problem by presenting
REEDED. This approach assumes that the computation of weighted edit dis-
tances can be carried out by using an extension of the dynamic programming
approach used for the plain edit distance.

2.2 Extension of Non-Weighted Approaches

All of the approaches developed to address the problem at hand with the plain
edit distance can be easily extended to deal with weighted edit distances for
which the dynamic programming approach underlying the computation of the
plain edit distance still holds. Such an extension can be carried out in the fol-
lowing fashion: Let

μ = min
1≤i,j≤|Σ|∧i�=j

mij . (3)

Then, if the weighted edit distance between two strings A and B is d, then at
most d/μ edit operations were carried out to transform A into B. By using this
insight, we can postulate that for any weighted edit distance δ with cost matrix
M , the following holds

∀A ∈ Σ∗ ∀B ∈ Σ∗ δ(A,B) ≤ θ → δp(A,B) ≤ θ

μ
. (4)

Thus, we can reduce the task of finding the set R(S, T, δ, θ) to that of first
finding R(S, T, δp, θ/μ) and subsequently filtering R(S, T, δp, θ/μ) by using the
condition δ(A,B) ≤ θ. To the best of our knowledge, PassJoin [12] is currently
the fastest approach for computing R(S, T, δp, θ) with plain edit distances. We
thus extended it to deal with weighted edit distances and compared it with our
approach. Our results show that we outperform the extension of PassJoin by
more than one order of magnitude.

3 The REEDED Approach

3.1 Overview

Our approach REEDED (Rapid Execution of Weighted Edit Distances) aims to
compute similar strings using weighted edit distance within a practicable amount
of time. The REEDED approach is basically composed of three nested filters as
shown in Figure 1, where each filter takes a set of pairs as input and yields
a subset of the input set according to a predefined rule. In the initial step of
REEDED, the input data is loaded from S, a source data set, and T , a target
data set. Their Cartesian product S × T is the input of the first length-aware
filter. The output of the first filter L is the input of the second character-aware
filter. The weighted edit distance will be calculated only for the pairs that pass
through the second filter, i.e. set N . The final result A is the set of pairs whose
weighted edit distance is less or equal than a threshold θ. Note that pairs are
processed one by one. This ensures that our algorithm performs well with respect
to its space complexity.

Fig. 1. Flowchart of the REEDED approach.

Table 1. Example data sets.

Sources (S) Targets (T)

id name id name
s1 Basal cell carcinoma t1 Basal Cell Carcinoma
s2 Blepharophimosi t2 Blepharophimosis
s3 Blepharospasm t3 Blepharospasm
s4 Brachydactyly type A1 t4 Brachydactyly Type A1
s5 Brachydactyly type A2 t5 Brachydactyly Type A2

3.2 Key Assumption

Similarly to the extensions of plain edit distances for weighted edit distances,
REEDED assumes the dynamic programming approach commonly used for com-
puting plain edit distances can be used for computing the weighted edit distance
described by the cost matrix M . With respect to M , this assumption translates
to the weights in the matrix being such that there is no sequence of two edit
operations mij and mi′j′ that is equivalent to a third edit operation mi′′j′′ with

mi′′j′′ > mij +mi′j′ . (5)

for (i �= j) ∧ (i′ �= j′) ∧ (i′′ �= j′′). Formally, we can enforce this condition of the
cost matrix M by ensuring that

∃k > 0 ∀mij : k < mij ≤ 2k. (6)

Given that the entries in cost matrices are usually bound to have a maximal
value of 1, we will assume without restriction of generality that

∀i ∈ {1, . . . , |Σ|}∀j ∈ {1, . . . , |Σ|} i �= j → 0.5 < mij ≤ 1. (7)

Thus, in the following, we will assume that ∀mij : mij > 0.5.

3.3 Length-aware Filter

The length-aware filter is the first filter of REEDED. Once the data sets have
been loaded, the Cartesian product

S × T = {〈s, t〉 : s ∈ S, t ∈ T} (8)

is computed, which in our example corresponds to {〈s1, t1〉, 〈s1, t2〉, . . . , 〈s5, t5〉}.
The basic insight behind the first filter is that given two strings s and t with
lengths |s| resp. |t|, we need at least ||s|− |t|| edit operations to transform s into
t. Now given that each edit operation costs at least μ, the cost of transforming
s to t will be at least μ||s| − |t||. Consequently, the rule which the filter relies on
is the following:

〈s, t〉 ∈ L ⇒ 〈s, t〉 ∈ S × T ∧ ||s| − |t|| ≤ θ/μ. (9)

In the following, we will set τ = θ/μ, where μ is as defined in Equation (3).

In our example, let us assume θ = 1 and mij ∈ (0.5, 1.0]. Then, τ = 2. If we
assume that S.name has been mapped to T.name, then at the end of this step,
13 of the 25 initial pairs in S × T are dismissed. The remaining 8 pairs are:

L = {〈s1, t1〉, 〈s2, t2〉, 〈s3, t3〉, 〈s4, t4〉, 〈s5, t5〉, 〈s2, t3〉, 〈s4, t5〉, 〈s5, t4〉} . (10)

3.4 Character-aware Filter

The second filter is the character-aware filter which only selects the pairs of
strings that do not differ by more than a given number of characters. The intu-
ition behind the filter is that given two strings s and t, if |C| is the number of
characters that do not belong to both strings, we need at least �|C|/2 opera-
tions to transform s into t. As above, the cost of transforming s to t will be at
least μ�|C|/2. The characters of each string are collected into two sets, respec-
tively Cs for the source string and Ct for the target string. Since s and t may
contain more than one occurrence of a single character, characters in Cs and Ct

are enumerated. Then, the algorithm computes their exclusive disjunction C:

C = Cs ⊕ Ct. (11)

Finally, the filter performs the selection by applying the rule:

〈s, t〉 ∈ N ⇐⇒ 〈s, t〉 ∈ L ∧
⌈ |C|

2

⌉
≤ τ. (12)

In our example, a further pair can be dismissed by these means, leading to the
set of remaining pairs being as follows:

N = {〈s1, t1〉, 〈s2, t2〉, 〈s3, t3〉, 〈s4, t4〉, 〈s5, t5〉, 〈s4, t5〉, 〈s5, t4〉}
The pair that is rejected is 〈s2, t3〉, for which C = {h1, i1, o1, i2, a1, s1}, which
leads to the rule not being satisfied.

3.5 Verification

For all the pairs left in N , the weighted edit distance among is calculated. After
that, the third filter selects the pairs whose distance is less or equal than θ.

〈s, t〉 ∈ A ⇐⇒ 〈s, t〉 ∈ N ∧ δ (s, t) ≤ θ (13)

In our example data sets, the set

A = {〈s1, t1〉, 〈s2, t2〉, 〈s3, t3〉, 〈s4, t4〉, 〈s5, t5〉} (14)

is the final result of the selection. Note that the pairs 〈s4, t5〉 and 〈s5, t4〉 are
discarded, because their distance (1.2) is greater than the threshold (1.0). 2

4 Evaluation

The goal of our evaluation was to quantify how well REEDED performs in com-
parison to the state of the art. We thus compared REEDED with the extension
of PassJoin as proposed in [12]. We chose PassJoin because it was shown to out-
perform other approaches for the efficient computation of edit distances, incl.
EDJoin [23] and TrieJoin [6]. Note that we did run an implementation of EdJoin
on the DBLP dataset presented below and it required approximately twice the
runtime of PassJoin.
2 A proof of the correctness of REEDED can be found in the extended version of this
paper at http://svn.aksw.org/papers/2013/OM_Reeded/public.pdf.

4.1 Experimental Setup

We compared the approaches across several distance thresholds on four differ-
ent datasets that were extracted from real data (see Fig. 2).3 The first two of
these data sets contained publication data from the datasets DBLP and ACM.
The third and fourth dataset contained product labels from the product cata-
logs Google Products and ABT [9]. We chose these datasets because they were
extracted from real data sources and because of the different string length dis-
tribution across them. By running our experiments on these data sets, we could
thus ensure that our results are not only valid on certain string length distribu-
tions. As weight matrix we used a confusion matrix built upon the frequency of
typographical errors presented in [8]. The original confusion matrices report the
number of occurrences f for each error:

ΦS = {fij : substitution of i (incorrect) for j (correct)} (15)

ΦI = {fij : insertion of j after i} (16)

ΦD = {fij : deletion of j after i} (17)

For insertion and deletion, we calculate the total frequency:

ωI
j =

∑
i

ΦI
ij (18)

ωD
j =

∑
i

ΦD
ij (19)

The weights of our weight matrix are thus defined as:

mij =

⎧⎪⎪⎨
⎪⎪⎩

1− ΦS
ij

2max(ΦS)
: i �= ε ∧ j �= ε

1− ωI
j−min(ωI)

2(max(ωI)−min(ωI))
: i = ε ∧ j �= ε

1− ωD
i −min(ωD)

2(max(ωD)−min(ωD))
: i �= ε ∧ j = ε

(20)

In other words, the higher the probability of an error encoded in mij , the lower
its weight.

All experiments were carried out on a 64-bit server running Ubuntu 10.0.4
with 4 GB of RAM and a 2.5 GHz XEON CPU. Each experiment was run 5
times.

4.2 Results

In Figure 2 we show the string length distribution in the data sets. The results of
our experiments are shown in Table 2. Our results show clearly that REEDED

3 The data used for the evaluation is publicly available at http://dbs.uni-leipzig.
de/en/research/projects/object_matching/fever/benchmark_datasets\

_for_entity_resolution.

(a) Data set DBLP.title (b) Data set ACM.authors

(c) Data set GoogleProducts.name (d) Data set ABT.description

Fig. 2. Distribution of string lengths.

outperforms PassJoin in all experimental settings. On the DBLP dataset (aver-
age string length = 56.36), REEDED is already 2 times faster than PassJoin for
the threshold 2. For θ = 4, we reach an order of magnitude in difference with
runtimes of 25.91 (REEDED) and 246.93 (PassJoin). The runtime of REEDED
seems to grow quasi-linearly with increasing values of θ. The results on ACM
corroborate the results for the two algorithms. Here, we are 2.16 times faster
than PassJoin for θ = 2 and 6.57 times faster for θ = 5. We achieve similar
results on the Google Products dataset and are an order of magnitude faster
than PassJoin for θ = 4 already. The results we achieve the ABT dataset allow
deriving further characteristics of REEDED. Here, the algorithm scales best and
requires for θ = 5 solely 1.58 times the runtime it required for θ = 1. This is
clearly due to the considerably longer strings contained in this dataset.

We analyzed the results on each of the filters in our approach and measure
the reduction ratio (given by 1− |N |/|S×T |) achieved by the length-aware and
character-aware filters. Table 3 shows the set sizes at each filtering step. Both
the first and the second filter reduce the number of selected pairs by one or two
orders of magnitude for all the datasets. As expected, the length-aware filter is
most effective on datasets with large average string lengths. For example, only
1.9% of the Cartesian product of the ABT dataset makes it through the first
filter for θ = 1 while the filter allows 6.8% of the DBLP Cartesian product
through for θ = 1. One interesting characteristic of the approach is that the
size of the L grows quasi linearly with the value of θ. The character-aware filter

Table 2. Runtime results in seconds.

PassJoin REEDED
Dataset θ average st.dev. average st.dev.

1 10.75 ± 0.92 10.38 ± 0.35
2 30.74 ± 5.00 15.27 ± 0.76

DBLP.title 3 89.60 ± 1.16 19.84 ± 0.14
4 246.93 ± 3.08 25.91 ± 0.29
5 585.08 ± 5.47 37.59 ± 0.43

1 9.07 ± 1.05 6.16 ± 0.07
2 18.53 ± 0.22 8.54 ± 0.29

ACM.authors 3 42.97 ± 1.02 12.43 ± 0.47
4 98.86 ± 1.98 20.44 ± 0.27
5 231.11 ± 2.03 35.13 ± 0.35

1 17.86 ± 0.22 15.08 ± 2.50
2 62.31 ± 6.30 20.43 ± 0.10

GoogleProducts.name 3 172.93 ± 1.59 27.99 ± 0.19
4 475.97 ± 5.34 42.46 ± 0.32
5 914.60 ± 10.47 83.71 ± 0.97

1 74.41 ± 1.80 24.48 ± 0.41
2 140.73 ± 1.40 27.71 ± 0.29

ABT.description 3 217.55 ± 7.72 30.61 ± 0.34
4 305.08 ± 4.78 34.13 ± 0.30
5 410.72 ± 3.36 38.73 ± 0.44

seems to have the opposite behavior to the length-aware filter and can discard
more string pair on data with small average string lengths. For example, less
than 1% of L makes it through the filter for θ = 1 on the DBLP dataset while
5.1% of L makes it through the same filter for θ = 1 on ABT.

We also measured the runtime improvement as well as the precision and re-
call we achieved by combining REEDED with the ACIDS approach and applying
this combination to the datasets reported in [21]. The results are shown in Ta-
ble 4. For the datasets on which the edit distance can be used, the approach
achieves a superior precision and recall than state-of-the-art approaches (such
as MARLIN [4] and Febrl [5]) which do not rely on data-specific measures. Yet,
on more noisy datasets, the approach leads to poorer results. In particular, the
edit distance has been shown not to be a good measure when the strings to be
compared are too long. Also, the words contained in the source string may be
completely different from the words contained in the target string, yet referring
to the same meaning. A notable shortcoming of the ACIDS approach is the run-
time, wherein the learning system iterated for at least 7 hours to find the weight
configuration of the weighted edit distance and optimize the classification [21].
As shown in Table 4, REEDED enhances the execution time of ACIDS reduc-
ing the total runtime by 3 orders of magnitude on the DBLP–ACM and the
ABT–Buy dataset.

Table 3. Numbers of pairs (s, t) returned by each filter. RR stands for the reduction
ratio achieved by the combination of length-aware and character-aware filters.

DBLP.title θ = 1 θ = 2 θ = 3 θ = 4 θ = 5
|S × T | 6,843,456 6,843,456 6,843,456 6,843,456 6,843,456
|L| 465,506 832,076 1,196,638 1,551,602 1,901,704
|N | 4,320 4,428 5,726 11,382 30,324
|A| 4,315 4,328 4,344 4,352 4,426

RR(%) 99.94 99.94 99.92 99.83 99.56

ACM.authors θ = 1 θ = 2 θ = 3 θ = 4 θ = 5
|S × T | 5,262,436 5,262,436 5,262,436 5,262,436 5,262,436
|L| 370,538 646,114 901,264 1,139,574 1,374,482
|N | 3,820 5,070 24,926 104,482 218,226
|A| 3,640 3,708 3,732 3,754 3,946

RR(%) 99.93 99.90 99.53 98.01 95.85

GooglePr.name θ = 1 θ = 2 θ = 3 θ = 4 θ = 5
|S × T | 10,407,076 10,407,076 10,407,076 10,407,076 10,407,076
|L| 616,968 1,104,644 1,583,148 2,054,284 2,513,802
|N | 4,196 4,720 9,278 38,728 153,402
|A| 4,092 4,153 4,215 4,331 4,495

RR(%) 99.96 99.95 99.91 99.63 95.53

ABT.description θ = 1 θ = 2 θ = 3 θ = 4 θ = 5
|S × T | 1,168,561 1,168,561 1,168,561 1,168,561 1,168,561
|L| 22,145 38,879 55,297 72,031 88,299
|N | 1,131 1,193 1,247 1,319 1,457
|A| 1,087 1,125 1,135 1,173 1,189

RR(%) 99.90 99.90 99.89 99.88 99.87

5 Related Work

Our work is mostly related to the rapid execution of similarity functions and
link discovery. Time-efficient string comparison algorithms such as PPJoin+ [24],
EDJoin [23], PassJoin [12] and TrieJoin [6] were developed for the purpose of
entity resolution and were integrated into frameworks such as LIMES [15]. In
addition to time-efficient string similarity computation approaches for entity res-
olution, approaches for the efficient computation string and numeric similarities
were developed in the area of link discovery. For example, [16] presents an ap-
proach based on the Cauchy-Schwarz inequality. The approaches HYPPO [13]
and HR3 [14] rely on space tiling in spaces with measures that can be split into
independent measures across the dimensions of the problem at hand. Especially,
HR3 was shown to be the first approach that can achieve a relative reduction
ratio r′ less or equal to any given relative reduction ratio r > 1. Another way to
go about computing R(S, T, δ, θ) lies in the use of lossless blocking approaches
such MultiBlock [7].

Manifold approaches have been developed on string similarity learning (see,
e.g., [19, 4, 3, 2]). [4] for example learns edit distances by employing batch learn-

Table 4. Results for the combination of ACIDS and REEDED. The runtimes in the 2
rows at the bottom are in seconds.

DBLP–ACM DBLP–Scholar ABT–Buy

Labeled examples 20 40 20 40 20 40
F-score (%) 88.98 97.92 70.22 87.85 0.40 0.60
Precision (%) 96.71 96.87 64.73 91.88 0.20 0.30
Recall (%) 82.40 99.00 76.72 84.16 100.00 100.00
Without REEDED 27,108 26,316 30,420 30,096 44,172 43,236
With REEDED 14.25 14.24 668.62 668.62 13.03 65.21

ing and SVMs to record deduplication and points out that domain-specific simi-
larities can improve the quality of classifiers. [3, 2] rely on a theory for good edit
distances developed by [1] to determine classifiers based on edit distances that
are guaranteed to remain under a given classification error. Yet, to the best of
our knowledge, REEDED is the first approach for the time-efficient execution of
weighted edit distances.

6 Conclusion

In this paper we presented REEDED, an approach for the time-efficient com-
parison of sets using weighted distances. After presenting the intuitions behind
our approach, we proved that it is both correct and complete. We compared our
approach with an extension of PassJoin for weighted edit distances and showed
that we are more than an order of magnitude faster on 4 different data sets.
REEDED is the cornerstone of a larger research agenda. As it enable to now
run weighted edit distances on large datasets within acceptable times, it is also
the key to developing active learning systems for link discovery that do not only
learn link specifications but also similarity measures directly out of the data.
As shown in [21], this combination promises to outperform the state of the art,
which has relied on standard measures so far. In future work, we will thus com-
bine REEDED with specification learning approaches such as EAGLE [18] and
RAVEN [17] and study the effect of weighted edit distances on these approaches.

References

1. Maria-Florina Balcan, Avrim Blum, and Nathan Srebro. Improved guarantees for
learning via similarity functions. In COLT, pages 287–298, 2008.

2. Aurélien Bellet, Amaury Habrard, and Marc Sebban. Good edit similarity learning
by loss minimization. Machine Learning, 89(1-2):5–35, 2012.

3. Aurlien Bellet, Amaury Habrard, and Marc Sebban. Learning good edit similarities
with generalization guarantees. In Proceedings of the ECML/PKDD 2011, 2011.

4. Mikhail Bilenko and Raymond J. Mooney. Adaptive duplicate detection using
learnable string similarity measures. In KDD, pages 39–48, 2003.

5. Peter Christen. Febrl: a freely available record linkage system with a graphical
user interface. In Proceedings of the second Australasian workshop on Health data
and knowledge management - Volume 80, HDKM ’08, pages 17–25, Darlinghurst,
Australia, Australia, 2008. Australian Computer Society, Inc.

6. Jianhua Feng, Jiannan Wang, and Guoliang Li. Trie-join: a trie-based method for
efficient string similarity joins. The VLDB Journal, 21(4):437–461, August 2012.

7. Robert Isele, Anja Jentzsch, and Christian Bizer. Efficient Multidimensional Block-
ing for Link Discovery without losing Recall. In WebDB, 2011.

8. Mark D. Kernighan, Kenneth Ward Church, and William A. Gale. A spelling
correction program based on a noisy channel model. In COLING, pages 205–210,
1990.

9. Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of entity resolution
approaches on real-world match problems. PVLDB, 3(1):484–493, 2010.

10. S. Kurtz. Approximate string searching under weighted edit distance. In Proc.
WSP, volume 96, pages 156–170. Citeseer, 1996.

11. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Doklady Akademii Nauk SSSR 163 (4), pages 845–848, 1965.

12. Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua Feng. Pass-join: a partition-
based method for similarity joins. Proc. VLDB Endow., 5(3):253–264, November
2011.

13. Axel-Cyrille Ngonga Ngomo. A Time-Efficient Hybrid Approach to Link Discovery.
In OM, 2011.

14. Axel-Cyrille Ngonga Ngomo. Link Discovery with Guaranteed Reduction Ratio in
Affine Spaces with Minkowski Measures. In ISWC, pages 378–393, 2012.

15. Axel-Cyrille Ngonga Ngomo. On Link Discovery using a Hybrid Approach. Journal
on Data Semantics, 1:203 – 217, 2012.

16. Axel-Cyrille Ngonga Ngomo and Sören Auer. LIMES - A Time-Efficient Approach
for Large-Scale Link Discovery on the Web of Data. In IJCAI, pages 2312–2317,
2011.

17. Axel-Cyrille Ngonga Ngomo, Jens Lehmann, Sören Auer, and Konrad Höffner.
RAVEN – Active Learning of Link Specifications. In Sixth International Ontology
Matching Workshop, 2011.

18. Axel-Cyrille Ngonga Ngomo and Klaus Lyko. Eagle: Efficient active learning of
link specifications using genetic programming. In Proceedings of ESWC, 2012.

19. E. S. Ristad and P. N. Yianilos. Learning string-edit distance. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 20(5):522–532, 1998.

20. Pavel Shvaiko and Jérôme Euzenat. Ontology matching: State of the art and future
challenges. IEEE Trans. Knowl. Data Eng., 25(1):158–176, 2013.

21. Tommaso Soru and Axel-Cyrille Ngonga Ngomo. Active learning of domain-specific
distances for link discovery. In Proceedings of JIST, 2012.

22. William E. Winkler. Overview of record linkage and current research directions.
Technical report, BUREAU OF THE CENSUS, 2006.

23. Chuan Xiao, Wei Wang, and Xuemin Lin. Ed-Join: an efficient algorithm for
similarity joins with edit distance constraints. PVLDB, 1(1):933–944, 2008.

24. Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. Efficient similarity joins
for near duplicate detection. In WWW, pages 131–140, 2008.

To repair or not to repair: reconciling correctness
and coherence in ontology reference alignments

Catia Pesquita1, Daniel Faria1, Emanuel Santos1, and Francisco M. Couto1

1Dept. de Informática, Faculdade de Ciências, Universidade de Lisboa, Portugal
cpesquita@di.fc.ul.pt

Abstract. A recent development in the field of ontology matching is
the alignment repair process, whereby mappings that lead to unsatisfi-
able classes are removed to ensure that the final alignment is coherent.
This process was showcased in the Large Biomedical Ontologies track
of OAEI 2012, where two repair systems (ALCOMO and LogMap) were
used to create separate coherent reference alignments from the original
alignment based on the UMLS metathesaurus. In 2013, the OAEI intro-
duced new reference alignments for this track, created by using the two
repair systems in conjunction and manual curation when necessary. In
this paper, we present the results of a manual analysis of the OAEI 2013
Large Biomedical Ontologies reference alignments, focused on evaluat-
ing the equivalence mappings removed by the repair process as well as
those that were replaced by subsumption mappings. We found that up to
two-thirds of the removed mappings were correct and that over 90% of
the analyzed subsumption mappings were incorrect, since in most cases
the correct type of relation was the original equivalence. We discuss the
impact that disregarding correctness to ensure coherence can have on
practical ontology matching applications, as well as on the evaluation of
ontology matching systems.

Keywords: Ontology Matching, Alignment Repair, Reference Align-
ment, Biomedical Ontologies

1 Introduction

With ontologies growing in size and complexity, the interest in efficient and effec-
tive matching methods capable of handling large and heterogeneous ontologies
is also on the rise. This is evidenced by the recent introduction of the Large
Biomedical Ontologies track in the Ontology Alignment Evaluation Initiative
(OAEI) [1], currently the major benchmark for ontology alignment evaluation
[2].
The OAEI large biomedical track consists of finding alignments between the
Foundational Model of Anatomy (FMA)[3], SNOMED CT [4], and the National
Cancer Institute Thesaurus (NCI) [5]. These ontologies are semantically rich and
contain tens of thousands of classes.
However, evaluating the matching of very large ontologies is in itself a recognized

2 Pesquita et. al

challenge [6], since the most common type of ontology matching evaluation relies
on the comparison of an alignment produced by an ontology matching system
against a reference alignment. For smaller ontologies, reference alignments are
manually built, and can then be subject to debugging and quality checking
steps [7, 8]. However for very large ontologies this is unfeasible since the number
of mappings that need to be manually evaluated grows quadratically with the
number of classes in an ontology. Even if some heuristics are used to reduce the
search space, the human effort is still too demanding, especially when we are
facing ontologies with tens or even hundreds of thousands of classes [9].
Consequently, efforts have been made to create reference alignments in an auto-
mated or semi-automated fashion [9–11]. One possible strategy to achieve this
is based on existing resources from which the reference alignment can be de-
rived. For the three tasks in the large biomedical track in OAEI, the reference
alignments were created by processing UMLS metathesaurus entries. UMLS com-
bines expert assessment with automated methods to connect classes from distinct
biomedical ontologies and thesaurii according to their meaning.
However, the produced reference alignments lead to a considerable number of
unsatisfiable classes when they are integrated with the input ontologies, and
while the integration of FMA with NCI generates only 655 unsatisfiable classes,
the integration of SNOMED CT and NCI leads to more than 20,000 unsatisfi-
able classes [12]. To address this issue, in OAEI 2012, in addition to the original
reference alignment, two additional references were created by employing two
different techniques to repair the logical inconsistencies of the original align-
ment, ALCOMO [13] and the repair facility of the ontology matching system
LogMap [14, 10] (LogMap-Repair).
Ensuring that the alignment between two ontologies is coherent, i.e., that no
class or property is unsatisfiable, has recently become a major focus for ontol-
ogy matching. This is especially relevant when matching very large ontologies,
which typically produce more unsatisfiable classes. To ensure the coherence of
the alignment, a system needs to first detect the incoherencies and then repair
them, by removing or altering them, in order to improve the coherent alignment
with minimum intervention. However, different repair methods can produce dif-
ferent alignments. For instance, Figure 1 depicts three conflicting mappings in
the original UMLS reference alignment for FMA-NCI. Each system removed two
mappings to solve the inconsistencies caused by the disjoint clauses in NCI, but
while ALCOMO removed mappings 2 and 3, LogMap removed 1 and 3. In this
case, mapping 2 is correct. However the systems have no way of inferring this
from the ontologies and alignment, since there are no mappings between the
superclasses. For instance, if Anatomy Kind was mapped to Anatomical Entity,
then this information could be used to disambiguate between Gingiva and Gum.
The application of these techniques reduced the number of unsatisfiable classes
to a few [1]. However, this automated process for repair is rather agressive, re-
moving a significant number of mappings (up to 10%). In an effort to counteract
this, in OAEI 2013, the three reference alignments were refined by using the two
repair systems in conjunction and manual curation when necessary to ensure all

IT486
Rectangle

Reconciling correctness and coherence in ontology reference alignments 3

�������������� ��	

����	���������� ���	�������������������
����	������

��������

��������������
��������������

�
�

�

����� ����!���

���"������

	������

#$

%�&

�

�

�

��	����'��'(��$��

��	����'��'
(�)$)

��	����'��'����

Fig. 1: An example of different repairs made by LogMap and ALCOMO

inconsistencies were solved. This resulted in more complete and fully coherent
reference alignments (see Table 1).

Table 1: Reference alignment sizes

Task Original LogMap 2012 ALCOMO 2012 Repaired 2013

FMA-NCI 3,024 2,898 2,819 2,931 (13 <, 28 >)

FMA-SNOMED 9,008 8,111 8,132 8,941 (670 <)

SNOMED-NCI 18,844 18,324 N.A. 18,476 (7 <, 540 >)

> and < indicate subsumption mappings

One of the strategies employed to achieve coherence and decrease the num-
ber of removed mappings is provided by LogMap. LogMap splits the equivalence
mappings into two subsumption mappings and keeps the one that does not vio-
late any logical constraints. This however, may result in mappings that do not
reflect the real relationship between classes. Taking again as an example Figure
1, in the repaired alignment in OAEI 2013 all three mappings were replaced by
subsumptions: FMA:Gingiva > NCI:Gingival, FMA:Gingiva > NCI:Gingiva and
FMA:Gingiva > NCI:Gum. With this solution, the alignment becomes coherent
since the relation is directional and the inconsistency is only caused by the dis-
joint clauses in NCI. However, none of the mappings are correct.
These examples showcase that: 1) different repair techniques produce different
repaired alignments; and 2) that solving inconsistencies with subsumption map-
pings can result in an erroneous alignment. In this paper, we discuss the results
of a manual analysis of the OAEI Large Biomedical track reference alignments.
We focused our analysis on the differences between the original UMLS and the
repaired alignments, in particular on the removed mappings and the ones al-

IT486
Rectangle

4 Pesquita et. al

tered to subsumptions. We also investigated the influence of using the same
repair technique to repair both the matching result and to repair the reference
alignment.
The paper is organized as follows: Section 2 describes how we conducted our
evaluation, Section 3 presents and discusses the evaluation; and finally Section
4 proposes future alternatives for the discussed issues.

2 Methods

To compare the repaired alignments of OAEI 2013 against the original UMLS,
we manually evaluated all 41 subsumption mappings in FMA-NCI and 100 ran-
domly chosen subsumption mappings of both FMA-SNOMED and SNOMED-
NCI. The evaluation was conducted by two researchers with a biomedical back-
ground. We classified each mapping as: correct, incorrect or debatable. We con-
sider mappings correct, not based on their compliance with ontological con-
straints, but based on their depiction of a real existing relation. For instance, we
consider the FMA-NCI mappings between Visceral Pleura, Lung and Thoracic
Cavity to be correct even if their integration with the ontologies leads to unsat-
isfiable classes.
Furthermore, we discerned between mappings where the right relationship would
have been equivalence, from those that would have been incorrect with either a
subsumption or an equivalence relation. We chose to include a debatable category
for those mappings that raised disagreement between the experts, or that they
deemed subject to interpretation. For instance, the mappings FMA:Hormone to
NCI:Therapeutic Hormone or SNOMED:Child to NCI:Children.
Our manual evaluation also included the verification of all removed mappings
in FMA-NCI and FMA-SNOMED, and of 100 randomly chosen mappings in
SNOMED-NCI. These were also classified into the three above-mentioned cat-
egories. In addition, we also repaired the original reference alignment with our
novel repair technique (AML-Repair) [15] and evaluated the removed mappings.

3 Results and Discussion

Table 2 shows the results of our manual evaluation of the mappings removed or
altered from equivalence to subsumption in the repair of the OAEI 2013 Large
Biomedical reference alignments. Please note that for the sake of calculating
statistics we chose to ignore the debatable removals and alterations.
For FMA-NCI the removal of equivalence mappings is quite successful, with
60 out of 87 removed mappings being correctly so. However, in SNOMED-NCI
only half of the mappings were correctly removed, while in FMA-SNOMED this
dropped to only 19 out of 65. Regarding the alteration of the mapping relation
from equivalence to subsumption, the results are even poorer if more homoge-
neous between tasks, with 80 to 95% of the alterations being incorrect. Taking
into account both removals and alterations, the percentage of correct reparations

IT486
Rectangle

Reconciling correctness and coherence in ontology reference alignments 5

ranges from 13% in FMA-SNOMED to 54% in FMA-NCI. Furthermore, consid-
ering that the majority of the mappings altered to subsumption by the OAEI
2013 repair are actually equivalences, these alterations do not actually improve
the practical quality of the alignment, they just allow the alignment to become
coherent without removing the mappings.
To complement this analysis we also repaired the original UMLS reference align-
ments with our own repair technique (AML-Repair). Compared to the OAEI
2013 repair, AML-Repair makes far more incorrect removals (see Table 3). How-
ever, when both removal and alteration are taken into account, AML has a higher
percentage of correct repairs in both FMA-SNOMED and SNOMED-NCI.

Table 2: Evaluation of the OAEI 2013 Repair in the Large Biomedical Ontologies track

Equivalence removal Alteration to subsumption

Task Correct ? Incorrect Correct ? Incorrect Total correct

FMA-NCI 60 6 27 8 3 30 (26) 54.4 %

FMA-SNOMED 19 1 46 2 5 93 (73) 13.1 %

SNOMED-NCI 42 16 42 4 5 91 (73) 25.7 %

?: Debatable mapping. Numbers in () correspond to mappings where the correct
relation is equivalence.

Table 3: Evaluation of AML-Repair in the Large Biomedical Ontologies track

Equivalence removal

Task Size Correct ? Incorrect Total correct

FMA-NCI 2901 48 11 54 47.1%

FMA-SNOMED 8349 19 0 81 19%

SNOMED-NCI 18065 43 6 51 45.7%

?: Debatable mapping.

These results mean that a large percentage of the removed or altered map-
pings were correct and that both repair techniques are in fact too aggressive.
A fundamental issue here is that different ontologies can have different models
of the same subject, and as such, a set of mappings that should be considered
correct can render some classes unsatisfiable when the alignment is integrated
with the ontologies. For instance, consider the mappings FMA:Fibrillar Actin =
NCI:F-actin and FMA:Actin = NCI:Actin. Both mappings could be considered
correct, but when they are integrated with the ontologies they cause an incon-
sistency. Figure 2 illustrates this issue. Since in FMA F-actin is a subclass of

IT486
Rectangle

6 Pesquita et. al

Actin and in NCI it is a subclass of Actin Fillament which is disjoint with Actin,
the two mappings are in conflict. However, from the biomedical perspective it is
arguable that both mappings are correct: F-Actin is the polymer microfilament
form of Actin. The OAEI 2013 repair technique solves this issue by changing the
relation type in the FMA:Actin=NCI:Actin mapping to subsumption. Since the
only constraints violated by the mapping reside in the NCI ontology, by making
the mapping one-way, this strategy restores the coherence to the alignment. How-
ever, FMA:Actin > NCI:Actin does not represent the true relationship between
these classes, which is equivalence.

����� ���	�

�	������������

����������������	����	��������
��	����������

������	�����

��������������

�������
���

�������

���

� !

���	�"�
�������	�����������"�

�����

 �

�����
���

##############################�
����	�
����

Fig. 2: Two correct mappings causing an inconsistency

So the question is: when creating a reference alignment through automated
methods, what is best, an incomplete but coherent reference alignment, or a
complete but incoherent one? The answer, we think, depends on the application
of the alignment. If the final goal of creating an alignment is to support the
integration of two ontologies, then it is necessary to ensure coherence, so that
the derived ontology is logically correct and supports reasoning. However, if the
goal is supporting the establishment of cross-references between the ontologies to
allow navigation between them, then an alignment that does not support linking
FMA:Actin to NCI:Actin or reduces the relation to a subsumption would pre-
vent a user from reaching the information that actin plays a role in cell motility.
One of the underlying problems is that the existing repair techniques are not
guaranteed to remove the incorrect mappings and may erroneously remove cor-
rect mappings. The reason for this is that the premise of removing the minimum
number of mappings possible (either locally or globally) can fail in cases where
there are as many or more incorrect mappings than correct mappings leading to
unsatisfiable classes. Indeed, this is exemplified in Figure 1, where ALCOMO er-
roneously removed the correct mapping. If we evaluated an alignment containing

IT486
Rectangle

Reconciling correctness and coherence in ontology reference alignments 7

the correct mapping and not the incorrect ones against the ALCOMO-repaired
reference, the alignment would be penalized twice: first for having a mapping not
present in the reference, and second for not including the erroneous mapping.
This means that, even if the true alignment between two ontologies is coherent,
by employing an automated repair technique to create a coherent reference align-
ment we risk excluding correct mappings, and thus providing a more misleading
evaluation than if we used the unrepaired reference alignment.
This problem is amplified by the fact that two repair techniques may remove
different mappings and arrive at different coherent alignments of comparable
size, as exemplified in Figure 1. Without knowing the true alignment, it is im-
possible to assess which repair technique produces the more correct alignment.
However, if the differences between the techniques are statistically significant, in
choosing one technique to repair the reference alignment we may bias the evalu-
ation towards that technique. More concretely, if two matching systems produce
a similar unrepaired algorithm but use different repair techniques, the one that
uses the same repair technique used to repair the reference alignment is likely to
produce better results. This is illustrated in Figure 3, which shows two different
repairs with techniques 1 and 2 of the same original reference alignment (A).
When technique 1 is used to repair the alignment produced by a matching sys-
tem, its overlap with the reference alignment repaired by 1 (B) is considerable
greater than its overlap with the reference alignment repaired by 2 (C).

Table 4: McNemar’s exact test for differences between alignments

Task ALCOMO - LogMap-Repair OAEI 2013 Repair - AML-Repair

FMA-NCI 2.80E-4 9.01E-4

FMA-SNOMED 2.97E-09 <1.00E-15

SNOMED-NCI <1.00E-15 2.08E-08

Values shown are two-sided exact p-values

A related work argued that the differences between repair techniques were
on average negligible, by comparing the results of applying LogMap-Repair and
ALCOMO to the top three systems that participated in the Large Biomedical
track of OAEI 2012 [16]. Although the differences between the repair techniques
were indeed generally small in percentage, they reflect differences in tens or even
hundreds of mappings and can be significant in the context of the OAEI com-
petition.
To demonstrate that the alignments produced by different repair techniques are
statistically different, we performed a McNemar’s exact test [17] comparing two
sets of reference alignments: the OAEI 2012 reference alignments repaired by
LogMap and ALCOMO, and the OAEI 2013 reference alignment with the origi-
nal UMLS reference alignment repaired by AML-Repair. LogMap and ALCOMO

IT486
Rectangle

8 Pesquita et. al

disagree over 177 mappings and UMLS original and repaired differ in 78 map-
pings. The results in Table 4 show that there is indeed a statistical difference
between these sets of alignments, as the p-values obtained are clearly below the
lowest significance intervals typically considered (0.01).
To empirically test the possibility that the repair technique selected to repair
the reference alignment may lead to a bias in evaluation, we produced simple
lexical-based alignments for the three tasks of the Large Biomedical Ontolo-
gies (by using AML on the small overlapping ontology fragments [18]). Then,
we repaired these alignments using either LogMap-Repair or AML-Repair, and
evaluated the repaired alignments against a set of reference alignments: original
(UMLS unrepaired), LogMap-Repair (the original repaired with LogMap, as pro-
vided in OAEI 2012), and AML-Repair (the original repaired with AML-repair).
The results of this evaluation are shown in Table 5. With the sole exception of
the AML + LogMap-Repair in the FMA-SNOMED task, the best evaluation
results in each task were obtained when the repair technique used to repair the
alignment was the same that was used in the reference. Although the differences
between the various reference alignments were relatively small (usually below
1%) they are not irrelevant from the perspective of the OAEI evaluation, as the
differences between matching systems are often in this range. Thus, the repair
technique used to repair the reference alignment can indeed lead to a biased
evaluation. What is more, this encourages systems competing in OAEI to adopt
existing repair techniques, rather than try to develop novel and potentially better
alternatives.

Fig. 3: Comparing a repaired alignment with two different repaired references

We posit that a reference alignment for evaluating ontology matching sys-
tems should not exclude potentially correct alignments. As we have shown in
Figure 2, it is possible that the true alignment between two ontologies is not
coherent. In such cases, repairing the alignment should only be considered if the

IT486
Rectangle

Reconciling correctness and coherence in ontology reference alignments 9

Table 5: Influence of different repair techniques on the evaluation of matching systems

Reference Precision Recall F-measure Size Correct Reference

AML + AML-Repair (FMA vs NCI small)

Original 96.9% 78.8% 87.4% 2457 2382 3024

LogMap-Repair 95.2% 80.7% 87.7% 2457 2339 2898

AML-Repair 95.9% 81.2% 88.2% 2457 2356 2901

AML + LogMap-Repair (FMA vs NCI small)

Original 96.8% 78.8% 87.4% 2461 2383 3024

LogMap-Repair 95.4% 81% 87.9% 2461 2347 2898

AML-Repair 95.2% 80.8% 87.7% 2461 2343 2901

AML + AML-Repair (FMA vs SNOMED small)

Original 95.2% 65.4% 78.9% 6187 5889 9008

LogMap-Repair 86.1% 65.7% 75.2% 6187 5329 8111

AML-Repair 93.2% 69% 80.2% 6187 5764 8349

AML + LogMap-Repair (FMA vs SNOMED small)

Original 94.9% 66.4% 79.4% 6298 5978 9008

LogMap-Repair 86.4% 67.1% 76.1% 6298 5439 8111

AML-Repair 89.9% 67.8% 78.1% 6298 5660 8349

AML + AML-Repair (SNOMED vs NCI small)

Original 92.6% 60.4% 74.8% 12305 11390 18844

LogMap-Repair 91.6% 61.5% 75.1% 12305 11275 18324

AML-Repair 91.5% 62.3% 75.5% 12305 11255 18065

AML + LogMap-Repair (SNOMED vs NCI small)

Original 92.6% 61.3% 75.3% 12474 11550 18844

LogMap-Repair 91.7% 62.4% 75.7% 12474 11439 18324

AML-Repair 90.7% 62.6% 75.4% 12474 11312 18065

Best F-score values in bold face

IT486
Rectangle

10 Pesquita et. al

ontologies are to be merged into an integrated resource, as otherwise repairing
it implies losing correct mappings. However, even in the cases where the true
alignment between two ontologies is expected to be coherent, the use of auto-
matic repair techniques to build a reference alignment is likely to lead to the
loss of some correct mappings. Penalizing a system that finds true hard-to-find
mappings because these happened to be removed during the repair of the refer-
ence alignment is certainly not desirable. The OAEI 2013 reference alignments
attempt to minimize the number of mappings removed while still maintaining
coherence by replacing equivalence relations with subsumption relations where
necessary. But as we have shown, only a small fraction of these relationships
are correct as subsumptions. In most cases, the original equivalence relation was
correct, and in some other cases the mappings should not exist at all.
On the other hand, using the original (unrepaired) reference alignments is not
without issues because these do contain erroneous mappings. Going back to the
example in Figure 1, a system that finds only the correct mapping would get
a worst result than a system that found the two incorrect mappings if it were
evaluated with the original reference alignment. The same would also be true if
the system were evaluated with the OAEI 2013 reference alignment, as all three
mappings are present in this alignment in the form of subsumptions (assuming
the evaluation only considers the presence/absence of mappings and not their
relationships).
We propose that a more impartial evaluation could benefit from the fact that
existing alignment repair algorithms compute the sets of conflicting mappings
as part of their process. Mappings within these sets would be tagged as uncer-
tain, and their presence or absence in the evaluated alignments would not be
taken into account when calculating performance metrics. A similar approach
has been proposed for cases where only a fraction of the possible mappings have
been manually evaluated [19]. Coupling this approach with a satisfiability check
on the alignment would allow a more impartial evaluation w.r.t. the repair ap-
proach chosen by the matching systems. To illustrate this we have evaluated the
AML, AML+AML-Repair and AML+LogMap-Repair alignments for FMA-NCI
against an unbiased reference alignment where all conflicting mappings (due to
disjointness clauses) have been identified and their presence or absence is not
considered in the evaluation. Table 6 presents these results, showing that re-
paired alignments have a higher precision without losing recall.

Table 6: Evaluaton of different repair techniques against an unbiased reference

Repair Technique Precision Recall F-measure Size Correct Reference

No Repair 95.2% 81.8% 88.2% 1845 1756 2147

AML-Repair 95.9% 81.8% 88.6% 1831 1756 2147

LogMap-Repair 95.7% 81.8% 88.5% 1834 1756 2147

Size and Reference do not include uncertain mappings.

IT486
Rectangle

Reconciling correctness and coherence in ontology reference alignments 11

4 Conclusions

As ontologies become more prevalent, large and complex, so must ontology
matching systems evolve and with them their evaluation strategies. A recent
step in this direction has been the introduction of the large biomedical track
in OAEI 2012, where the reference was automatically created by processing an
external set of integrated vocabularies and then taking this unrefined alignment
and repairing it to diminish its incoherence.
We have found that the repair technique employed to create the OAEI 2013
reference alignment, although less aggressive than the ones used in 2012, still
removes a considerable portion of correct mappings and incorrectly alters equiv-
alence mappings to subsumptions. Furthermore, we have shown that alignments
repaired with different techniques are significantly different, which can have an
impact on the evaluation of ontology matching systems. To decrease the impact
of these issues on the evaluation of ontology matching systems, we have proposed
an alternative for the evaluation of repaired alignments, where the presence or
absence of conflicting mappings is not accounted for. We consider that an align-
ment between two ontologies should enforce coherence, when the advantages
of doing so outweigh the disadvantages, which depends on the application of
the alignment and on the ontologies themselves. For instance, if the goal of an
alignment is to support integration, then coherence is paramount. However, if
the alignment is only intended to support a “lighter” connection between the
ontologies (e.g., cross-references), then coverage is likely more relevant than co-
herence, especially if we consider the error rates of repair techniques. Moreover,
when ontologies do not model conflicting views of their domain, then a fruitful
alignment between them should be coherent, and ensuring coherence can be a
crucial step in filtering out errors. However, when ontologies have incompatible
ontological models, their complete integration is impossible and enforcing coher-
ence in their alignment will necessarily remove or alter correct mappings.
How to best integrate ontologies with conflicting views is still a debated question
[20], and in some cases the goal might not even be a full-fledged integration. We
agree with the opinion expressed in [21] that to solve inherent incompatibilities
between ontologies, expert intervention is necessary. However, some incompat-
ibilities are unsolvable, and consequently a full coherent integration of the on-
tologies is impossible. To promote the usefulness of the alignments there should
be room for alignments to contain mappings that violate constraints but are
ultimately relevant. A next logical step is to investigate the best approach to
support the encoding of these conflicts in the alignment.

Acknowledgements

DF, CP, ES and FMC were funded by the Portuguese FCT through the SOMER
project (PTDC/EIA-EIA/119119/2010) and the multi-annual funding program
to LASIGE. CP was funded by the FLAD-NSF 2013 Programme under the
project “Turning Big Data into Smart Data”.

IT486
Rectangle

12 Pesquita et. al

References

1. Eckert, K., Ferrara, A., Hollink, L., Meilicke, C., Nikolov, A., Ritze, D., Shvaiko, P.,
Grau, B.C., Zapilko, B.: Results of the Ontology Alignment Evaluation Initiative
2012. (2012) 73–115

2. Euzenat, J., Meilicke, C., Stuckenschmidt, H.: Ontology Alignment Evaluation
Initiative : six years of experience. Volume 6720. (2011)

3. Rosse, C., Jr, L.V.M.: A reference ontology for biomedical informatics : the Foun-
dational Model of Anatomy. Journal of Biomedical Informatics 36 (2003) 478–500

4. Schulz, S., Cornet, R., Spackman, K.: Consolidating SNOMED CT’s ontological
commitment. Applied Ontology 6 (2011) 1–11

5. Golbeck, J., Fragoso, G.: The National Cancer Institute’s thesaurus and ontology.
Web Semantics: Science, Services and Agents on the World Wide Web (2011)

6. Shvaiko, P., Euzenat, J.: Ontology Matching: State of the Art and Future Chal-
lenges. IEEE Transactions on Knowledge and Data Engineering 25(1) (January
2013) 158–176

7. Lambrix, P., Ivanova, V.: A unified approach for debugging is-a structure and
mappings in networked taxonomies. Journal of Biomedical Semantics 4(1) (2013)

8. Beisswanger, E., Hahn, U.: Towards valid and reusable reference alignments - ten
basic quality checks for ontology alignments and their application to three different
reference data sets. Journal of Biomedical Semantics 3 Suppl 1 (2012) S4

9. Giunchiglia, F., Yatskevich, M., Avesani, P., Shvaiko, P.: A large scale dataset for
the evaluation of matching systems. Knowledge Eng. Review (January) (2009)

10. Jiménez-Ruiz, E., Grau, B., Zhou, Y., Horrocks, I.: Large-scale Interactive Ontol-
ogy Matching: Algorithms and Implementation. ECAI (ii) (2012) 444–449

11. Rosoiu, M., dos Santos, C., Euzenat, J.: Ontology matching benchmarks: genera-
tion and evaluation. In: 6th ISWC workshop on ontology matching (OM). (2011)

12. Jiménez-Ruiz, E., Grau, B.C., Horrocks, I.: Exploiting the UMLS Metathesaurus
in the Ontology Alignment Evaluation Initiative. E-LKR Workshop (2012) 1–6

13. Meilicke, C.: Alignment incoherence in ontology matching. PhD thesis, University
of Mannheim (2011)

14. Jiménez-Ruiz, E., Grau, B.: Logmap: Logic-based and scalable ontology matching.
The Semantic WebISWC 2011 (2011)

15. Santos, E., Faria, D., Pesquita, C., Couto, F.: Ontology alignment repair through
modularization and confidence-based heuristics. arXiv:1307.5322 (2013)

16. Jiménez-Ruiz, E., Meilicke, C., Grau, B., Horrocks, I.: Evaluating Mapping Repair
Systems with Large Biomedical Ontologies. In: 26th International Workshop on
Description Logics. (2013)

17. Liddell, F.D.: Simplified exact analysis of case-referent studies: matched pairs;
dichotomous exposure. Journal of Epidemiology and Community Health 37(1)
(1983) 82–84

18. Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, I., Couto, F.M.: The
AgreementMakerLight Ontology Matching System. In: ODBASE. (2013)

19. Autayeu, A., Maltese, V., Andrews, P.: Recommendations for better quality ontol-
ogy matching evaluations. In: AISB Workshop on Matching and Meaning. (2010)

20. Schulz, S., Rector, A., Rodrigues, J., Chute, C., Üstün, B., Spackman, K.:
Ontology-based convergence of medical terminologies: SNOMED CT and ICD-11.
In: eHealth2012. (2012) 89–94

21. Jiménez-Ruiz, E., Grau, B.C., Horrocks, I., Berlanga, R.: Logic-based assessment
of the compatibility of UMLS ontology sources. Journal of Biomedical Semantics
2 Suppl 1 (2011) S2

IT486
Rectangle

Unsupervised Learning of Link Specifications:
Deterministic vs. Non-Deterministic

Axel-Cyrille Ngonga Ngomo1 and Klaus Lyko1

Department of Computer Science
University of Leipzig

Johannisgasse 26, 04103 Leipzig
ngonga@informatik.uni-leipzig.de,

WWW home page: http://limes.sf.net

Abstract. Link Discovery has been shown to be of utter importance for
the Linked Data Web. In previous works, several supervised approaches
have been developed for learning link specifications out of labelled data.
Most recently, genetic programming has also been utilized to learn link
specifications in an unsupervised fashion by optimizing a parametrized
pseudo-F-measure. The questions underlying this evaluation paper are
twofold: First, how well do pseudo-F-measures predict the real accu-
racy of non-deterministic and deterministic approaches across different
types of datasets? Second, how do deterministic approaches compare to
non-deterministic approaches? To answer these questions, we evaluated
linear and Boolean classifiers against classifiers computed by using ge-
netic programming on six different data sets. We also studied the corre-
lation between two different pseudo-F-measures and the real F-measures
achieved by the classifiers at hand. Our evaluation suggests that pseudo-
F-measures behave differently on the synthetic and real data sets.

1 Introduction

Over the last years, the importance of Link Discovery (LD) as a research topic
has increased significantly. This increase was upheld mainly by the ever-growing
size of the Linked Data Web and the scalability and accuracy requirements it
brings about. The creation of links between knowledge bases, one of the most
important steps in the realization of the vision of the Linked Data Web has
profited from this boost of research and seen the development of several LD
frameworks and approaches [7, 2, 12, 11, 3]. Two main research focuses played a
role so far: (1) the determination of time-efficient algorithms [3, 7, 6] for LD and
(2) the development of approaches for the efficient computation of link specifi-
cations (also called linkage rules) [8, 4, 10, 9]. In most cases, supervised machine
learning approaches were used to tackle the second challenge of LD. Approaches
developed so far include batch learning using genetic programming [3], the com-
bination of active learning and of linear and Boolean classifiers [8] as well as
the combination of active learning and genetic programming [9]. In addition,
unsupervised approaches for learning link specifications have been recently de-
veloped [10]. While all these approaches have been shown to achieve good results,

unsupervised approaches obviously trump batch and active learning approaches
as they do not require any feedback from the user and can still achieve remark-
ably good performance. In addition, genetic programming approaches yield the
central advantage of being able to exploit the whole spectrum of the link speci-
fication grammar provided by the framework in which they were implemented.
So far, unsupervised approaches to the discovery of link specifications have only
been tested with artificially generated benchmark data and low-noise datasets.
Moreover, no deterministic approach for the unsupervised discovery of link spec-
ifications has been presented so far, although deterministic approaches such as
those presented in [8] counterbalance their limitations in expressiveness by being
clearly more time-efficient than approaches based on genetic programming.

The aim of this paper is to experimentally examine the unsupervised discov-
ery of link specifications with respect to two main questions:

1. Are deterministic approaches able to achieve results comparable to those of
genetic approaches? To address this question, we extended the approach
presented in [9] and devised an approach for the unsupervised learning of
Boolean and linear classifiers which is loosely based on the RAVEN ap-
proach [8]. We refrained from reusing the approach presented in [10] as one
of the pseudo-measures we rely on was designed especially to work well with
this approach. Consequently, using it could have led to a bias in our results.

2. How well are pseudo-F-measures suited for unsupervised discovery performed
on synthetic and real data sets? Here, we compared the results achieved
by the approaches above on the three OAEI 2010 datasets1 and on three
data sets extracted from real data2. In addition to the pseudo-F-measure
described in [10] (which we dub Fβ

u), we devised a supplementary pseudo-F-

measure Fβ
d which relies more on the standard definition of the Fβ-measure.

We performed a correlation analysis of the values of Fβ
u , Fβ

d and the F1

measure and detected a surprisingly different behaviour of these measures
across our two groups of data sets.

The rest of this paper is structured as follows: We first give an overview of the
approaches and measures we used for our experiments. We then present the
results of our experimental setup as well as the results of our experiments. For
the sake of reproducibility, we chose to use freely available datasets and made the
approaches presented herein freely available at the project website.3 We conclude
with a summary of the implications of our results for the LD community.

2 Approaches

In general, a link specification is a classifier C that assigns each element of the
set S×T to one of the classes of Y = {+1,−1}, where S is called the set of source

1 Freely available at http://oaei.ontologymatching.org/2010/.
2 Freely available at http://dbs.uni-leipzig.de/en/research/projects/object_

matching/fever/benchmark_datasets_for_entity_resolution.
3 http://saim.sf.net

instances, while T is the set of target instances. (s, t) ∈ S×T is considered by C
to be a correct link when C(s, t) = +1. Otherwise, (s, t) is considered not be a
potential link. We will assume that the classifier C relies on a complex similarity
function σ which consists of a combination of atomic similarity measure σi.
Each of the atomic similarity measures is associated with a parameter ωi, which
is used in main cases as threshold or weight for σi. Supervised approaches to the
computation of link specifications use labelled training data L ⊆ S × T × Y to
maximize an objective function such as the distance from the labelled data items
to the boundary of the classifier in the case of Support Vector Machines [1]. The
idea behind unsupervised approaches to learning link specifications is that they
do not to utilize any training data (i.e., L = ∅). Instead, they aim to optimize
an objective function F . In the following, we present the non-deterministic and
the deterministic approaches we utilized in our experiments. We then present
two different objective functions that are based on the well-know Fβ-measure.
These functions build the basis for our evaluation.

2.1 Non-Deterministic Approach

Algorithm 1 EAGLE

Require: Sets of instances S and T , size of population, number of iterations
Get property mapping (S, T)
Generate initial population
repeat

Compute F for all individuals.
Apply genetic operators to population

until Number of iterations is reached
return Overall fittest individual

The non-deterministic approach we evaluated is based on the EAGLE ap-
proach presented in [9] and implemented in the LIMES framework [8]. The ap-
proach was modified as described in Algorithm 1. We begin by generating a
random population of n individuals. Let Gt be the population at the iteration
t. To evolve a population to the generation Gt+1, the fitness of each individ-
uals gt ∈ Gt is computed. For this purpose, the mapping M(gt) generated by
gt is evaluated and the value F(M(gt)) is assigned to gt. These fitness values
build the basis for selecting individuals for the genetic operator reproduction.
EAGLE uses a tournament setting between two selected individuals to decide
which one is copied to the next generation gt+1. On randomly selected indi-
viduals the operator mutation is applied according to a probability called the
mutation rate. A mutation can affect an individual in three different ways: First,
it can alter the thresholds used by the individual. Second, a mutation can alter
the property values that are compared by one of the atomic measures on which
the classifier relies. Finally, mutations can modify the measures included in the

individuals. The third genetic operator, crossover, operates on two parent in-
dividuals and builds a new offspring by swapping two random sub-trees of the
parent genotypes. The application of these operators is carried out iteratively
until a maximal number of iterations is reached. The result of this process is
the mapping M that is returned by the best individual. M is postprocessed as
follows: Each s ∈ S such that ∃t ∈ T : (s, t) ∈ M is mapped to argmax

t∈T
σ(s, t).

The postprocessed mapping is finally returned.

2.2 Deterministic Approaches

Algorithm 2 EUCLID

Require: Specification of the datasets S and T
Require: Δω ∈]0, 1[
Require: γ > 1, θ > 0 with (γ, θ) ∈ N

2

Get property mapping (S, T)
bestClassifier = (1, . . . , 1)
Ω = ∅
for k = 0 → �1/Δω� do

Ω = Ω ∪ {1− kΔω}
end for
for i = 1 → n do

σmax
i = argmax

ω∈Ω,σi∈Σ
F(σi ≥ ω), ωmin

i = 0, ωmax
i = 1

end for
for iterations = 1 → θ do

Δ =
|ωmax

i −ωmin
i |

γ

C =
n

argmax
i=1

F(ωmin
i + kiΔ)

if F(C) > F(bestClassifier) then
C = bestClassifier

else
bestClassifier = C

end if
for j = 1 → n do

ωmin
j = max(0, ζj), ω

max
j = min(1, ζj)

end for
end for
return bestClassifier

Linear and Boolean classifiers have been shown in previous work [8] to also
achieve good results on the task of LD. Both types of classifiers can be char-
acterized by a similarity function σ which depends on similarity measures σi

and parameters ωi. Linear classifiers L classify (s, t) as belonging to +1 iff
n∑

i=1

ωiσi(s, t) ≥ 1. For Boolean classifiers B, the inequality
n∧

i=1

σi(s, t) ≥ ωi must

be fulfilled by the pair (s, t) for it belong to +1. In both cases, a classifier can
be encoded by the vector Ω = (ω1, . . . , ωn). Determining the best L or B would
require testing all possible combinations of values ωi ∈ [0, 1], which would be
impracticable. The idea behind our algorithm EUCLID (Efficient and Unsuper-
vised Classification for Link Discovery) is to reduce the number of configurations
that must be tested by applying a search within the search space whose granular-
ity increases gradually as described in Algorithm 2: We first begin by detecting
the right similarity measure for each pair of properties. To achieve this goal, we
use the similarity σmax

i = argmax
ω∈Ω,σi∈Σ

F(σi ≥ ω) for each pair of properties, where

F(σi ≥ ω) is the value of the pseudo-F-measure (PFM) of the classifier C0 such
that C0(s, t) = +1 ⇐⇒ σi(s, t) ≥ ω, Ω = {ω > 0 with ∃k ∈ N : ω = 1 − kΔω}
is a set of threshold values and Σ is the set of similarity measures implemented
by the framework at hand. Note that Δω is the first of the three parameters
required by EUCLID.

In a second step, we compute the actual link specification. Given two param-
eters γ > 1 and θ > 0, ωmin

i and ωmax
i are set to 0 and 1 respectively for each

of the similarities σi. Then the interval ωmin
i and ωmax

i is split into γ intervals
of the same size Δ = (|ωmax

i − ωmin
i |/γ. For each of the possible parametriza-

tion ωi = ωmin
i + kΔ, k ∈ {0, . . . , γ}, EUCLID simply runs all of the resulting

classifiers C and compute their fitness F(C). The current overall best classifier
C = (ζ1, . . . , ζn) is used as new reference point. ωi

min is set to max{0, ζi − Δ}
and ωi

max to min{ζi +Δ, 1} while γ := γ/2. This procedure is repeated θ times
and the best overall classifier w.r.t. F is returned.

3 Pseudo-F-measures

We considered two different PFMs for the automatic discovery of link specifica-
tions. The first PFM, dubbed Fβ

u , was proposed by [10] and is based on the Fβ

measure. Consequently, it is defined as

Fβ
u = (1 + β2)

PuRu

β2Pu +Ru
. (1)

Let M ⊆ S×T be a mapping generated by an algorithm, S be the set of source
instances and T be the set of target instances. Pu is defined as

Pu(M) =
|{s|∃t : (s, t) ∈ M}|∑
s
|{t : (s, t) ∈ M}| , (2)

while Ru is computed as follows:

Ru(M) =
|M |

min(|S|, |T |) . (3)

Note that Ru(M) can be larger than 1 as |M | can be larger than min(|S|, |T |).
While this does not occur in the setup proposed by [10], it seems rather counter-
intuitive that a recall measure can lead to values beyond 1. We thus specified

the following novel pseudo-recall dubbed Rd:

Rd(M) =
|{s|∃t : (s, t) ∈ M}|+ |{t|∃s : (s, t) ∈ M}|

|S|+ |T | . (4)

This pseudo-recall computes the ratio how well all source and target instances
are covered by the Mapping M . Thus, Rd(M) = 1 if every s ∈ S is mapped to
at least one t ∈ T and vice versa. We would argue that it is therewith more in
line with the original definition of precision and recall. Our pseudo-F-measure
Fd is thus defined as

Fβ
d (M) = (1 + β2)

Pd(M)Rd(M)

β2Pd(M) +Rd(M)
with Pd = Pu. (5)

4 Experiments and Results

The goal of our experiments was twofold. First, we wanted to know how deter-
ministic approaches perform in comparison to non-deterministic approaches for
the discovery of link specifications. The basic intuition here was that if deter-
ministic approaches can achieve F-scores similar to those of non-deterministic
approaches, they should be preferred as they are usually more time-efficient.
We thus compared the maximal F-measure achieved by each of our approaches
on the six different data sets at hand. Moreover, we wanted to measure how
well PFM can predict the real performance of classifiers. Especially, we were
interested in knowing whether the predictive power of pseudo-F-measures is as
reliable on real data as it has been shown to be on synthetic data. Within this
context, we were also interested in knowing which setting of β led to the best real
F-measure across the different datasets that we used, as β = 0.1 was suggested
in the past [10]. We thus ran our evaluation using both Fu and Fd for β-values
between 0.1 and 2.0 using a 0.1 increment. We used two different measures to
evaluate the correlation between PFM and F1. In the following, we present the
data, algorithmic parameters and correlation measures used for our experiments.
We then present our results and discuss their implications for the next steps of
research on link discovery.

4.1 Experimental Setup

In all experiments, we assumed that we knew the perfect mapping between the
properties. Each experiment was ran on a single thread of an Ubuntu Linux server
running JDK1.7 and was allocated maximally 2GB of RAM. The processors were
2.0GHz quadcore Opterons.

Data We ran our experiments on three synthetic and three real datasets. The
synthetic datasets consisted of widely used and well-known Persons1, Persons2
and Restaurant datasets from the OAEI2010 set of benchmark data sets. The real

datasets consisted of the ACM-DBLP, Amazon-Google and Abt-Buy datasets
that were extracted from websites or databases and for which a gold standard was
created manually as reported in [5]. The ACM-DBLP dataset consists of 2,617
source and 2,295 target publications (gold standard: 2,224 links). The Amazon-
Google dataset links 1,363 to 3,226 products (gold standard: 1,300 links). Finally,
the Abt-Buy dataset links 1,081 to 1,092 products via 1,097 correct links. All
non-RDF datasets were transformed into RDF and all attribute values were set
to lower case. Apart from this preprocessing, no other preprocessing step was
carried out.

Parametrization of the algorithms Four parameters need to be set to run
EAGLE: the number of iterations, the size of the population, the crossover rate
and the mutation rate. Similarly to [10], we used 20 iterations with a population
of 100 individuals. The crossover and mutation rates were set to 0.6. Given that
this approach is not deterministic, we ran the experiments 5 times and present
the average values in Section 4.2. Note that the standard deviations for the F-
measures were always under 5% of the average value. For EUCLID, we used
Δω = 0.1, γ = 4, θ = 10.

Correlation Measures To measure the accuracy of the algorithms, we used the
standard F1-measure. We were interested in determining whether the pseudo-F-
measures Fβ

u and Fβ
d can be used practically to predict the F1 measure achieved

by an algorithm and which setting of β was the best to achieve this goal. Thus,
we measured the correlation of Fβ

u and Fβ
d with F1 across different values of

β. We used two different correlation measures: The Pearson and the Spearman
correlation. We used the Pearson correlation to ensure the comparability of our
approach with other correlation studies as this correlation is one of the most
commonly used. The main drawback of the Pearson correlation is that it is most
reliable at detecting linear correlations between distributions. As there was no
reason for assuming a linear relationship between our measures, we opted to
also use another correlation measure that do not make any assumption upon
the type of correlation between the input distributions. We used the Spear-
man correlation [13], which assesses how well a monotonic function can describe
the relationship between the input distributions by comparing the ranks of the
values in the two input distribution. For both correlations, we used a 2-tailed
significance test with a confidence threshold of 95%.

4.2 Results

We first measured the F1-scores achieved by our approaches when relying on Fd

(see Figure 1) and Fu (see Figure 2). Our results indicate that EUCLID is in
general slightly superior to EAGLE. Note that the linear classifier in combination
with Fd even outperforms the supervised approaches presented in [5] and [9] on
the ACM-DBLP data set. In addition the linear model leads to better results
than the Boolean model in most cases (expect on the Restaurant dataset). Our

0.0 0.5 1.0 1.5 2.0

0.990

0.992

0.994

0.996

0.998

1.000

1.002

 FdPseudoLinear

 FdRealLinear

 FdPseudoBoolean

 FdRealBoolean

 FdPseudoGenetic

 FdRealGenetic

(a) Persons1

0.0 0.5 1.0 1.5 2.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
 FdPseudoLinear

 FdRealLinear

 FdPseudoBoolean

 FdRealBoolean

 FdPseudoGenetic

 FdRealGenetic

(b) Persons2

0.0 0.5 1.0 1.5 2.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 FdPseudoLinear

 FdRealLinear

 FdPseudoBoolean

 FdRealBoolean

 FdPseudoGenetic

 FdRealGenetic

(c) Restaurant

0.0 0.5 1.0 1.5 2.0

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

 FdPseudoLinear

 FdRealLinear

 FdPseudoBoolean

 FdRealBoolean

 FdPseudoGenetic

 FdRealGenetic

(d) ACM-DBLP

0.0 0.5 1.0 1.5 2.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 FdPseudoLinear

 FdRealLiner

 FdPseudoBoolean

 FdRealBoolean

 FdPseudoGenetic

 FdRealGenentic

(e) Amazon-Google

0.0 0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 FdPseudoLinear

 FdRealLinear

 FdPseudoBoolean

 FdRealBoolean

 FdPseudoGenetic

 FdRealGenetic

(f) Abt-Buy

Fig. 1. Evaluation of algorithms based on Fd. The y-axis shows the different F-
measures while the x-axis stands for different β-values. Note that “FdPseudo” stands
for the pseudo-F-measures achieved by the different classifiers while “FdReal” stands
for the real F-measures.

results suggest that Fd is better suited for EUCLID while Fu and Fd tie for
EAGLE. With respect to runtime, EUCLID requires between 2.5 and 30s and is
therewith between 1 and 2 orders of magnitude faster than EAGLE. Given the
significant different in runtimes we observed within our experiments, we suggest

0.0 0.5 1.0 1.5 2.0

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

 FuPseudoLinear

 FuRealLinear

 FuPseudoBoolean

 FuRealBoolean

 FuPseudoGenetic

 FuRealGenetic

(a) Persons1

0.0 0.5 1.0 1.5 2.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
 FuPseudoLinear

 FuRealLinear

 FuPseudoBoolean

 FuRealBoolean

 FuPseudoGenetic

 FuRealGenetic

(b) Persons2

0.0 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
 FuPseudoLinear

 FuRealLinear

 FuPseudoBoolean

 FuRealBoolean

 FuPseudoGenetic

 FuRealGenetic

(c) Restaurant

0.0 0.5 1.0 1.5 2.0

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

 FuPseudoLinear

 FuRealLinear

 FuPseudoBoolean

 FuRealBoolean

 FuPseudoGenetic

 FuRealGenetic

(d) ACM-DBLP

0.0 0.5 1.0 1.5 2.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 FuPseudoLinear

 FuRealLinear

 FuPseudoBoolean

 FuRealBoolean

 FuPseudoGenetic

 FuRealGenetic

(e) Amazon-Google

0.0 0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

 FuPseudoLinear

 FuRealLinear

 FuPseudoBoolean

 FuRealBoolean

 FuPseudoGenetic

 FuRealGenetic

(f) Abt-Buy

Fig. 2. Evaluation of algorithm based on Fu. The y-axis is the F-measure while the
x-axis stands for different β-values. Note that “FuPseudo” stands for the pseudo-F-
measures achieved by the different classifiers while “FuReal” stands for the real F-
measures.

that the development of specific algorithms for classifiers of a given type can
lead to algorithms for the discovery of link specifications that are both time-
efficient and highly accurate. The insight we gain is thus a clear answer to our

first question: unsupervised deterministic approaches can perform as well as
unsupervised approaches on both synthetic and real data.

Linear Boolean Genetic

Fd Fu Fd Fu Fd Fu

Persons1 100 100 99.50 99.50 100 100
Persons2 41.45 40.60 59.12 59.12 33.77 37.04
Restaurant 88.56 88.56 88.56 88.56 88.56 88.56
ACM-DBLP 97.96 97.94 97.46 97.46 97.62 97.71
Amazon-Google 49.08 48.55 39.97 39.97 43.11 42.68
Abt-Buy 48.60 48.60 37.66 37.66 45.03 45.08

Table 1. Maximal F-scores (in %) achieved by the approaches.

0.0 0.5 1.0 1.5 2.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 FdPearson

 FuPearson

(a) Pearson

0.0 0.5 1.0 1.5 2.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 FdSpearman

 FuSpearman

(b) Spearman

Fig. 3. Spearman and Pearson correlation of Fβ
u and Fβ

d across different values of β
measured independently from the algorithm used.

To answer our second question, we first computed the algorithm-independent
correlation of Fd and the F1 measure as well as the correlation of Fu and the F1

measure (see Figure 3). In our experiments, the correlations varied significantly
across the different values of β, yet remained positive and significant in 97.5%
of the cases (the 2 lowest correlation scores of the Pearson correlation for Fu

were not significant). This means that optimizing Fu and Fd for one particular
setting of β is a sensible approach towards finding the best classifier for that
particular setting of β. We then computed the Pearson and Spearman correlation
(see Table 2) between Fu, Fd and the F1 measure achieved by the different
approaches across different values of β. Our results were somewhat surprising
as we detected both significant positive and negative correlations across the
different datasets and for both correlations. Interestingly, while the number of

Linear Boolean Genetic

Fd Fu Fd Fu Fd Fu

Persons1 – – – -0.85* 0.84* -0.1
Persons2 -0.09 0.54* -0.12 0.43 -0.43 -0.43
Restaurant 0.73* -0.71* 0.71* 1* 0.84* 0.16

ACM-DBLP -0.70* -0.65* -0.43 -0.97* 0.46* 0.51*
Amazon-Google -0.95* 0.49 -0.79* 0.07 -0.88* -0.03
Abt-Buy -0.9* 0.27 -0.98* -0.27 0.38 -0.9*

Persons1 – – – -0.87* 0.99* -0.1
Persons2 0.02 -0.09 0.21 -0.11 -0.56* -0.56*
Restaurant 0.85* -0.54* 0.85* 1* 0.91* 0.15

ACM-DBLP -0.87* -0.73* 0.05 -0.95* 0.34 0.47*
Amazon-Google -0.49* 0.68* -0.27 -0.22 -0.64* -0.39
Abt-Buy -0.37 0.59* -0.82* -0.47* -0.13 -0.49*

Table 2. Pearson and Spearman Correlation of PFM and real F-measures across dif-
ferent β-values. The top section of the table shows the Pearson correlation while the
bottom part shows the Spearman correlation. The correlations are not defined for the
fields marked with “–” due to at least one of the standard deviations involved being 0.
Correlations marked with “*” are significant.

significant positive and negative correlations were relatively balanced for the
synthetic data sets, negative correlations seemed to dominate the set of real
datasets, thus hinting towards Fu and Fd behaving differently depending on the
type of data they are confronted with. The negative correlation values suggest
that to detect the best values of β for a real dataset automatically, the mapping
M which leads to the smallest best value of Fd across the different values of β
should be chosen. This seems rather counter-intuitive and is a hypothesis that
requires ampler testing on a larger number of real datasets. Overall, our results
show clearly that no β-value achieves a maximal F1-measure across our data
sets. Still, for real datasets, Fd seems to perform well for β ∈ [0.8, 1.2]. Stating
such an interval for Fu is more difficult as the set of β-values that lead to the
best mapping is very heterogeneous across the different datasets. Interestingly,
this conclusion diverges from that proposed in previous work. The answer to our
second question is still clearly that while the predictive power of Fβ

u and Fβ
d is

sufficient for the results to be used in practical settings, significant effort still
needs to investigated to create a generic non-parametric PFM that can be used
across different datasets and algorithms to predict the F1-measure reliably .

5 Conclusion

In this paper, we present a first series of experiments to determine how well
standard classifier models such as linear and Boolean classifiers perform in com-

parison to classifiers generated by the means of genetic programming in an un-
supervised learning setting based on maximizing a PFM. Overall, our results
indicate that we are still at the beginning of the search towards the “holy grail”
of PFMs. Especially on real data, the maximal PFM achieved by algorithms
across different values of β is often negatively correlated with the value of the
F1. The magnitude of this effect is significantly reduced on synthetic data. This
difference suggest that there is still a need for benchmark generation methods
that allow creating benchmark data sets which reflect real data in a more holis-
tic way. Moreover, our evaluation shows that deterministic classifiers perform
as well as or better than non-deterministic approaches while still bearing the
main advantage of being significantly more time-efficient. Thus, finding more ef-
ficient extension of EUCLID or similar approaches should allow providing users
of LD frameworks with accurate link specifications within an interactive setting.
Detecting the right parametrization for PFM yet remains an unsolved problem.

References

1. Nello Cristianini and Elisa Ricci. Support vector machines. In Encyclopedia of
Algorithms. 2008.

2. Aidan Hogan, Axel Polleres, Jrgen Umbrich, and Antoine Zimmermann. Some en-
tities are more equal than others: statistical methods to consolidate linked data. In
Workshop on New Forms of Reasoning for the Semantic Web: Scalable & Dynamic
(NeFoRS2010), 2010.

3. R. Isele, A. Jentzsch, and C. Bizer. Efficient Multidimensional Blocking for Link
Discovery without losing Recall. In WebDB, 2011.

4. Robert Isele and Christian Bizer. Learning Linkage Rules using Genetic Program-
ming. In Sixth International Ontology Matching Workshop, 2011.

5. Hanna Köpcke, Andreas Thor, and Erhard Rahm. Comparative evaluation of entity
resolution approaches with fever. Proc. VLDB Endow., 2(2):1574–1577, 2009.

6. Axel-Cyrille Ngonga Ngomo. A time-efficient hybrid approach to link discovery.
In Proceedings of OM@ISWC, 2011.

7. Axel-Cyrille Ngonga Ngomo and Sören Auer. Limes - a time-efficient approach for
large-scale link discovery on the web of data. In Proceedings of IJCAI, 2011.

8. Axel-Cyrille Ngonga Ngomo, Jens Lehmann, Sören Auer, and Konrad Höffner.
Raven: Active learning of link specifications. In Proceedings of the Ontology Match-
ing Workshop (co-located with ISWC), 2011.

9. Axel-Cyrille Ngonga Ngomo and Klaus Lyko. Eagle: Efficient active learning of
link specifications using genetic programming. In Proceedings of ESWC, 2012.

10. Andriy Nikolov, Mathieu D’Aquin, and Enrico Motta. Unsupervised learning of
data linking configuration. In Proceedings of ESWC, 2012.

11. George Papadakis, Ekaterini Ioannou, Claudia Niedere, Themis Palpanasz, and
Wolfgang Nejdl. Eliminating the redundancy in blocking-based entity resolution
methods. In JCDL, 2011.

12. Jennifer Sleeman and Tim Finin. Computing foaf co-reference relations with rules
and machine learning. In Proceedings of the Third International Workshop on
Social Data on the Web, 2010.

13. C. Spearman. The proof and measurement of association between two things. The
American journal of psychology, 15:72–101, 1904.

IncMap: Pay as you go Matching of
Relational Schemata to OWL Ontologies

Christoph Pinkel1, Carsten Binnig2, Evgeny Kharlamov3, and Peter Haase1

1 fluid Operations AG, D-69190 Walldorf, Germany,
2 University of Mannheim, D-68131 Mannheim, Germany,

3 University of Oxford, Oxford, UK

Abstract. Ontology Based Data Access (OBDA) enables access to re-
lational data with a complex structure through ontologies as conceptual
domain models. A key component of an OBDA system are mappings be-
tween the schematic elements in the ontology and their correspondences
in the relational schema. Today, in existing OBDA systems these map-
pings typically need to be compiled by hand, which is a complex and la-
bor intensive task. In this paper we address the problem of creating such
mappings and present IncMap, a system that supports a semi-automatic
approach for matching relational schemata and ontologies. Our approach
is based on a novel matching technique that represents the schematic ele-
ments of an ontology and a relational schema in a unified way. IncMap is
designed to work in a query-driven, pay as you go fashion and leverages
partial, user-verified mappings to improve subsequent mapping sugges-
tions. This effectively reduces the overall effort compared to compiling
a mappings in one step. Moreover, IncMap can incorporate knowledge
from user queries to enhance suggestion quality.

1 Introduction

Effective understanding of complex data is a crucial task for enterprises to sup-
port decision making and retain competitiveness on the market. This task is not
trivial especially since the data volume and complexity keep growing fast in the
light of Big Data [1]. While there are many techniques and tools for scalable
data analytics today, there is little known on how to find the right data.

Today, enterprise information systems of large companies store petabytes of
data distributed across multiple – typically relational – databases, each with
hundreds or sometimes even thousands of tables (e.g., [2]). For example, an
installation of an SAP ERP system comes with tens of thousands of tables [3].
Due to the complexity of data a typical scenario for data analyses today involves
a domain expert who formulates an analytical request and an IT expert who has
to understand the request, find the data relevant to it, and then translate the
request into an executable query. In large enterprises this process may iterate
several times between the domain and IT experts, the complexity of data and
other factors, and may take up to several weeks.

Ontology-based data access (OBDA) [4] is an approach that has recently
emerged to provide semantic access to complex structured relational data. The

2 Christoph Pinkel et al.

core elements of an OBDA system are an ontology, describing the application
domain, and a set of declarative mappings, relating the ontological schema ele-
ments (e.g., names of classes and properties) with the relational schema elements
(e.g., names of table and attributes) of the underlying data sources. Using the
ontology and the mappings, domain experts can access the data directly by for-
mulating queries in terms defined in the ontology that reflects their vocabulary
and conceptualization. Using query rewriting techniques, the end-user queries
are then translated into queries over the underlying data sources.

Today, most approaches for ontology-based data access focus on the definition
of mapping languages and the efficient translation of high-level user queries over
an ontology into executable queries over relational data [4,5]. These approaches
assume that a declarative mapping of the schema elements of the ontology to
the relational elements is already given. So far, in real-world systems [6,7] that
follow the ontology-based data access principle, the mappings have to be created
manually. The costs for the manual creation of mappings constitute a significant
entry barrier for applying OBDA in practice.

To overcome this limitation we propose a novel semi-automatic schema match-
ing approach and a system called IncMap to support the creation of mappings
directly from relational schemata to ontologies.

We focus on finding one-to-one (direct) correspondences of ontological and
relational schema elements, while we also work on extensions for finding more
complex correspondences. In order to compute mapping suggestions IncMap uses
a relational schema, an OWL ontology, a set of user conjunctive queries over the
ontology, and user feedback as basic input.

The matching approach of IncMap is inspired by the Similarity Flooding
algorithm of Melnik et al. [8] that works well for schemata that follow the same
modeling principles (e.g., same level of granularity). However, applying the Sim-
ilarity Flooding algorithm naively for matching schema elements of a relational
schema to an OWL ontology results in rather poor quality of the suggested cor-
respondences as we show in our experiments. A major reason is the impedance
mismatch between ontologies and relational schemata: While ontologies typi-
cally model high-level semantic information, relational schemata describe the
syntactical structure on a very low level of granularity.

The contributions of the paper are the following:

– In Section 3, we propose a novel graph structure called IncGraph to represent
schema elements from both ontologies and relational schemata in a unified
way. Therefore, we devise algorithms to convert an ontology as well as a
relational schema into their unified IncGraph representation. We also briefly
discuss techniques to further improve IncGraph.

– In Section 4, we present our matching algorithm that we use for matching
IncGraphs. Its most prominent feature is that IncMap can produce the map-
ping incrementally, query by query. While the original Similarity Flooding
algorithm generates correspondences for all schema elements, IncMap sup-
ports a pay as you go matching strategy. For each query we produce only
required mappings. IncMap leverages the structure of mappings from previ-

IT486
Rectangle

IncMap: Pay as you go schema matching 3

ous queries to improve suggestion quality. This effectively reduces the total
effort for the user to verify mapping suggestions.

– Section 5 presents an experimental evaluation using different (real-world)
relational schemata and ontologies. We see that even in the basic version of
IncMap, the effort for creating a mapping is up to 20% less than using the
Similarity Flooding algorithm in a naive way. In addition, the incremental
version of IncMap can reduce the total effort by another 50%− 70%.

2 Background

In this section we briefly introduce ontologies [9], relational schemata, and the
Similarity Flooding algorithm [8].

Ontologies. An ontology O specifies a conceptualization of a domain in terms
of classes and properties and consists of a set of axioms. Without explanation,
ontologies in this paper are OWL ontologies and we will use the following OWL
constructs: object and data properties P , and domains Domain(P) and ranges
Range(P) of properties. We denote with Class(O) and Property(O) the sets of
class and property names, respectively, occurring in the ontology O. For a given
ontology O, with C ∈ Domain(P) we denote the fact that one can derive from
O that the class name C is a domain of the property P . Also, C ′ ∈ Range(P)
denotes the fact that C ′ is a range of P and it is derivable from O.

Relational Schemata. A relational schema R defines a set of relations (tables)
T , where each table defines a set of columns c. We also assume that a schema
contains foreign keys k that define references between tables.

Similarity Flooding Algorithm. The Similarity Flooding algorithm matches a
given schema S with a schema S ′. In the first step, directed labeled graphs
G(S) and G(S ′) are constructed from S and S ′, where the nodes represent the
schema elements, and the edges with labels define relationships between the
schema elements. There is no exact procedure to construct the graphs from
the schemata given in [8]. Thus, the Similarity Flooding algorithm is open for
any graph construction process. The second step in the algorithm is to merge
G(S) and G(S ′) into one graph, a so-called pairwise connectivity graph PCG.
Intuitively, each node of the PCG is a pair of nodes, and represents a potential
match between schema elements of S and S ′. Then, the PCG is enriched with
inverse edges and edge weights (propagation coefficients), where the value of the
weights is based on the number of outgoing edges with the same label from a
given node. This graph is called the induced propagation graph IPG. The final
step of the algorithm is a fix-point computation to propagate initial similarities
by using the structural dependencies represented by the propagation coefficients.
The fix-point computation termination is based either on threshold values or the
number of iterations. The result is a ranked list of suggested mappings. We refer
to [8] for further details.

IT486
Rectangle

4 Christoph Pinkel et al.

Algorithm 1: IncGraph for constructing graphs from ontologies
INPUT : OWL ontology O
OUTPUT: Graph G = (V, LblV , E, LblE)

1 Let G = (V, LblV , E, LblE), V = {n�}, LblV = {(n�,�)}, E = ∅, LblE = ∅;
2 foreach C ∈ Class(O) do V := V ∪ {nC} and LblE(nC) := C
3 foreach P ∈ Property(O) do
4 V := V ∪ {nP } and LblV(nP) := P ; Let C ∈ Domain(P);
5 if P is an object property then
6 E := E ∪ {(nC , nP)} and LblV((nC , nP)) := ‘ref’;

7 Let C′ ∈ Range(P);
8 E := E ∪ {(nP , nC′)} and LblV((nP , nC′)) := ‘ref’;

9 else if P is a data property then
10 E := E ∪ {(nC , nP)} and LblE((nC , nP)) := ‘value’

11 return G.

Algorithm 2: IncGraph for constructing graphs from relational schemata
INPUT : Relational Schema R
OUTPUT: Graph G = (V, LblV , E, LblE)

1 Let V = ∅, LblV = ∅, E = ∅, LblE = ∅;
2 foreach table T in R do
3 V := V ∪ {nT } and LblV(nT) := T ;
4 foreach column c in R do
5 V := V ∪ {nc} and LblV(nc) := c;
6 E := E ∪ {(nT , nc)} and LblE((nT , nc)) := ‘value’

7 if c has a foreign key k to some table T ′ then
8 V := V ∪ {nk} and LblV(nk) := k;
9 E := E ∪ {(nT , nk)} and LblE((nT , nk)) := ‘ref’

10 E := E ∪ {(nk, nT ′)} and LblE((nk, nT ′)) := ‘ref’

11 return G.

3 The IncGraph Model

In this section, we describe the IncGraph model used by IncMap to represent
schema elements of an OWL ontology O and a relational schema R in a unified
way.

An IncGraph model is defined as directed labeled graph G = (V, LblV , E , LblE).
It can be used as input by the original Similarity Flooding algorithm (Section 2)
or IncMap. V represents a set of vertices, E a set of directed edges, LblV a set
of labels for vertices (i.e., one label for each vertex) and LblE a set of labels for
edges (i.e., one label for each edge). A label lV ∈ LblV represents a name of a
schema element whereas a label lE ∈ LblE is either “ref” representing a so called
ref-edge or “value” representing a so called val-edge.

3.1 IncGraph Construction

The goal of the procedures for the basic construction is to incorporate explicit
schema information from O and R into the IncGraph model. Incorporating im-
plicit schema information is discussed in the next section.

Algorithm 1 creates an IncGraph model G for a given ontology O. The algo-
rithm constructs a vertex nC for each class name C ∈ Class(O) and a vertex

IT486
Rectangle

IncMap: Pay as you go schema matching 5

!"#$%&!!’()

*+,-$./,)
0/1 &+2)

0+,-$.!) 3 /4+-)
,&25-)

6%&!!)

!"#$%&!!’()’#7-$.)
8,/9-,.:)

!"#$%&!!’()

*&.&)
8,/9-,.:)

;&!<+.%-)
0/1 &+2)

!"#$%&!!’()

!"#$%&’#(

0+,-$./,)
8=)

>>>)

) ’*"$(

?.%-)

0+,-$./,)
@=)

>>>)

+,&’-’./(+! 0$-12’,1-(3%4$5 1(0!

*+,-$./,)
,-()

0+,-$.!) 3 /4+-)
,-()

;&!<+.%-)

4&%)

*+,-$./,)
,-()

0+,-$./,)
@=)

3 /4+-)
,-()

;&!<+.%-)

4&%)
0+,-$./,)
@=)

*+,-$./,)
8=)

4&%)

6,%7#1849+:! 6,%.#18490:!

4&%)

Fig. 1. IncGraph Construction Example

nP for each property name P ∈ Property(O) using the names of these ontology
elements as label in LblV . Directed edges in the IncGraph model are created
for each domain and range definition in O. The labels LblE for edges are either
“ref” in case of an object property or “value” in case of a data property. For
a domain definition in O the direction of the edge in G is from the node nC

representing the domain of P to the node nP representing the property P . For a
range definition the direction of the edge in G is from the node nP representing
object property to the node nC′ representing the range of P (i.e., another class).
If an object property in O has no range (respectively, domain) definition, then a
directed labeled edge to a node n� is added to explicitly model the most general
range (respectively, domain), i.e., a top-level concept � like Thing.

Algorithm 2 creates a IncGraph model G for a given relational schema R:
The algorithm constructs a vertex nT for each table and a vertex nc for each
column using the names of these schema elements as labels LblV . Directed edges
with the label “value” are created from a node nT representing a table to a node
nc representing a columns of that table. For columns with a foreign key k an
additional node nk is created. Moreover, two directed edges with the label “ref”
are added, which represent a path from node nT to a node nT ′ representing the
referenced table via node nk.

Figure 1 shows the result of applying these two algorithms to the ontology
O and the relational schema R in this figure. Both O and R describe the same
entities Directors and Movies using different schema elements. The resulting
IncGraph models of O and R represent the schema structure in a unified way.

3.2 IncGraph Annotations

IncGraph is designed to represent both relational schemata and ontologies in
a structurally similar fashion because matching approaches such as ours work
best when the graph representations on both the source and target side are as
similar as possible. However, even in IncGraph structural differences remain due
to the impedance mismatch and different design patterns used in ontologies and
relational schemata, respectively.

We consider this issue by supporting annotations in IncGraph. Annotations
basically are additional ref-edges in either the source or target model that can
be designed to bridge structural gaps for different design patterns or levels of

IT486
Rectangle

6 Christoph Pinkel et al.

granularity. For instance, shortcut edges in the relational IncGraph model could
represent a multi-hop join over a chain of relationship relations. Annotations can
be constructed by plug-ins during IncGraph construction.

We plan to evaluate the opportunities of different kinds of annotations in
future work.

4 The IncMap System

In this section, we present our matching approach and system called IncMap. In-
cMap takes a source and target IncGraph as input, i.e., the IncGraphs produced
for a relational schema and for an ontology as described in Section 3.

4.1 Overview of IncMap

In its basic version, IncMap applies the original Similarity Flooding algorithm
(with minor adaptions) and thus creates initial mapping suggestions for the
IncGraph of an ontology O and a relational schema R. In its extended version,
IncMap activates inactive ref-edges before executing the Similarity Flooding
algorithm to achieve better mapping suggestions.

Another extension is the incremental version of IncMap. In this version the
initial mapping suggestions are re-ranked by IncMap in a semi-automatic ap-
proach by including user feedback. Re-ranking works iteratively in a query-driven
fashion thus increasing the quality of the suggested mappings. In each iteration,
IncMap applies a version of the Similarity Flooding algorithm (as described be-
fore). However, in addition between each iteration user feedback is incorporated.

The idea of user feedback is that the user confirms those mapping suggestions
of the previous iteration, which are required to answer a given user query over
ontology O. Confirmed suggestions are used as input for the next iteration to
produce better suggestions for follow-up queries. This is in contrast to many
other existing approaches (including the original Similarity Flooding algorithm)
that return a mapping for the complete source and target schema only once.

IncMap is designed as a framework and provides different knobs to control
which extensions to use and within each extension which concrete variants to
choose (e.g., to select a concrete strategy for activating inactive edges). The goal
of this section is to present IncMap with all its variants and to show their benefits
for different real-world data sets in our experimental evaluation in Section 5. A
major avenue of future work is to apply optimization algorithms to find the best
configurations of IncMap for a given ontology O and schema R automatically
by searching the configuration space based on the knobs presented before.

4.2 Basic Matching in IncMap

As already mentioned, in the basic version of IncMap, we simply apply the
Similarity Flooding algorithm for the two IncGraphs produced for a relational
schema R and for an ontology O similar to the process as described in Section 2.

As a first step, IncMap generates the PCG (i.e., a combined graph which pairs
similar nodes of both input IncGraphs) using an initial lexical matching, which

IT486
Rectangle

IncMap: Pay as you go schema matching 7

supports interchangeable matchers as one knob for configuration. One difference
is the handling of inactive ref-edges in the input IncGraphs. For inactive ref-
edges, which are not handled in the original Similarity Flooding, we apply the fol-
lowing rule when building the PCG: if an edge in the PCG refers to at least one inac-
tive ref-edge in one of the IncGraph models, it also becomes inactive in the PCG.

In addition, other than in the original Similarity Flooding approach, where
propagation coefficients for the IPG are ultimately determined during graph con-
struction, our propagation coefficients can be calculated several times when the
graph changes with the activation and deactivation of edges. Also, propagation
coefficients in IncMap are modular and can be changed. In particular, a new
weighting formula supported by IncMap considers the similarity scores on both
ends of an edge in the IPG. The intuition behind this is that a higher score in-
dicates better chances of the match being correct. Thus, an edge between two
matches with relatively high scores is more relevant for the structure than an
edge between one isolated well-scored match and another with a poor score. For
calculating the weight w(e) of a directed edge e = (n1, n2) from n1 to n2 in the
IPG where l is the label of the edge, we currently use two alternatives:
– Original Weight as in [8] : w(e) = 1/outl where outl is the number of edges

connected to node n1 with the same label l
– Normalized Similarity Product : w(e) = (score(n1) ∗ score(n2))/outl.

4.3 Extended IncMap: Iterative User Feedback
Query-driven incremental mappings allow to leverage necessary user feedback
after each iteration to improve the quality of mapping suggestions in subsequent
iterations. One of the reasons why we have chosen Similarity Flooding as a basis
for IncMap is the fact that user feedback can be integrated by adopting the
initial match scores in an IPG before the fix-point computation starts.

Though the possibility of an incremental approach has been mentioned al-
ready in the Similarity Flooding paper [8], it so far has not been implemented
and evaluated. Also, while it is simple to see where user feedback could be in-
corporated in the IPG, it is far less trivial to decide which feedback should be
employed and how exactly it should be integrated in the graph. In this paper we
focus on leveraging only the most important kind of user feedback, i.e., the pre-
vious confirmation and rejection of suggested mappings. We have devised three
alternative methods how to add this kind of feedback into the graph.

First, as a confirmed match corresponds to a certain score of 1.0, while a
rejected match corresponds to a score of 0.0, we could simply re-run the fix-point
computation with adjusted initial scores of confirmed and/or rejected matches.
We consequently name this first method Initializer. However, there is a clear
risk that the influence of such a simple initialization on the resulting mapping is
too small as scores tend to change rapidly during the first steps of the fix-point
computation.

To tackle this potential problem, our second method guarantees maximum
influence of feedback throughout the fix-point computation. Instead of just ini-
tializing a confirmed or rejected match with their final score once, we could re-
peat the initialization at the end of each step of the fix-point computation after

IT486
Rectangle

8 Christoph Pinkel et al.

normalization. This way, nodes with definite user feedback influence their neigh-
borhood with their full score during each step of the computation. We therefore
call this method Self-Confidence Nodes. However, as scores generally decrease in
most parts of the graph during the fix-point computation and high scores become
more important for the ranking of matches in later fix-point computation steps,
this method implies the risk of over-influencing parts of the graph. For example,
one confirmed match in a partially incorrect graph neighborhood would almost
certainly move all of its neighbors to the top of their respective suggestion lists.

Finally, with our third method, we attempt to balance the effects of the pre-
vious two methods. We therefore do not change a confirmed match directly but
include an additional node in IPG that can indirectly influence the match score
during the fix-point computation. We name this method Influence Nodes. By
keeping the scores of those additional influence nodes invariant we ensure per-
manent influence throughout all steps of the fix-point computation. Yet, the in-
fluence node only indirectly affects the neighborhood of confirmed nodes through
the same propagation mechanism that generally distributes scores through the
graph.

5 Experimental Evaluation

The main goal of IncMap is to reduce the human effort for constructing map-
pings between existing relational database schemata and ontologies. Mapping
suggestions are intended to be used only after they have been validated by a
user. Thus, there are two relevant evaluation measures: first, the percentage of
the mappings in the reference mappings that can be represented by IncMap.
We specify this percentage for all reference mappings when introducing them.
Certain complex mappings (e.g., mappings performing data transformations)
cannot be represented by IncMap. These complex mappings are rare in all real-
world reference mappings we used in this paper. The second and most important
measure is the amount of work that a user needs to invest to transform a set
of mapping suggestions into the correct (intended) mappings. As the latter is
the most crucial aspect, we evaluate our approach by measuring the work time
required to transform our suggestions into the existing reference mappings.

5.1 Relational Schemata and Ontologies

To show the general viability of our approach, we evaluate IncMap in two sce-
narios with fairly different schematic properties. In addition to showing the key
benefits of the approach under different conditions, this also demonstrates how
the impact of modular parameters varies for different scenarios.

IMDB and Movie Ontology. As a first scenario, we evaluate a mapping from the
schema of well known movie database IMDB4 to the Movie Ontology [10]. With
27 foreign keys connecting 21 tables in the relational schema and 27 explicitly
modeled object properties of 21 classes in the ontology, this scenario is average

4 http://www.imdb.com

IT486
Rectangle

IncMap: Pay as you go schema matching 9

in size and structural complexity. The reference mappings we use to derive corre-
spondences for this scenario5 has been made available by the -ontop- team [11].
A set of example queries is provided together with these reference mappings.
We use these to construct annotations for user queries as well as to structure
our incremental, query-by-query experiments. We extract a total of 73 potential
correspondences from this mapping, 65 of which can be represented by IncMap
as mapping suggestions. This corresponds to 89% of the mappings that could be
represented in IncMap.
MusicBrainz and Music Ontology. The second scenario is a mapping from the
MusicBrainz database6 to the Music Ontology [12]. The relational schema con-
tains 271 foreign keys connecting 149 tables, while the ontology contains 169
explicitly modeled object properties and 100 classes, making the scenario both
larger and more densely connected than the previous one. Here we use R2RML
reference mappings that have been developed in the project EUCLID.7 As there
were no example queries provided with the mapping in this case, we use exam-
ple queries provided by the Music Ontology for user query annotations and to
structure the incremental experiment runs.

For these reference mappings, two out of 48 correspondences cannot be repre-
sented as mapping suggestions by IncMap as they require data transformations.
This corresponds to 95.8% of the mappings that could be represented in IncMap.

5.2 Work Time Cost Model

We evaluate our algorithms w.r.t. reducing work time (human effort). As the
user feedback process always needs to transform mapping suggestions generated
by IncMap into the correct mappings (i.e. to achieve a precision and recall of
100%), the involved effort is the one distinctive quality measure. To this end, we
have devised a simple and straightforward work time cost model as follows: we
assume that users validate mappings one by one, either accepting or rejecting
them. We further assume that each validation, on average, takes a user the same
amount of time tvalidate. The costs for finding the correct correspondence for any
concept in this case is identical with the rank of the correct mapping suggestion
in the ranked list of mapping suggestions for the concept times tvalidate.

As IncMap is interactive by design and would propose the user one mapping
suggestion after another, this model closely corresponds to end user reality. We
are aware that this process represents a simplification of mapping reality where
users may compile some of the mappings by other means for various reasons. Nev-
ertheless, this happens in the same way for any suggestion system and therefore
does not impact the validity of our model for the purpose of comparison.

5.3 Experimental Evaluation

Experiment 1 – Naive vs. IncGraph. In our first experiment we compare the
effort required to correct the mapping suggestions when the schema and ontol-

5 https://babbage.inf.unibz.it/trac/obdapublic/wiki/Example MovieOntology
6 http://musicbrainz.org/doc/MusicBrainz Database
7 http://euclid-project.eu

IT486
Rectangle

10 Christoph Pinkel et al.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

Random LS Similarity Inverse LS Dist.

E
ffo

rt
 [a

ct
io

ns
]

IMDB: Naive Similarity Flooding vs. IncGraph
Naive [initial]

IncGraph [initial]
Naive [final]

IncGraph [final]

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

Random LS Similarity Inverse LS Dist.

E
ffo

rt
 [a

ct
io

ns
]

Music Ontology: Naive Similarity Flooding vs. IncGraph
Naive [initial]

IncGraph [initial]
Naive [final]

IncGraph [final]

(a) Naive vs. IncGraph

 0

 100

 200

 300

 400

 500

 600

 700

 800

Norm. Sim. Product Original Weights

E
ffo

rt
 [a

ct
io

ns
]

IMDB: Incremental Runs
Non-Incremental

Initializer
Self-Confidence Nodes

Influence Nodes

 0

 1000

 2000

 3000

 4000

 5000

 6000

Norm. Sim. Product Original Weights

E
ffo

rt
 [a

ct
io

ns
]

Music Ontology: Incremental Runs
Non-Incremental

Initializer
Self-Confidence Nodes

Influence Nodes

(b) Incremental Evaluation

Fig. 2. Experimental Evaluation

ogy are represented naively, or as IncGraphs. Additionally, we vary the lexical
matcher used for the initial mapping between randomly assigned scores (minimal
base line), Levenshtein similarity and inverse Levenshtein distance. Figure 2(a)
shows that IncGraph in all cases works better than the naive approach. As In-
cMap reliably improves the mapping for all configurations, it also underlines the
ability of IncMap to operate in a stable manner with different initial matchers.

Experiment 2 – Incremental Mapping Generation. Finally, we evaluated the
best previous configurations incrementally, i.e., leveraging partial mappings. Fig-
ure 2(b) illustrates the effects on the total effort. We show total effort for all
three incremental methods, for different propagation coefficients. Most signifi-
cantly, incremental evaluation reduces the overall effort by up to 50% − 70%.
More specifically, Self-Confidence Nodes and Influence nodes work much better
than the naive Initializer approach.

6 Related Work
Many existing mapping systems rely on two-step mapping procedures: They em-
ploy lexical similarity of terms together with structural similarity of the struc-
tures ([13,14,15] or [16,17] for surveys). A very few of them rely on variations of
Similarity Flooding to perform the latter task. However, to the best of our knowl-
edge, all of these approaches focus on ontology-to-ontology rather than relational
schema-to-ontology mappings. RiMOM [18] performs a multi-strategy mapping
discovery between ontologies and performs mappings using a variant of the Sim-
ilarity Flooding algorithm, while it relies on structural similarities of ontologies
derived from sub-class and sub-property relationships, rather than connectivity

IT486
Rectangle

IncMap: Pay as you go schema matching 11

of classes via properties as we do in order to get a better alignment of relational
schemata and ontologies. In Yamm++ [19] the authors used Similarity Flood-
ing and exploit both sub-class and sub-property relationships, and domain and
ranges of ontologies, while they did it in a naive way which, as our experimental
results showed, does not give good results for relational schemata-to-ontology
mappings. Moreover, they use Similarity Flooding to obtain new mappings on
top of the ones obtained via linguistic similarities, while we do not derive new
mappings but refine the ranking over the linguistically derived ones. There are
works on semi-automatic discovery of relational schema-to-ontology mappings,
but they use approaches different from ours: For example, [20] transforms re-
lational schemata and ontologies into directed labeled graphs respectively and
reuse COMA [21] for essentially syntactic graph matching. Ronto [22] uses a
combination of syntactic strategies to discover mappings by distinguishing the
types of entities in relational schemata. The authors of [23] exploit structure of
ontologies and relational schemata by calculating the confidence measures be-
tween virtual documents corresponding to them via the TF/IDF model. All these
approaches do not incorporate implicit schema information and do not support
an incremental mapping construction in the pay as you go fashion as IncMap
does. Finally, [24] describes an approach to derive complex correspondences for
a relational schema-to-ontology mapping using simple correspondences as input.
This work is orthogonal to the approach presented in this paper.

7 Conclusions and Outlook
We presented IncMap, a novel semi-automatic matching approach for generat-
ing relational schema-to-ontology mappings. Our approach is based on a novel
unified graph model called IncGraph for ontologies and relational schemata. In-
cMap implements a semi-automatic matching approach to derive mappings from
IncGraphs using both lexical and structural similarities between ontologies and
relational schemata. In order to find structural similarities IncMap exploits both
explicit and implicit schema information. Moreover, IncMap allows to incorpo-
rate user queries and user feedback in an incremental way, thus, enabling a pay
as you go fashion of the mapping generation. Our experiments with IncMap on
different real-world relational schemata and ontologies showed that the effort for
creating a mapping with IncMap is up to 20% less than using the Similarity
Flooding algorithm in a naive way. The incremental version of IncMap reduces
the total effort of mapping creation by another 50% − 70%. As future work we
plan to follow three lines: (1) add more implicit schema information (annota-
tions) to the IncGraphs, (2) support more complex mappings in IncMap, and
(3) devise a search strategy over the configuration space to auto-tune IncMap.

8 Acknowledgements

This work was supported by the Seventh Framework Program (FP7) of the
European Commission under Grant Agreement 318338, the Optique project.

IT486
Rectangle

12 Christoph Pinkel et al.

References

1. Beyer, M.A., Lapkin, A., Gall, N., Feinberg, D., Sribar, V.T.: ‘Big Data’ is Only the
Beginning of Extreme Information Management. Gartner rep. G00211490 (2011)

2. Crompton, J.: Keynote talk at the W3C Workshop on Sem. Web in Oil & Gas
Industry (2008) http://www.w3.org/2008/12/ogws-slides/Crompton.pdf.

3. SAP HANA Help: http://help.sap.com/hana/html/sql export.html (2013)
4. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.:

Linking Data to Ontologies. J. Data Semantics 10 (2008) 133–173
5. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The Com-

bined Approach to Ontology-Based Data Access. In: IJCAI. (2011) 2656–2661
6. Hepp, M., Wechselberger, A.: OntoNaviERP: Ontology-Supported Navigation in

ERP Software Documentation. In: International Semantic Web Conference. (2008)
7. Blunschi, L., Jossen, C., Kossmann, D., Mori, M., Stockinger, K.: SODA: Gener-

ating SQL for Business Users. PVLDB 5(10) (2012) 932–943
8. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph

Matching Algorithm and its Application to Schema Matching. In: ICDE, IEEE
Computer Society (2002)

9. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Web Ontology Language
Structural Specification and Functional-Style Syntax (2012) W3C Rec.

10. Bouza, A.: MO – The Movie Ontology, http://www.movieontology.org (2010)
11. Rodriguez-Muro, M., Calvanese, D.: High Performance Query Answering over

DL-Lite Ontologies. In: KR. (2012)
12. Raimond, Y., Giasson, F., (eds): Music Ontology, www.musicontology.com (2012)
13. Jiménez-Ruiz, E., Grau, B.C.: LogMap: Logic-Based and Scalable Ontology Match-

ing. In: International Semantic Web Conference (1). (2011) 273–288
14. Lambrix, P., Tan, H.: SAMBO – A system for aligning and merging biomedical

ontologies. J. Web Sem. 4(3) (2006) 196–206
15. Fagin, R., Haas, L.M., Hernández, M.A., Miller, R.J., Popa, L., Velegrakis, Y.:

Clio: Schema Mapping Creation and Data Exchange. In: Conceptual Modeling:
Foundations and Applications. (2009) 198–236

16. Shvaiko, P., Euzenat, J.: Ontology Matching: State of the Art and Future Chal-
lenges. IEEE Trans. Knowl. Data Eng. 25(1) (2013) 158–176

17. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Match-
ing. In: VLDB J. (2001) 334–350

18. Li, J., Tang, J., Li, Y., Luo, Q.: RiMOM: A Dynamic Multistrategy Ontology
Alignment Framework. IEEE Trans. Knowl. Data Eng. (2009) 1218–1232

19. Ngo, D., Bellahsene, Z.: YAM++: A Multi-strategy Based Approach for Ontology
Matching Task. In: EKAW. (2012) 421–425

20. Dragut, E.C., Lawrence, R.: Composing Mappings Between Schemas Using a Ref-
erence Ontology. In: CoopIS/DOA/ODBASE (1). (2004) 783–800

21. Do, H.H., Rahm, E.: COMA – A System for Flexible Combination of Schema
Matching Approaches. In: VLDB. (2002) 610–621

22. Papapanagiotou, P., Katsiouli, P., Tsetsos, V., Anagnostopoulos, C., Hadjiefthymi-
ades, S.: Ronto: Relational to Ontology Schema Matching. In: AIS SIGSEMIS
BULLETIN. (2006) 32–34

23. Hu, W., Qu, Y.: Discovering Simple Mappings Between Relational Database
Schemas and Ontologies. In: ISWC/ASWC. (2007) 225–238

24. An, Y., Borgida, A., Mylopoulos, J.: Inferring Complex Semantic Mappings Be-
tween Relational Tables and Ontologies from Simple Correspondences. In: OTM
Conferences (2). (2005)

IT486
Rectangle

Complex Correspondences for Query Patterns
Rewriting

Pascal Gillet, Cassia Trojahn, Ollivier Haemmerlé, and Camille Pradel

IRIT & Université de Toulouse 2, Toulouse, France
pascalgillet@ymail.com,{cassia.trojahn,ollivier.haemmerle,camille.pradel}@irit.fr

Abstract. This paper discusses the use of complex alignments in the
task of automatic query patterns rewriting. We apply this approach
in SWIP, a system that allows for querying RDF data from natural
language-based queries, hiding the complexity of SPARQL. SWIP is
based on the use of query patterns that characterise families of queries
and that are instantiated with respect to the initial user query expressed
in natural language. However, these patterns are specific to the vocabu-
lary used to describe the data source to be queried. For rewriting query
patterns, we experiment ontology matching approaches in order to find
complex correspondences between two ontologies describing data sources.
From the alignments and initial query patterns, we rewrite these patterns
in order to be able to query the data described using the target ontology.
These experiments have been carried out on an ontology on the music
domain and DBpedia ontology.

1 Introduction

Despite the fact that SPARQL is the standard de facto language for querying
RDF data, its complexity may restrict its use at a large scale, specially for non-
expert RDF users. Translating natural language queries into SPARQL ones is
the object of researches in both Natural Language Processing and Semantic Web
fields. Within the SWIP system [11], users express queries in natural language
sentences and pre-written query patterns are instantiated with respect to a syn-
tactic analysis of the initial query. Several possible interpretations of the queries
are shown to the user which selects the query he/she is interested in. Unlike other
proposals, such as the one in [5, 4], where user queries are limited to keywords,
or in [16], where users can express their queries using a visual query language,
the originality of SWIP is related to the use of query patterns.

The main principle behind query patterns states that, in real applications,
the submitted queries are variations of few typical query families (i.e., the family
of queries asking for the actors playing in movies or the queries asking for the
members of a musical band, or the albums of a musical artist). On the one hand,
the use of patterns avoids exploring the whole ontology to link the semantic
entities identified from the keywords since the potential relations are already
expressed in the patterns. The process thus benefits from the pre-established
families of frequently expressed queries for which real information needs exist.

A query pattern can also be seen as the projection of a subgraph of the under-
lying knowledge base, used as a mediator for the translation between the query
expressed in natural language and the corresponding SPARQL query. On the
other hand, one of the main limitations of the query pattern-based approach is
that reusing patterns across different data sources can be done in a very limited
extent. For each data source to be queried, the corresponding query patterns
have to be (manually) built. Rewriting query patterns based on a vocabulary to
query patterns based on another vocabulary is a task that can be carried out
with the help of ontology alignments.

This paper discusses the use of complex correspondences for automatic query
patterns rewriting. While the usefulness of simple correspondences has long been
recognised, query rewriting requires more expressive links between ontology en-
tities expressing the true relationships between them. At a lower level of abstrac-
tion, ontology alignments have been used to support the task of SPARQL query
rewriting [2, 9, 8]. However, query patterns and SPARQL refer to different lev-
els of expressivity in their representations, where query patterns are articulated
as a set of subpatterns and rely solely on the T Box of ontologies. Hence, we
experiment ontology matching approaches in order to find complex correspon-
dences between two ontologies describing two different data collections. From
the complex alignments and source query patterns, we rewrite these patterns in
order to be able to query the data collection described using the target ontology.
Experiments have been carried out on an ontology on the music domain and
DBpedia ontology. As a main outcoming, we have a set of manually validated
complex correspondences, from which query patterns can be reused across the
data sets described using those ontologies.

The rest of the paper is organised as follows. First, we introduce complex
correspondences and query patterns (§2). Then, we present the approach for
query pattern rewriting that is based on the use of complex correspondences
(§3). Next, the experiments are discussed (§4). Finally, we discuss related work
(§5) and conclude the paper (§6).

2 Foundations

2.1 Complex correspondences

Matching two ontologies is the process of generating an alignment between them
[6]. An alignment A is directional and refers to a source ontology O and a target
ontology O′, denoted AO→O′ :

Definition 1 (Alignment). An alignment AO→O′ between two ontologies O
and O′ is a set of correspondences AO→O′ = {c1, c2, ..., cn}, where each ci is a
triple 〈ei, e′i, r〉, where:

– whether the correspondence is simple, then it relates one and only one entity
(i.e., a class or a property) ei of O to one and only one entity e′i of O

′ (1:1);

– or the correspondence is complex, and it involves one or more entities in
a logical formulation (1:n,m:1,m:n), where ei refers to a subset of elements
∈ O, and e′i refers to a subset of elements ∈ O′, and these elements are
related using the constructors of a formal language (First-Order Logic or
Description Logics);

– r is a relation, e.g., equivalence (≡), more general(�), more specific (�),
holding between ei and e′i;

– additionally, a value n (typically in [0,1]) is assigned to ci indicating the
degree of confidence that the relation r holds between the e and e′.

The correspondence 〈ei, e′i, r〉 is unique in AO→O′ . On the other hand, ei or
e′i may be present in more than one correspondence ci. The alignment AO→O′

is said complex if it contains at least one complex correspondence. In the rest of
this paper, a correspondence ci, which is a triple 〈ei, e′i, r〉 (suffix notation), will
be noted ei r e′i. For example, Film � Work is a simple correspondence and
asserts that Film in O is more specific than Work in O′. On the other hand,
we can have the following two complex correspondences :

∀x, Short F ilm(x) ≡ Film(x) ∧ duration(x, y) ∧ y ≤ 59 (1)

∀x,Biopic(x) ≡ Film(x) ∧ Celebrity(y) ∧ topic(x, y) (2)

(1) asserts that a Short F ilm in O is equivalent to a Film in O′ whose dura-
tion is less than 59 minutes, and (2) asserts that a Biopic (or biographical film)
in O is equivalent to a Film in O′ whose the topic is about a famous person. We
can either use First-Order Logic (FOL) or the constructors of Description Logics
(DL) for expressing the complex correspondences. In FOL, a class corresponds
to a unary predicate with one variable, a property to a binary predicate with two
variables, and an instance to a constant. In DL, a class corresponds to a (atomic)
concept, a property to a role, and an instance to an individual. We can equally
transpose logical statements from DL to FOL, and conversely, as long as the DL
fragment is always respected. In particular, we take advantage of the expressiv-
ity allowed by SHOIN , describing the following DL operators: ¬C (negation
of concepts), C � C (intersection or conjunction of concepts), C � C (union or
disjunction of concepts), ∃R.C (existential restriction), ∀R.C (universal restric-
tion), ≤ nR (at most restriction), ≥ nR (at least restriction). For instance, the
formula (1) becomes (3) and the formula (2) becomes (4) :

Short F ilm ≡ Film � ∃duration. ≤ 59 (3)

Biopic ≡ Film � ∃topic.Celebrity (4)

In a (complex) correspondence formula expressed in FOL, a variable may occur
in several entities in left and right operands. Intuitively, two classes referring
to the same single variable are bound and are first connected by a simple cor-
respondence (with a subsumption relation, otherwise there is no need for an
additional complex correspondence to characterise the entities involved). For in-
stance, the formulas (1) and (2) are consistent only if Court metrage � Film
and Biopic � Film, respectively. The use of DL in (4) requires to explicitly as-
sert the simple correspondence Biopic � Film first, as we do not know if Biopic
is a specialisation or rather a generalisation of Film or Celebrity otherwise.

2.2 Query patterns

A pattern pO targetting an ontology O is composed of an RDF graph which
is the prototype of a relevant family of queries. A pattern can be composed
of several subpatterns spi, such as pO = {sp1, sp2, ..., spn}. Subpatterns are
assigned minimal and maximal cardinalities, making these subgraphs optional or
repeatable when generating the final SPARQL query. Formally, a query pattern
can be defined as follows [12]:

Definition 2 (Query pattern). Let G be a graph and v a vertex of the graph,
we denote by G\v the graph deprived of the vertex v and all the arcs incident to
the vertex. A query pattern p is a triple (G,Q, SP) such as :

– G is a RDF connected graph that describes the general structure of the pattern
and represents a family of requests;

– Q is a subset of elements in G, called qualifier elements; these are typical
of the pattern and will be taken into account during the association of the
user request to the pattern in question. A qualifier element is either a vertex
(class or data type), or an arc (object or data property) in G;

– SP is the set of subpatterns sp in p such that ∀sp = (SG, v, cardmin, cardmax) ∈
SP , we have:
• SG is a subgraph of G and v is a vertex of SG (and thus of G), such

as G\v is not connected (v is a joint vertex in G, also called junction
vertex) and admits SG\v as a connected component (i.e. all the vertices
in this connected component belong to the subpattern subpattern’s graph);

• At least one vertex or an arc of SG is a qualifier element;
• cardmin, cardmax ∈ N et 0 ≤ cardmin ≤ cardmax ; are respectively the
minimum and maximum cardinality of sp that define the optional and
repeatable characteristics of sp.

Figure 2.2 shows an example of a query pattern which deals with the events,
and the performers involved, where musical works have been performed (or con-
versely) with the corresponding artist(s) and release date. The pattern is com-
posed of three subpatterns named live, artist and date. All of them are optional,
and only the subpatterns live and artist are repeatable: it is considered that a
musical work can have only one release date, but a musical work may be the
work of several artists and can be performed many times.

3 Patterns rewriting approach

The rewriting approach takes as input a complex alignment AO→O′ and a set
P={pO1 ,...,pOn } of query patterns pOi , and outputs a set P ′={pO′

1 ,...,pO
′

n } of query

patterns pO
′

j . The intuition is that every subgraph from the input patterns has
potentially a (complex) correspondence associating its entities to entities in the
target ontology. We consider that the subpattern is the relevant unit of semantic
information constituting the patterns. Each subpattern is ideally replaced with

Fig. 1. Query pattern asking for events and their performers, where musical works
have been performed (or conversely), with the corresponding artist(s) and release date.

an equivalent subgraph corresponding to a logical statement relating concepts
and properties of the target ontology. This statement is the target part of the
correspondence, if any in the alignment, in which the source part matches the
initial subpattern. But the subpatterns and the correspondences in the alignment
may not have the same granularity (correspondences can be either simple or can
relate smaller subgraphs). Thus, we define an algorithm that is similar to a
Depth-First Search algorithm (DFS) for traversing and searching graph data
structures in the input query patterns. It starts at the largest subgraph, i.e. the
subpattern, and recursively explores its subgraphs (i.e. subpattern > RDF triples
> classes and properties), until a correspondence is found for the considered
subgraph (in which case, the target graph is written to the subpattern being
outputted) or a class or property is reached. If at the end of this process, there are
entities that have not been translated, the whole subpattern will be discarded1.
The operation is repeated for each subpattern in the input patterns.

The approach is inherently limited by the use of ontology alignment, which
is itself an incomplete process. The subpattern is the indivisible expression of a
need for information: it can be rewritten by chunks but if it is not fully rewritten
at the end of the process, it is discarded. Thus, the conservation of the semantics
of original patterns directly depends on the completeness of the input alignment
(coverage of the source ontology, quality of correspondences, etc.). We consider
that some loss of (semantic) information is acceptable, and that it can be filled
with other techniques (for instance, by interacting with the user). However,
it is out of the scope of this paper. Figure 3 illustrates the rewriting of the
pattern depicted in Figure 2.2 (with the input alignment given later in §4.3,
Table 1). The subpattern named live is rewritten to live’, following the complex
correspondence #6 in the alignment. The subpattern named artist is rewritten to
artist’, following the complex correspondence #2 in the alignment (in this case,
only the first term of the disjunction artist � author � creator � musicComposer
appears in the resulting subpattern, for the sake of simplicity and readability).

1In this case, the pattern is still connected, i.e. there is a chain connecting each pair
of vertices.

Finally, the subpattern named date could not be directly rewritten since there
is no correspondence for this subgraph. Instead, the property release date is
rewritten to releaseDate, following a simple correspondence, and the data type
xsd:date remains xsd:date.

Fig. 2. Example of query pattern rewriting.

4 Experiments and discussion

4.1 Data sets

SWIP provides two sets of query patterns, one for the MusicBrainz collection
described in terms of the Music ontology2 (containing 249 T Box entities), and
another for querying the ABox of the Cinema IRIT3 ontology (containing 300
T Box entities). We have carried out our experiments using the Music ontology
and DBpedia 3.84 ontology (containing 2213 entities), in order to rewrite query
patterns targeting MusicBrainz collection into patterns targeting DBpedia. The
music set of patterns is composed of 5 query patterns and 19 subpatterns.

4.2 Preliminary experiments

In a first series of experiments, we used a set of simple correspondences for rewrit-
ing patterns. These correspondences come from a merge of alignments generated

2http://musicontology.com/
3http://ontologies.alwaysdata.net/cinema
4http://wiki.dbpedia.org/Ontology?v=181z

by OAEI 2012 matching systems (the reader can refer to [7] for details). Over-
all, 67% of the entities in the Music ontology were covered in the alignment.
25 out of 60 entities in the query patterns for this ontology could be replaced
by a target entity (coverage of 41%). In terms of subpatterns, only 2 out of the
19 subpatterns could be fully rewritten using the alignment. Although we have
found a handmade (reference) alignment between Music and DBpedia ontolo-
gies5, we could not use it because it is mostly composed by correspondences
linking classes only, using subsumption relations, and few equivalences could be
inferred from them. Despite the fact that the quality of the alignment from the
matchers was not measured, these first experiments highlighted the limitations
in replacing individually the entities in the patterns. Nevertheless, we needed to
accurately assess this deficiency and to know to what extent we could rewrite
query patterns. It turned out that simple correspondences are not sufficient to
capture all the meaningful relations between entities of two related ontologies.

4.3 Complex correspondences

Very few systems are able to find complex correspondences. First, we tried the
tool described in [14], which finds complex correspondences using a set of pre-
defined patterns. Besides the two ontologies to align, this tool takes an alignment
as input. We used the tool on the pair Music-DBpedia, with (i) the handmade
alignment between Music and DBpedia ontologies, and (ii) the merged alignment
from the matchers used in the preliminary experiments (§4.2). In both cases, few
correct correspondences could be identified. We tried then the successor of this
tool described in [15], which benefits of natural language processing techniques
instead of requiring an input alignment, and we obtained similar results.

Hence, we manually created a set of 28 complex correspondences (along 11
simple ones) for the pair Music-DBpedia, guided by the query patterns for Mu-
sic6. A subset of them is presented in Table 1. The idea behind using complex
correspondences is that every subgraph pattern has potentially a (complex) cor-
respondence in the target ontology. Given that the subpattern is the relevant unit
of semantic information constituting the patterns, we isolated them, and for each
of them, we tried to find an equivalent logical statement relating concepts and
properties of the target ontology. For constructing the complex correspondence
set, we used as basis a set of simple correspondences (the left operand refers to an
entity of the Music ontology, and the right operand refers to an entity of the DB-
pedia ontology): MusicalManifestation�MusicalWork, MusicalWork≡Musical-
Work*, MusicArtist ≡ MusicalArtist*, Performance � Event, Performer ≡ Mu-
sicalArtist, foaf:Group � Band, MusicGroup ≡ Band*, SoloMusicArtist � Mu-
sicalArtist, Track � MusicalWork, Track ≡ Song, and Record � MusicalWork7.

For each correspondence, we identified the complex correspondence pat-
terns that characterise it, from the patterns proposed in the literature: Class

5http://knoesis.org/projects/BLOOMS/#Resources_for_Download
6The resulting alignment do not cover all possible correspondences between Music-

DBpedia, but a subset of them where entities appear in the query patterns.
7Correspondences with an asterisk were discovered using OAEI matchers.

#1 CAV
MusicalManifestation � ∃release type.album ≡ Album

#2 CAT ≡ OR
MusicManifestation � ∃foaf:maker.MusicArtist ≡
MusicalWork � (∃artist.owl:Thing �∃author.Person � ∃creator.Person �
∃musicComposer.MusicalArtist)

#3 CAV � CAT
MusicalManifestation � ∃release type.live �
MusicalWork � ∃recordedIn.PopulatedPlace

#4 CAV + CAT � CAT
MusicalManifestation � ∃release type.soundtrack � ∃composer.foaf:Agent �
Film � ∃musicComposer.MusicalArtist

#5 PC ≡ OR
MusicGroup � ∃bio:event(bio:Birth � ∃bio:date.xsd:dateTime) ≡
Band � (∃formationDate.xsd:date � ∃formationYear.xsd:gYear �
∃activeYearsStartYear.xsd:gYear)

#6 PC ≡ CAT(OR)
MusicalWork � ∃performed in(Performance � ∃performer.foaf:Agent) ≡
MusicalWork � ∃event(Event � (∃associatedMusicalArtist.MusicalArtist
� ∃associatedBand.Band))

#7 CAT ≡ CAT
Track � ∃duration.xsd:decimal ≡ MusicalWork � ∃runtime.Time

#8 CAT ≡ OR + CAT-1
foaf:Agent � ∃member of.foaf:Group ≡
Person � (∃bandMember.Band � ∃formerBandMember.Band)

#9 AND + PC ≡ AND(CAT-1)
Membership � (∃event:agent.foaf:Agent � ∃group.foaf:Group � ∃event:time.(event:
TemporalEntity � (∃tl:start.xsd:date � ∀ tl:end.¬xsd:date)) ≡
Person � (∃bandMember.Band � ∀ formerBandMember.¬Band)

#10 AND(PC) ≡ AND
Membership � ∃event:agent.foaf:Agent � ∃event:time.(event:TemporalEntity �
∃tl:start.xsd:date) ≡
Event � (∃pastMember.Person � ∃startDate.xsd:date)

#11 PC ≡ CAT
SoloMusicArtist � ∃bio:event(bio:Birth � ∃bio:date.xsd:dateTime) ≡
MusicalArtist � ∃birthDate.xsd:date

#12 CAT ≡ OR(CAT)
foaf:Agent � ∃collaborated with.foaf:Agent ≡
(Artist � ∃associatedAct.Artist) � (Person � ∃partner.Person)

Table 1. 12 out of 28 handmade complex correspondences between Music and DBpedia ontologies.

by Attribute Type [14] (CAT), Class by Inverse Attribute Type [14] (CAT-1),
Class by Attribute Value [14] (CAV), Attribute Value Restriction [18] (AVR),
equivalent to CAV, Property Chain [14] (PC), Aggregation [18] (AGR), equiv-
alent to PC, Inverse Property [15] (IP), Union [18] (OR), and Intersection
[18] (AND). Although no new pattern was discovered, stating that, for our
case, the patterns proposed in the literature cover all types of generated cor-
respondences, several of our correspondences are in fact compositions of them
(Table 1). For instance, the left operand in the correspondence #4 is an as-
sembly of the patterns CAV and CAT. In the scope of this paper, however,
we do not define any algebra which would describe how patterns can be com-
posed or associated to represent the structure of complex correspondences (def-
inition of basic properties and laws such as associativity, commutativity and
distributivity). We have also manually generated 52 multilingual complex cor-
respondences (along 13 simple correspondences) for the Cinema and DBpedia
ontologies. For instance, the correspondence expressing the relation between the
artists that are awarded the Cesar Award in Cinema (source ontology) and
DBpedia (target ontology) : Artiste � ∃estRecompenseA.CesarDuCinema ≡
Artist � ∃cesarAward(Award � ∃event.F ilmFestival).

4.4 Rewriting SPARQL queries and query patterns

From the set of complex correspondences for the pair Music-DBpedia and the
query patterns for Music, we applied our approach (§3) for rewriting Music pat-
terns in terms of the DBpedia vocabulary. Before rewriting patterns, we evalu-
ated the use of these correspondences for rewriting SPARQL queries. For doing
so, we defined a set of rules for translating a complex correspondence pattern
into RDF graph patterns (Table 2). These rules are intended to be used for
guiding the process of SPARQL rewriting. Following these rules, we managed to
rewrite the 25 first SPARQL queries from the benchmark training data in QALD
20138. The training data include 100 natural language questions for MusicBrainz
with the corresponding SPARQL queries, as well as the answers these queries
retrieve. The queries have been rewritten in order to interrogate DBpedia.

ID Formal pattern SPARQL rewriting rule

CAT A ≡ ∃R.B ?x a A → { ?x R B }
CAT-1 A ≡ B � ∃R-.T ?x a A → { ?x a B . ?y R ?x }
CAV A ≡ ∃R.{...} ?x a A → { ?x R ”...”ˆˆex:dataType }
AVR A ≡ B � ∃R.{...} ?x a A → { ?x a B . ?x R SomeValue . }
PC R ≡ P.(A � ∃Q) ?x R ?y → { ?x P A . A Q ?y }
IP R- � P ?x R ?y → ?y P ?x
OR A ≡ B � (∃R.T ∃Q.T) ?x a A → {?x a B . {B R ?y} UNION {B Q ?z}}
AND A ≡ B � (∃R.T � ∃Q.T) ?x a A → {?x a B . ?x R ?y ; Q ?z .}

Table 2. Complex correspondence patterns and SPARQL rewriting rules.

As an example, consider the query in Table 3 asking if there are members of the
Ramones who are not named Ramone (question #25) over MusicBrainz, and the
same query rewritten for DBpedia. The MusicBrainz result answers false, while
the DBpedia result asserts the opposite. The DBpedia request is not less correct:
if we return the actual query solutions (SELECT) instead of testing whether or
not the query pattern has a solution (ASK), we find that Clem Burke in DB-
pedia was a member of The Ramones under the name “Elvis Ramone”, while
the MusicBrainz data set directly refers to him with this alias. In fact, both
sets of instances do not fully intersect and they are not necessarily/correctly
interlinked9. From this point of view, 18 of the 25 rewritten queries are cor-
rect and consistent with the queries for MusicBrainz: they do not necessarily
give the same results, but they do answer the same question. 3 of these 18 re-
sults give the same number of solutions with exactly the same literals. 5 out of
the 7 remaining results give no solution at all (no instance). And finally, the 2
last results are not fully correct since the complex correspondences ahead are not
correct themselves. For instance, MusicalManifestation�∃release type.live �
MusicalWork � ∃recordedIn.PopulatedP lace turns out to be erroneous since
the albums which have been recorded in a recording studio are equally selectable

8Open challenge on Multilingual Question Answering over Linked Data: http://
greententacle.techfak.uni-bielefeld.de/~cunger/qald/index.php?x=task1&q=3

9http://wiki.dbpedia.org/Interlinking?v=vn

within the property recordedIn: we wrongly thought it was reserved for live
performances only. Thus, these results allowed us to validate our complex cor-
respondences and remove those that prove to be incorrect.

ASK ASK
WHERE { WHERE {
?band foaf:name ‘Ramones’ . ?band foaf:name ‘Ramones’@en .
?artist foaf:name ?artistname . ?artist foaf:name ?artistname .
?artist mo:member of ?band . {?band dbo:bandMember ?artist}

UNION
{?band dbo:formerBandMember ?artist} .

FILTER (NOT regex(?artistname,“Ramone”)) FILTER (NOT regex(?artistname,“Ramone”))
} }
Table 3. DBpedia rewritten query (right) from MusicBrainz query (left). Namespace
prefix bindings were ommitted (dbo refers to dbpedia and mo to music).

Next, we rewrote the Music query patterns in terms of the DBpedia vocabu-
lary. Using the 11 simple correspondences and the 28 complex correspondences,
we achieved a rewriting percentage of 90% of the Music patterns: on the 19
subgraphs (subpatterns) identified in the patterns for Music, we were able to
transform 17 of them. For the Cinema patterns, we were able to rewrite 45 out
of 51 subpatterns from the Cinema IRIT query patterns. Then, the patterns
rewritten from Music were injected in the SWIP system along the DBpedia data
set, in order to demonstrate the relevance of rewriting query patterns in the whole
process. We managed to run five queries from QALD and originally intended to
MusicBrainz. The generated SPARQL queries are (semantically) correct as long
as (i) the correspondences involved do not apply any disjunction of terms, which
is not currently supported in SWIP (in this case, only the most likely term is
kept), and (ii) the source and target in the correspondences involved have the
same information level (basically, equivalence).

5 Related work

Rewriting query patterns using complex correspondences is the novel aspect of
this paper. With respect to complex correspondence generation, different ap-
proaches have emerged in the literature in the last years. A common approach is
based on complex correspondence patterns [18, 17, 14, 15] (§4.3). Walshe [19] pro-
poses refining elementary correspondences by identifying which correspondence
pattern best represents a given correspondence. Following a different strategy,
Qin et al. [13] propose an iterative process that combines terminological, struc-
tural, and instance-based matching approaches for mining frequent queries, from
which complex matching rules (represented in FOL) are generated. Nunes et al.
[10] present a two-phase instance-based technique for complex datatype property
matching, where the first phase identifies simple property matches and the second
one uses a genetic programming approach to detect complex matches. Recently,
Arnold [1] uses state-of-the-art matchers for generating initial correspondences

that are further (semi-automatically) enriched by using linguistic, structural
and background knowledge-based strategies. Although different strategies have
been proposed, very few matchers for generating complex correspondences are
available or use EDOAL, an expressive alignment language [3], for representing
them. With respect to query patterns rewriting, the problem can be seen, at a
lower level of abstraction, as a problem of SPARQL rewriting. Correndo et al.
[2] propose a set of SPARQL rewriting rules exploiting both (complex) ontology
alignments and entity co-reference resolution. Zheng et al. [20] propose to rewrite
SPARQL queries from different contexts, where context mappings provide the
articulation of the data semantics for the sources and receivers. Makris et al.
[9, 8] present the SPARQL-RW rewriting framework that applies a set of prede-
fined (complex) correspondences. They define a set of correspondence types that
are used as basis for the rewriting process (i.e., Class Expression, Object Prop-
erty Expression, Datatype Property, and Individual). However, the way the set
of complex correspondences is established is not described. Our naive approach
for rewriting query patterns is close to these SPARQL rewriting proposals in
the sense of using complex correspondences. One of the difficulties is the lack
of established ways for automatically identifying them. Although m:n complex
correspondences are proposed at conceptual level, few concrete examples are
available in the literature. Most of our correspondences are n:m. As most pro-
posals, we start from a set of (automatically) discovered simple correspondences.
Finally, our method is applied in an applicative context of rewriting patterns for
a question answering system over RDF data.

6 Conclusions and future work

This paper has discussed the use of complex correspondences for rewriting query
patterns, aiming at reusing query families across data sets that overlap. Although
we could not fully evaluate the rewriting process mainly due to the fact that
SWIP does not treat pattern disjunctions, we were able to validate our approach
on a subset of manually validated complex correspondences. This opens several
opportunities for future work. First, the structure of query patterns in SWIP
could evolve so that they match the structure of the complex correspondences
we have established. In particular, SWIP would benefit from the disjunction of
subpatterns or specification of instances in patterns. Second, we plan to represent
our complex correspondences using EDOAL. Third, we plan to formalise the
composition of complex correspondence patterns, which are thereby the building
blocks to obtain richer correspondences, following a grammar defining a set of
rules for rewriting logical statements in FOL or DL. The grammar must define
the properties of pattern precedence, transitivity, associativity, commutativity,
and distributivity. Finally, we plan to propose an approach for (multilingual)
complex correspondence generation, exploiting specially the ABox of ontologies.

References

1. P. Arnold. Semantic enrichment of ontology mappings: Detecting relation types
and complex correspondences. In 25th GI-Workshop on Foundations of Databases,
2013.

2. G. Correndo, M. Salvadores, I. Millard, H. Glaser, and N. Shadbolt. SPARQL
Query Rewriting for Implementing Data Integration over Linked Data. In 1st
International Workshop on Data Semantics (DataSem 2010), March 2010.

3. J. David, J. Euzenat, F. Scharffe, and C. Trojahn. The Alignment API 4.0. Se-
mantic Web, 2(1):3–10, 2011.

4. S. Elbassuoni and R. Blanco. Keyword search over rdf graphs. In Proceedings of the
20th ACM International Conference on Information and Knowledge Management,
CIKM ’11, pages 237–242. ACM, 2011.

5. S. Elbassuoni, M. Ramanath, R. Schenkel, and G. Weikum. Searching RDF Graphs
with SPARQL and Keywords. IEEE Data Eng. Bull., 33(1):16–24, 2010.

6. J. Euzenat and P. Shvaiko. Ontology Matching. Springer-Verlag, Berlin, Heidelberg,
2007.

7. P. Gillet, C. Trojahn, and O. Haemmerlé. Réécriture de patrons de requêtes à
l’aide d’alignements d’ontologies. In Atelier Qualité et Robustesse dans le Web de
Données, IC, 2013.

8. K. Makris, N. Bikakis, N. Gioldasis, and S. Christodoulakis. SPARQL-RW: trans-
parent query access over mapped RDF data sources. In 15th International Con-
ference on Extending Database Technology, pages 610–613. ACM, 2012.

9. K. Makris, N. Gioldasis, N. Bikakis, and S. Christodoulakis. Ontology mapping and
SPARQL rewriting for querying federated RDF data sources. In 2010 Conference
on On the Move to Meaningful Internet Systems, pages 1108–1117, 2010.

10. B. Nunes, A. Mera, M. Casanova, K. Breitman, and L. A. Leme. Complex Matching
of RDF Datatype Properties. In 6th Workshop on Ontology Matching, 2011.

11. C. Pradel, O. Haemmerlé, and N. Hernandez. A Semantic Web Interface Using
Patterns: The SWIP System. In Graph Structures for Knowledge Representation
and Reasoning, LNCS, pages 172–187. Springer Berlin Heidelberg, 2012.

12. C. Pradel, O. Haemmerlé, N. Hernandez, et al. Des patrons modulaires de requêtes
sparql dans le système swip. 23es Journées d’Ingénierie des Connaissances, 2012.

13. H. Qin, D. Dou, and P. LePendu. Discovering executable semantic mappings be-
tween ontologies. In OTM International Conference, pages 832–849, 2007.

14. D. Ritze, C. Meilicke, O. Sváb-Zamazal, and H. Stuckenschmidt. A pattern-based
ontology matching approach for detecting complex correspondences. In 4th Work-
shop on Ontology Matching, 2009.

15. D. Ritze, J. Völker, C. Meilicke, and O. Sváb-Zamazal. Linguistic analysis for
complex ontology matching. In 5th Workshop on Ontology Matching, 2010.

16. A. Russell and P. R. Smart. Nitelight: A graphical editor for sparql queries. In
Poster and Demo Session at the 7th International Semantic Web Conference, 2008.

17. F. Scharffe. Correspondence Patterns Representation. PhD thesis, University of
Innsbruck, Innsbruck, 2009.

18. F. Scharffe and D. Fensel. Correspondence patterns for ontology alignment. In
Knowledge Engineering: Practice and Patterns, pages 83–92. Springer, 2008.

19. B. Walshe. Identifying complex semantic matches. In 9th International Conference
on The Semantic Web: Research and Applications, pages 849–853, 2012.

20. X. Zheng, S. E. Madnick, and X. Li. SPARQL Query Mediation over RDF Data
Sources with Disparate Contexts. In WWW Workshop on Linked Data on the
Web, 2012.

Results of the
Ontology Alignment Evaluation Initiative 2013�

Bernardo Cuenca Grau1, Zlatan Dragisic2, Kai Eckert3, Jérôme Euzenat4,
Alfio Ferrara5, Roger Granada6,7, Valentina Ivanova2, Ernesto Jiménez-Ruiz1,
Andreas Oskar Kempf8, Patrick Lambrix2, Andriy Nikolov9, Heiko Paulheim3,

Dominique Ritze3, François Scharffe10, Pavel Shvaiko11,
Cássia Trojahn7, and Ondřej Zamazal12

1 University of Oxford, UK
{berg,ernesto}@cs.ox.ac.uk

2 Linköping University & Swedish e-Science Research Center, Linköping, Sweden
{zlatan.dragisic,valentina.ivanova,patrick.lambrix}@liu.se

3 University of Mannheim, Mannheim, Germany
{kai,heiko,dominique}@informatik.uni-mannheim.de

4 INRIA & LIG, Montbonnot, France
Jerome.Euzenat@inria.fr

5 Università degli studi di Milano, Italy
alfio.ferrara@unimi.it

6 Pontifı́cia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
roger.granada@acad.pucrs.br

7 IRIT & Université Toulouse II, Toulouse, France
cassia.trojahn@irit.fr

8 GESIS – Leibniz Institute for the Social Sciences, Cologne, Germany
andreas.kempf@gesis.org

9 Fluid operations, Walldorf, Germany
andriy.nikolov@fluidops.com

10 LIRMM, Montpellier, France
francois.scharffe@lirmm.fr

11 TasLab, Informatica Trentina, Trento, Italy
pavel.shvaiko@infotn.it

12 University of Economics, Prague, Czech Republic
ondrej.zamazal@vse.cz

Abstract. Ontology matching consists of finding correspondences between se-
mantically related entities of two ontologies. OAEI campaigns aim at comparing
ontology matching systems on precisely defined test cases. These test cases can
use ontologies of different nature (from simple thesauri to expressive OWL on-
tologies) and use different modalities, e.g., blind evaluation, open evaluation and
consensus. OAEI 2013 offered 6 tracks with 8 test cases followed by 23 partici-
pants. Since 2010, the campaign has been using a new evaluation modality which
provides more automation to the evaluation. This paper is an overall presentation
of the OAEI 2013 campaign.

� This paper improves on the “Preliminary results” initially published in the on-site proceedings
of the ISWC workshop on Ontology Matching (OM-2013). The only official results of the
campaign, however, are on the OAEI web site.

1 Introduction

The Ontology Alignment Evaluation Initiative1 (OAEI) is a coordinated international
initiative, which organizes the evaluation of the increasing number of ontology match-
ing systems [11, 14]. The main goal of OAEI is to compare systems and algorithms on
the same basis and to allow anyone for drawing conclusions about the best matching
strategies. Our ambition is that, from such evaluations, tool developers can improve
their systems.

Two first events were organized in 2004: (i) the Information Interpretation and In-
tegration Conference (I3CON) held at the NIST Performance Metrics for Intelligent
Systems (PerMIS) workshop and (ii) the Ontology Alignment Contest held at the Eval-
uation of Ontology-based Tools (EON) workshop of the annual International Semantic
Web Conference (ISWC) [28]. Then, a unique OAEI campaign occurred in 2005 at the
workshop on Integrating Ontologies held in conjunction with the International Confer-
ence on Knowledge Capture (K-Cap) [3]. Starting from 2006 through 2012 the OAEI
campaigns were held at the Ontology Matching workshops collocated with ISWC [12,
10, 5, 7–9, 1]. In 2013, the OAEI results were presented again at the Ontology Matching
workshop2 collocated with ISWC, in Sydney, Australia.

Since 2011, we have been promoting an environment for automatically processing
evaluations (§2.2), which has been developed within the SEALS (Semantic Evaluation
At Large Scale) project3. SEALS provided a software infrastructure, for automatically
executing evaluations, and evaluation campaigns for typical semantic web tools, includ-
ing ontology matching. For OAEI 2013, almost all of the OAEI data sets were evaluated
under the SEALS modality, providing a more uniform evaluation setting.

This paper synthetizes the 2013 evaluation campaign and introduces the results pro-
vided in the papers of the participants. The remainder of the paper is organised as fol-
lows. In Section 2, we present the overall evaluation methodology that has been used.
Sections 3-10 discuss the settings and the results of each of the test cases. Section 11
overviews lessons learned from the campaign. Finally, Section 12 concludes the paper.

2 General methodology

We first present the test cases proposed this year to the OAEI participants (§2.1). Then,
we discuss the resources used by participants to test their systems and the execution
environment used for running the tools (§2.2). Next, we describe the steps of the OAEI
campaign (§2.3-2.5) and report on the general execution of the campaign (§2.6).

2.1 Tracks and test cases

This year’s campaign consisted of 6 tracks gathering 8 test cases and different evalua-
tion modalities:

1 http://oaei.ontologymatching.org
2 http://om2013.ontologymatching.org
3 http://www.seals-project.eu

The benchmark track (§3): Like in previous campaigns, a systematic benchmark se-
ries has been proposed. The goal of this benchmark series is to identify the areas
in which each matching algorithm is strong or weak by systematically altering an
ontology. This year, we generated a new benchmark based on the original biblio-
graphic ontology.

The expressive ontology track offers real world ontologies using OWL modelling ca-
pabilities:
Anatomy (§4): The anatomy real world test case is about matching the Adult

Mouse Anatomy (2744 classes) and a small fragment of the NCI Thesaurus
(3304 classes) describing the human anatomy.

Conference (§5): The goal of the conference test case is to find all correct cor-
respondences within a collection of ontologies describing the domain of or-
ganizing conferences. Results were evaluated automatically against reference
alignments and by using logical reasoning techniques.

Large biomedical ontologies (§6): The Largebio test case aims at finding align-
ments between large and semantically rich biomedical ontologies such as
FMA, SNOMED-CT, and NCI. The UMLS Metathesaurus has been used as
the basis for reference alignments.

Multilingual
Multifarm(§7): This test case is based on a subset of the Conference data set,

translated into eight different languages (Chinese, Czech, Dutch, French, Ger-
man, Portuguese, Russian, and Spanish) and the corresponding alignments be-
tween these ontologies. Results are evaluated against these alignments.

Directories and thesauri
Library(§8): The library test case is a real-word task to match two thesauri. The

goal of this test case is to find whether the matchers can handle such lightweight
ontologies including a huge amount of concepts and additional descriptions.
Results are evaluated both against a reference alignment and through manual
scrutiny.

Interactive matching
Interactive(§9): This test case offers the possibility to compare different interac-

tive matching tools which require user interaction. Its goal is to show if user
interaction can improve matching results, which methods are most promising
and how many interactions are necessary. All participating systems are evalu-
ated on the conference data set using an oracle based on the reference align-
ment.

Instance matching (§10): The goal of the instance matching track is to evaluate the
performance of different tools on the task of matching RDF individuals which
originate from different sources but describe the same real-world entity. Both the
training data set and the evaluation data set were generated by exploiting the same
configuration of the RDFT transformation tool. It performs controlled alterations
of an initial data source generating data sets and reference links (i.e. alignments).
Reference links were provided for the training set but not for the evaluation set, so
the evaluation is blind.

Table 1 summarizes the variation in the proposed test cases.

test formalism relations confidence modalities language SEALS

benchmark OWL = [0 1] blind+open EN
√

anatomy OWL = [0 1] open EN
√

conference OWL-DL =, <= [0 1] blind+open EN
√

large bio OWL = [0 1] open EN
√

multifarm OWL = [0 1] open CZ, CN, DE, EN,
√

ES, FR, NL, RU, PT
library OWL = [0 1] open EN, DE

√
interactive OWL-DL =, <= [0 1] open EN

√
im-rdft RDF = [0 1] blind EN

Table 1. Characteristics of the test cases (open evaluation is made with already published refer-
ence alignments and blind evaluation is made by organizers from reference alignments unknown
to the participants).

2.2 The SEALS platform

In 2010, participants of the Benchmark, Anatomy and Conference test cases were asked
for the first time to use the SEALS evaluation services: they had to wrap their tools as
web services and the tools were executed on the machines of the developers [29]. Since
2011, tool developers had to implement a simple interface and to wrap their tools in a
predefined way including all required libraries and resources. A tutorial for tool wrap-
ping was provided to the participants. It describes how to wrap a tool and how to use
a simple client to run a full evaluation locally. After local tests are passed successfully,
the wrapped tool had to be uploaded on the SEALS portal4. Consequently, the evalu-
ation was executed by the organizers with the help of the SEALS infrastructure. This
approach allowed to measure runtime and ensured the reproducibility of the results. As
a side effect, this approach also ensures that a tool is executed with the same settings
for all of the test cases that were executed in the SEALS mode.

2.3 Preparatory phase

Ontologies to be matched and (where applicable) reference alignments have been pro-
vided in advance during the period between June 15th and July 3rd, 2013. This gave
potential participants the occasion to send observations, bug corrections, remarks and
other test cases to the organizers. The goal of this preparatory period is to ensure that
the delivered tests make sense to the participants. The final test base was released on
July 3rd, 2013. The data sets did not evolve after that.

2.4 Execution phase

During the execution phase, participants used their systems to automatically match the
test case ontologies. In most cases, ontologies are described in OWL-DL and serialized
in the RDF/XML format [6]. Participants can self-evaluate their results either by com-
paring their output with reference alignments or by using the SEALS client to compute

4 http://www.seals-project.eu/join-the-community/

precision and recall. They can tune their systems with respect to the non blind evalua-
tion as long as the rules published on the OAEI web site are satisfied. This phase has
been conducted between July 3rd and September 1st, 2013.

2.5 Evaluation phase

Participants have been encouraged to provide (preliminary) results or to upload their
wrapped tools on the SEALS portal by September 1st, 2013. For the SEALS modality,
a full-fledged test including all submitted tools has been conducted by the organizers
and minor problems were reported to some tool developers, who had the occasion to fix
their tools and resubmit them.

First results were available by September 23rd, 2013. The organizers provided these
results individually to the participants. The results were published on the respective
web pages by the organizers by October 1st. The standard evaluation measures are
usually precision and recall computed against the reference alignments. More details
on evaluation measures are given in each test case section.

2.6 Comments on the execution

The number of participating systems has regularly increased over the years: 4 partici-
pants in 2004, 7 in 2005, 10 in 2006, 17 in 2007, 13 in 2008, 16 in 2009, 15 in 2010,
18 in 2011, 21 in 2012, 23 in 2013. However, participating systems are now constantly
changing. In 2013, 11 (7 in 2012) systems have not participated in any of the previous
campaigns. The list of participants is summarized in Table 2. Note that some systems
were also evaluated with different versions and configurations as requested by develop-
ers (see test case sections for details).

System A
M

L
C

ID
E

R
-C

L
C

ro
M

at
ch

er
H

er
T

U
D

A
H

ot
M

at
ch

IA
M

A
L

ily
IO

M
L

og
M

ap
L

og
M

ap
L

ite
M

aa
sM

tc
h

M
ap

SS
S

O
D

G
O

M
S

O
nt

oK
R

iM
O

M
20

13
Se

rv
O

M
ap

SL
IN

T
++

SP
H

eR
e

St
ri

ng
sA

ut
o

Sy
nt

he
si

s
W

eS
eE

W
ik

iM
at

ch
X

M
ap

YA
M

++

To
ta

l=
23

Confidence
√ √ √ √ √ √ √ √ √ √ √ √ √ √

14

benchmarks
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

20
anatomy

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
17

conference
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

20
multifarm

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
17

library
√ √ √ √ √ √ √ √ √ √ √

11
interactive

√ √ √ √
4

large bio
√ √ √ √ √ √ √ √ √ √ √ √ √

13
im-rdft

√ √ √ √
4

total 7 4 2 7 6 6 1 8 6 5 4 6 3 4 5 1 1 6 3 5 4 5 6 106

Table 2. Participants and the state of their submissions. Confidence stands for the type of results
returned by a system: it is ticked when the confidence is a non boolean value.

Only four systems participated in the instance matching track, where two of them
(LogMap and RiMOM2013) also participated in the SEALS tracks. The interactive
track also had the same participation, since there are not yet many tools supporting user
intervention within the matching process. Finally, some systems were not able to pass
some test cases as indicated in Table 2. SPHeRe is an exception since it only participated
in the largebio test case. It is a special system based on cloud computing which did not
use the SEALS interface this year.

The result summary per test case is presented in the following sections.

3 Benchmark

The goal of the benchmark data set is to provide a stable and detailed picture of each
algorithm. For that purpose, algorithms are run on systematically generated test cases.

3.1 Test data

The systematic benchmark test set is built around a seed ontology and many variations
of it. Variations are artificially generated, and focus on the characterization of the be-
havior of the tools rather than having them compete on real-life problems.

Since OAEI 2011.5, they are obtained by discarding and modifying features from a
seed ontology. Considered features are names of entities, comments, the specialization
hierarchy, instances, properties and classes. Full description of the systematic bench-
mark test set can be found on the OAEI web site.

This year, we used a version of the benchmark test suite generated by the test gen-
erator described in [13] from the usual bibliography ontology. The biblio seed ontol-
ogy concerns bibliographic references and is inspired freely from BibTeX. It contains
33 named classes, 24 object properties, 40 data properties, 56 named individuals and
20 anonymous individuals. The test case was not available to participants: participants
could test their systems with respect to last year data sets, but they have been evaluated
against a newly generated test. The tests were also blind for the organizers since we did
not looked into them before running the systems.

We also generated and run another test suite from a different seed ontology, but
we decided to cancel the evaluation because, due to the particular nature of the seed
ontology, the generator was not able to properly discard important information. We did
not run scalability tests this year.

The reference alignments are still restricted to named classes and properties and use
the “=” relation with confidence of 1.

3.2 Results

We run the experiments on a Debian Linux virtual machine configured with four pro-
cessors and 8GB of RAM running under a Dell PowerEdge T610 with 2*Intel Xeon
Quad Core 2.26GHz E5607 processors and 32GB of RAM, under Linux ProxMox 2
(Debian). All matchers where run under the SEALS client using Java 1.7 and a maxi-
mum heap size of 6GB. No timeout was explicitly set.

Reported figures are the average of 5 runs. As has already been shown in [13], there
is not much variance in compliance measures across runs. This is not necessarily the
case for time measurements so we report standard deviations with time measurements.

From the 23 systems listed in Table 2, 20 systems participated in this test case.
Three systems were only participating in the instance matching or largebio test cases.
XMap had two different system versions.

A few of these systems encountered problems (marked * in the results table):
LogMap and OntoK had quite random problems and did not return results for some
tests sometimes; ServOMap did not return results for tests past #261-4; MaasMatch did
not return results for tests past #254; MapSSS and StringsAuto did not return results
for tests past #202 or #247. Besides the two last systems, the problems where persistent
across all 5 runs. MapSSS and StringsAuto alternated between the two failure patterns.
We suspect that some of the random problems are due to internal or network timeouts.

Compliance Concerning F-measure results, YAM++ (.89) and CroMatcher (.88) are
far ahead before Cider-CL (.75), IAMA (.73) and ODGOMS (.71). Without surprise,
such systems have all the same profile: their precision is higher than their recall.

With respect to 2012, some systems maintained their performances or slightly
improved them (YAM++, MaasMatch, Hertuda, HotMatch, WikiMatch) while other
showed severe degradations. Some of these are explained by failures (MapSSS, Ser-
vOMap, LogMap) some others are not explained (LogMapLite, WeSeE). Matchers with
lower performance than the baseline are those mentioned before as encountering prob-
lems when running tests. This is a problem that such matchers are not robust to these
classical tests. It is noteworthy, and surprising, that most of the systems which did not
complete all the tests were systems which completed them in 2012!

Confidence accuracy Confidence-weighted measures reward systems able to provide
accurate confidence values. Using confidence-weighted F-measures does not increase
the evaluation of systems (beside edna which does not perform any filtering). In princi-
ple, the weighted recall cannot be higher, but the weighted precision can. In fact, only
edna, OntoK and XMapSig have an increased precision. The order given above does
not change much with the weighted measures: IAMA and ODGOMS pass CroMatcher
and Cider-CL. The only system to suffer a dramatic decrease is RiMOM, owing to the
very low confidence measures that it provides.

For those systems which have provided their results with confidence measures dif-
ferent from 1 or 0, it is possible to draw precision/recall graphs in order to compare
them; these graphs are given in Figure 1. The graphs show the real precision at n%
recall and they stop when no more correspondences are available; then the end point
corresponds to the precision and recall reported in the Table 3.

The precision-recall curves confirm the good performances of YAM++ and Cro-
Matcher. CroMatcher achieves the same level of recall as YAM++ but with consistently
lower precision. The curves show the large variability across systems. This year, sys-
tems seem to be less focussed on precision and make progress at the expense of preci-
sion. However, this may be an artifact due to systems facing problems.

recall0. 1.
0.

p
re
ci
si
on

1.

refalign
1,00

edna
0,50

AML
0,40

CIDER-CL
0,65

CroMatcher
0,80

HerTUDA
0,54

HotMatch
0,50

IAMA
0,57

LogMap
0,36

LogMapLite
0,50

MaasMatch
0,52

MapSSS
0,02

ODGOMS
0,55

OntoK
0,40

RiMOM2013
0,44

ServOMap
0,22

StringsAuto
0,02

Synthesis
0,60

WeSeE
0,39

WikiMatch
0,53

XMapGen
0,40

XMapSig
0,49

YAM++
0,82

Fig. 1. Precision/recall graphs for benchmarks. The alignments generated by matchers are cut
under a threshold necessary for achieving n% recall and the corresponding precision is com-
puted. Systems for which these graphs are not meaningful (because they did not provide graded
confidence values) are drawn in dashed lines.

Runtime There is a large discrepancy between matchers concerning the time spent
to match one test run, i.e., 94 matching tests. It ranges from less than a minute for
LogMapLite and AML (we do not count StringsAuto which failed to perform many
tests) to nearly three hours for OntoK. In fact, OntoK takes as much time as all the other
matchers together. Beside these large differences, we also observed large deviations
across runs.

We provide (Table 3) the average F-measure point provided per second by matchers.
This makes a different ordering of matchers: AML (1.04) comes first before Hertuda
(0.94) and LogMapLite (0.81). None of the matchers with the best performances come
first. This means that, for achieving good results, considerable time should be spent
(however, YAM++ still performs the 94 matching operations in less than 12 minutes).

3.3 Conclusions

Regarding compliance, we observed that, with very few exceptions, the systems per-
formed always better than the baseline. Most of the systems are focussing on precision.
This year there was a significant number of systems unable to pass the tests correctly.
On the one hand, this is good news: this means that systems are focussing on other test
cases than benchmarks. On the other hand, it exhibits system brittleness.

Except for a very few exception, system run time performance is acceptable on tests
of that size, but we did not perform scalability tests like last year.

biblio2 (2012) biblioc time
Matching system Prec. F-m. Rec. Prec. F-m. Rec. Time(s) St. Dev. pt F-m./s

edna 0.46 0.48 0.50 0.35 0.41 0.50
(0.61) (0.55) (0.58) (0.54)

AML 1.00 0.57 0.40 55 ±6 1.04
CIDER-CL 0.85 0.75 0.67 844 ±19 0.09

(0.84) (0.66) (0.55)
CroMatcher 0.95 0.88 0.82 1114 ±21 0.08

(0.75) (0.68) (0.63)
Hertuda 0.93 0.67 0.53 0.90 0.68 0.54 72 ±6 0.94

Hotmatch 0.99 0.68 0.52 0.96 0.68 0.50 103 ±6 0.66
IAMA 0.99 0.73 0.57 102 ±10 0.72

LogMap 1.00 0.64 0.47 0.72 0.53 0.42 123 ±7 0.43
(0.59) (0.42) (0.51) (0.39)

LogMapLt 0.95 0.66 0.50 0.43 0.46 0.50 57 ±7 0.81
MaasMtch (*) 0.6 0.6 0.6 0.84 0.69 0.59 173 ±6 0.40

(0.93) (0.65) (0.5) (0.66) (0.50) (0.41)
MapSSS (*) 1.00 0.86 0.75 0.84 0.14 0.08 81 ±44 0.17
ODGOMS 0.99 0.71 0.55 100 ±6 0.71

(0.98) (0.70) (0.54)
OntoK 0.63 0.51 0.43 10241 ±347 0.00

(0.69) (0.40)
RiMOM2013 0.59 0.58 0.58 105 ±34 0.55

(0.49) (0.19) (0.12)
ServOMap (*) 1.00 0.67 0.5 0.53 0.33 0.22 409 ±33 0.08
StringsAuto (*) 0.84 0.14 0.08 56 ±38 0.25

Synthesis 0.60 0.60 0.60 659 ±11 0.09
WeSeE 1.00 0.69(0.68) 0.52 0.96 0.55 0.39 4933 ±40 0.01

Wikimatch 0.97 0.67(0.68) 0.52 0.99 0.69 0.53 1845 ±39 0.04
XMapGen 0.66 0.54 0.46 594 ±5 0.09

(0.52) (0.44)
XMapSig 0.70 0.58 0.50 612 ±11 0.09

(0.71) (0.59)
YAM++ 0.96 0.89 0.82 0.97 0.89 0.82 702 ±46 0.13

(1.00) (0.72) (0.56) (0.84) (0.77) (0.70)

Table 3. Results obtained by participants on the biblio benchmark test suite aggregated with
harmonic means (values within parentheses are weighted version of the measure reported only
when different).

4 Anatomy

The anatomy test case confronts matchers with a specific type of ontologies from the
biomedical domain. We focus on two fragments of biomedical ontologies which de-
scribe the human anatomy5 and the anatomy of the mouse6. This data set has been used
since 2007 with some improvements over the years.

4.1 Experimental setting

We conducted experiments by executing each system in its standard setting and we
compare precision, recall, F-measure and recall+. The measure recall+ indicates the
amount of detected non-trivial correspondences. The matched entities in a non-trivial
correspondence do not have the same normalized label. The approach that generates
only trivial correspondences is depicted as baseline StringEquiv in the following sec-
tion.

This year we run the systems on a server with 3.46 GHz (6 cores) and 8GB RAM al-
located to the matching systems. This is a different setting compared to previous years,
so, runtime results are not fully comparable across years. The evaluation was performed
with the SEALS client. However, we slightly changed the way how precision and recall
are computed, i.e., the results generated by the SEALS client vary in some cases by
0.5% compared to the results presented below. In particular, we removed trivial corre-
spondences in the oboInOwl namespace like

http://...oboInOwl#Synonym = http://...oboInOwl#Synonym

as well as correspondences expressing relations different from equivalence. Using the
Pellet reasoner we also checked whether the generated alignment is coherent, i.e., there
are no unsatisfiable concepts when the ontologies are merged with the alignment.

4.2 Results

In Table 4, we analyze all participating systems that could generate an alignment in less
than ten hours. The listing comprises of 20 entries sorted by F-measure. Four systems
participated each with two different versions. These are AML and GOMMA with ver-
sions which use background knowledge (indicated with suffix “-bk”), LogMap with a
lightweight version LogMapLite that uses only some core components and XMap with
versions XMapSig and XMapGen which use two different parameters. For comparison
purposes, we run again last year version of GOMMA. GOMMA and HerTUDA par-
ticipated with the same system as last year (indicated by * in the table). In addition to
these two tools we have eight more systems which participated in 2012 and now partic-
ipated with new versions (HotMatch, LogMap, MaasMatch, MapSSS, ServOMap, We-
SeE, WikiMatch and YAM++). Due to some software and hardware incompatibilities,

5 http://www.cancer.gov/cancertopics/cancerlibrary/
terminologyresources/

6 http://www.informatics.jax.org/searches/AMA_form.shtml

YAM++ had to be run on a different machine and therefore its runtime (indicated by **)
is not fully comparable to that of other systems. Thus, 20 different systems generated an
alignment within the given time frame. Four participants (CroMatcher, RiMOM2013,
OntoK and Synthesis) did not finish in time or threw an exception.

Matcher Runtime Size Precision F-measure Recall Recall+ Coherent

AML-bk 43 1477 0.95 0.94 0.93 0.82
√

GOMMA-bk* 11 1534 0.92 0.92 0.93 0.81 -
YAM++ 62** 1395 0.94 0.90 0.87 0.66 -
AML 15 1315 0.95 0.89 0.83 0.54

√
LogMap 13 1398 0.92 0.88 0.85 0.59

√
GOMMA* 9 1264 0.96 0.87 0.80 0.47 -
StringsAuto 1444 1314 0.90 0.83 0.78 0.43 -
LogMapLite 7 1148 0.96 0.83 0.73 0.29 -
MapSSS 2040 1296 0.90 0.83 0.77 0.44 -
ODGOMS 1212 1102 0.98 0.82 0.71 0.24 -
WikiMatch 19366 1027 0.99 0.80 0.67 0.15 -
HotMatch 300 989 0.98 0.77 0.64 0.14 -
StringEquiv - 946 1.00 0.77 0.62 0.00 -
XMapSig 393 1192 0.86 0.75 0.67 0.13 -
ServOMap 43 975 0.96 0.75 0.62 0.10 -
XMapGen 403 1304 0.81 0.75 0.69 0.19 -
IAMA 10 845 1.00 0.71 0.55 0.01 -
CIDER-CL 12308 1711 0.65 0.69 0.73 0.31 -
HerTUDA* 117 1479 0.69 0.68 0.67 0.15 -
WeSeE 34343 935 0.62 0.47 0.38 0.09 -
MaasMatch 8532 2011 0.36 0.41 0.48 0.23 -

Table 4. Comparison, ordered by F-measure, against the reference alignment, runtime is mea-
sured in seconds, the “size” column refers to the number of correspondences in the generated
alignment.

Nine systems finished in less than 100 seconds, compared to 8 systems in OAEI
2012 and 2 systems in OAEI 2011. This year, 20 out of 24 systems generated results
compared to last year when 14 out of 18 systems generated results within the given
time frame. The top systems in terms of runtimes are LogMap, GOMMA, IAMA and
AML. Depending on the specific version of the systems, they require between 7 and 15
seconds to match the ontologies. The table shows that there is no correlation between
quality of the generated alignment in terms of precision and recall and required runtime.
This result has also been observed in previous OAEI campaigns.

Table 4 also shows the results for precision, recall and F-measure. In terms of F-
measure, the two top ranked systems are AML-bk and GOMMA-bk. These systems
use specialised background knowledge, i.e., they are based on mapping composition
techniques and the reuse of mappings between UMLS, Uberon and FMA. AML-bk and
GOMMA-bk are followed by a group of matching systems (YAM++, AML, LogMap,
GOMMA) generating alignments that are very similar with respect to precision, recall
and F-measure (between 0.87 and 0.91 F-measure). LogMap uses the general (biomed-
ical) purpose UMLS Lexicon, while the other systems either use Wordnet or no back-

ground knowledge. The results of these systems are at least as good as the results of the
best system in OAEI 2007-2010. Only AgreementMaker using additional background
knowledge could generate better results than these systems in 2011.

This year, 8 out of 20 systems achieved an F-measure that is lower than the baseline
which is based on (normalized) string equivalence (StringEquiv in the table).

Moreover, nearly all systems find many non-trivial correspondences. An exception
are IAMA and WeSeE which generated an alignment that is quite similar to the align-
ment generated by the baseline approach.

From the systems which participated last year WikiMatch showed a considerable
improvement. It increased precision from 0.86 to 0.99 and F-measure from 0.76 to
0.80. The other systems produced very similar results compared to the previous year.
One exception is WeSeE which achieved a much lower F-measure than in 2012.

Three systems have produced an alignment which is coherent. Last year two systems
produced such alignments.

4.3 Conclusions

This year 24 systems (or system variants) participated in the anatomy test case out
of which 20 produced results within 10 hours. This is so far the highest number of
participating systems as well as the highest number of systems which produce results
given time constraints for the anatomy test case.

As last year, we have witnessed a positive trend in runtimes as the majority of sys-
tems finish execution in less than one hour (16 out of 20). The AML-bk system improves
the best result in terms of F-measure set by a previous version of the system in 2010
and makes it also the top result for the anatomy test case.

5 Conference

The conference test case introduces matching several moderately expressive ontologies.
Within this test case, participant results were evaluated against reference alignments
(containing merely equivalence correspondences) and by using logical reasoning. The
evaluation has been performed with the SEALS infrastructure.

5.1 Test data

The data set consists of 16 ontologies in the domain of organizing conferences. These
ontologies have been developed within the OntoFarm project7.

The main features of this test case are:

– Generally understandable domain. Most ontology engineers are familiar with or-
ganizing conferences. Therefore, they can create their own ontologies as well as
evaluate the alignments among their concepts with enough erudition.

7 http://nb.vse.cz/˜svatek/ontofarm.html

– Independence of ontologies. Ontologies were developed independently and based
on different resources, they thus capture the issues in organizing conferences from
different points of view and with different terminologies.

– Relative richness in axioms. Most ontologies were equipped with OWL DL axioms
of various kinds; this opens a way to use semantic matchers.

Ontologies differ in their numbers of classes, of properties, in expressivity, but also
in underlying resources.

5.2 Results

We provide results in terms of F0.5-measure, F1-measure and F2-measure, comparison
with baseline matchers, precision/recall triangular graph and coherency evaluation.

Evaluation based on reference alignments We evaluated the results of participants
against blind reference alignments (labelled as ra2 on the conference web-page). This
includes all pairwise combinations between 7 different ontologies, i.e. 21 alignments.

These reference alignments have been generated as a transitive closure computed
on the original reference alignments. In order to obtain a coherent result, conflicting
correspondences, i.e., those causing unsatisfiability, have been manually inspected and
removed by evaluators. As a result, the degree of correctness and completeness of the
new reference alignment is probably slightly better than for the old one. However, the
differences are relatively limited. Whereas the new reference alignments are not open,
the old reference alignments (labeled as ra1 on the conference web-page) are available.
These represent close approximations of the new ones.

Table 5 shows the results of all participants with regard to the new reference align-
ment. F0.5-measure, F1-measure and F2-measure are computed for the threshold that
provides the highest average F1-measure. F1 is the harmonic mean of precision and
recall where both are equally weighted; F2 weights recall higher than precision and
F0.5 weights precision higher than recall. The matchers shown in the table are or-
dered according to their highest average F1-measure. This year we employed two
baselines matcher. edna (string edit distance matcher) is used within the benchmark
test case and with regard to performance it is very similar as previously used base-
line2; StringEquiv is used within the anatomy test case. These baselines divide match-
ers into three groups. Group 1 consists of matchers (YAM++, AML-bk –AML stand-
ing for AgreementMakerLight–, LogMap, AML, ODGOMS, StringsAuto, ServOMap,
MapSSS, HerTUDA, WikiMatch, WeSeE-Match, IAMA, HotMatch, CIDER-CL) hav-
ing better (or the same) results than both baselines in terms of highest average F1-
measure. Group 2 consists of matchers (OntoK, LogMapLite, XMapSigG, XMapGen
and SYNTHESIS) performing better than baseline StringEquiv but worse than edna.
Other matchers (RIMOM2013, CroMatcher and MaasMatch) performed worse than
both baselines. CroMatcher was unable to process any ontology pair where confer-
ence.owl ontology was included. Therefore, the evaluation was run only on 15 test
cases. Thus, its results are just an approximation.

Performance of matchers from Group 1 regarding F1-measure is visualized in Fig-
ure 2.

Matcher Prec. F0.5-m. F1-m. F2-m. Rec. Size Inc. Al. Inc-dg

YAM++ 0.78 0.75 0.71 0.67 0.65 12.524 0 0.0%
AML-bk 0.82 0.74 0.64 0.57 0.53 9.714 0 0.0%
LogMap 0.76 0.70 0.63 0.57 0.54 10.714 0 0.0%

AML 0.82 0.73 0.63 0.55 0.51 9.333 0 0.0%
ODGOMS1 2 0.70 0.66 0.62 0.57 0.55 11.762 13 6.5%
StringsAuto 0.74 0.68 0.60 0.53 0.50 11.048 0 0.0%

ServOMap v104 0.69 0.64 0.58 0.53 0.50 11.048 4 2.0%
MapSSS 0.77 0.68 0.58 0.50 0.46 9.857 0 0.0%

ODGOMS1 1 0.72 0.65 0.57 0.51 0.47 9.667 9 4.4%
HerTUDA 0.70 0.63 0.56 0.49 0.46 9.857 9 5.3%
WikiMatch 0.70 0.63 0.55 0.48 0.45 9.762 10 6.1%

WeSeE-Match 0.79 0.67 0.55 0.46 0.42 8 1 0.4%
IAMA 0.74 0.65 0.55 0.48 0.44 8.857 7 4%

HotMatch 0.67 0.62 0.55 0.50 0.47 10.524 9 5.0%
CIDER-CL 0.72 0.64 0.55 0.48 0.44 22.857 21 19.5%

edna 0.73 0.64 0.55 0.48 0.44
OntoK 0.72 0.63 0.54 0.47 0.43 8.952 7 3.9%

LogMapLite 0.68 0.62 0.54 0.48 0.45 9.952 7 5.4%
XMapSiG1 3 0.68 0.61 0.53 0.47 0.44 10.714 0 0.0%
XMapGen1 4 0.64 0.59 0.53 0.48 0.45 18.571 0 0.0%
SYNTHESIS 0.73 0.63 0.53 0.45 0.41 8.429 9 4.8%
StringEquiv 0.76 0.64 0.52 0.43 0.39

RIMOM2013* 0.55 0.53 0.51 0.48 0.47 56.81 20 27.1%
XMapSiG1 4 0.75 0.62 0.50 0.41 0.37 8.048 1 0.8%
CroMatcher 0.56 0.53 0.49 0.45 0.43
XMapGen 0.70 0.59 0.48 0.40 0.36 12 1 0.4%
MaasMatch 0.27 0.30 0.36 0.44 0.53

Table 5. The highest average F[0.5|1|2]-measure and their corresponding precision and recall for
each matcher with its F1-optimal threshold (ordered by F1-measure). Average size of alignments,
number of incoherent alignments and average degree of incoherence. The mark * is added when
we only provide lower bound of the degree of incoherence due to the combinatorial complexity
of the problem.

rec=1.0 rec=.8 rec=.6 pre=1.0pre=.8pre=.6

F1-measure=0.5

F1-measure=0.6

F1-measure=0.7

YAM++

AML-bk
LogMap

AML

ODGOMS
StringsAuto

ServOMap

MapSSS

Hertuda

WikiMatch

WeSeE-Match

IAMA

HotMatch

CIDER-CL

edna

Fig. 2. Precision/recall triangular graph for the conference test case. Dotted lines depict level
of precision/recall while values of F1-measure are depicted by areas bordered by corresponding
lines F1-measure=0.[5|6|7].
Comparison with previous years Ten matchers also participated in this test case in
OAEI 2012. The largest improvement was achieved by MapSSS (precision from .47 to
.77, whereas recall remains the same, .46) and ServOMap (precision from .68 to .69
and recall from .41 to .50).

Runtimes We measured the total time of generating 21 alignments. It was executed on a
laptop under Ubuntu running on Intel Core i5, 2.67GHz and 8GB RAM. In all, there are
eleven matchers which finished all 21 tests within 1 minute or around 1 minute (AML-
bk: 16s, ODGOMS: 19s, LogMapLite: 21s, AML, HerTUDA, StringsAuto, HotMatch,
LogMap, IAMA, RIMOM2013: 53s and MaasMatch: 76s). Next, four systems needed
less than 10 minutes (ServOMap, MapSSS, SYNTHESIS, CIDER-CL). 10 minutes are
enough for the next three matchers (YAM++, XMapGen, XMapSiG). Finally, three
matchers needed up to 40 minutes to finish all 21 test cases (WeSeE-Match: 19 min,
WikiMatch: 26 min, OntoK: 40 min).

In conclusion, regarding performance we can see (clearly from Figure 2) that
YAM++ is on the top again. The next four matchers (AML-bk, LogMap, AML,
ODGOMS) are relatively close to each other. This year there is a larger group of match-
ers (15) which are above the edna baseline than previous years. This is partly because a
couple of previous system matchers improved and a couple of high quality new system
matchers entered the OAEI campaign.

Evaluation based on alignment coherence As in the previous years, we apply the
Maximum Cardinality measure to evaluate the degree of alignment incoherence, see

Table 5. Details on this measure and its implementation can be found in [21]. We com-
puted the average for all 21 test cases of the conference test case for which there exists
a reference alignment. In one case, RIMOM2013, marked with an asterisk, we could
not compute the exact degree of incoherence due to the combinatorial complexity of the
problem, however we were still able to compute a lower bound for which we know that
the actual degree is higher. We do not provide numbers for CroMatcher since it did not
generate all 21 alignments. For MaasMatch, we could not compute the degree of inco-
herence since its alignments are highly incoherent (and thus the reasoner encountered
exceptions).

This year eight systems managed to generate coherent alignments: AML, AML-bk,
LogMap, MapSSS, StringsAuto, XMapGen, XMapSiG and YAM++. Coherent results
need not only be related to a specific approach ensuring the coherency, but it can be
indirectly caused by generating small and highly precise alignments. However, look-
ing at Table 5 it seems that there is no matcher which on average generate too small
alignments. In all, this is a large important improvement compared to previous years,
where we observed that only four (two) systems managed to generate (nearly) coherent
alignments in 2011-2012.

6 Large biomedical ontologies (largebio)

The Largebio test case aims at finding alignments between the large and semantically
rich biomedical ontologies FMA, SNOMED-CT, and NCI, which contains 78,989,
306,591 and 66,724 classes, respectively.

6.1 Test data

The test case has been split into three matching problems: FMA-NCI, FMA-SNOMED
and SNOMED-NCI; and each matching problem in 2 tasks involving different frag-
ments of the input ontologies.

The UMLS Metathesaurus [4] has been selected as the basis for reference align-
ments. UMLS is currently the most comprehensive effort for integrating independently-
developed medical thesauri and ontologies, including FMA, SNOMED-CT, and NCI.
Although the standard UMLS distribution does not directly provide “alignments” (in the
OAEI sense) between the integrated ontologies, it is relatively straightforward to extract
them from the information provided in the distribution files (see [18] for details).

It has been noticed, however, that although the creation of UMLS alignments com-
bines expert assessment and auditing protocols they lead to a significant number of
logical inconsistencies when integrated with the corresponding source ontologies [18].

To address this problem, in OAEI 2013, unlike previous editions, we have created
a unique refinement of the UMLS mappings combining both Alcomo (mapping) de-
bugging system [21] and LogMap’s (mapping) repair facility [17], and manual curation
when necessary. This refinement of the UMLS mappings, which does not lead to unsat-
isfiable classes8, has been used as the Large BioMed reference alignment. Objections

8 For the SNOMED-NCI case we used the OWL 2 EL reasoner ELK, see Section 6.4 for details.

have been raised on the validity (and fairness) of the application of mapping repair tech-
niques to make reference alignments coherent [24]. For next year campaign, we intend
to take into consideration their suggestions to mitigate the effect of using repair tech-
niques. This year reference alignment already aimed at mitigating the fairness effect
by combining two mapping repair techniques, however further improvement should be
done in this line.

6.2 Evaluation setting, participation and success

We have run the evaluation in a high performance server with 16 CPUs and allocating
15 Gb RAM. Precision, Recall and F-measure have been computed with respect to the
UMLS-based reference alignment. Systems have been ordered in terms of F-measure.

In the largebio test case, 13 out of 21 participating systems have been able to cope
with at least one of the tasks of the largebio test case. Synthesis, WeSeEMatch and
WikiMatch failed to complete the smallest task with a time out of 18 hours, while
MapSSS, RiMOM, CIDER-CL, CroMatcher and OntoK threw an exception during the
matching process. The latter two threw an out-of-memory exception. In total we have
evaluated 20 system configurations.

6.3 Tool variants and background knowledge

There were, in this test case, different variants of tools using background knowledge to
certain degree. These are:

– XMap participates with two variants. XMapSig, which uses a sigmoid function,
and XMapGen, which implements a genetic algorithm. ODGOMS also participates
with two versions (v1.1 and v1.2). ODGOMS-v1.1 is the original submitted version
while ODGOMS-v1.2 includes some bug fixes and extensions.

– LogMap has also been evaluated with two variants: LogMap and LogMap-BK.
LogMap-BK uses normalisations and spelling variants from the general (biomedi-
cal) purpose UMLS Lexicon9 while LogMap has this feature deactivated.

– AML has been evaluated with 6 different variants depending on the use of repair
techniques (R), general background knowledge (BK) and specialised background
knowledge based on the UMLS Metathesaurus (SBK).

– YAM++ and MaasMatch also use the general purpose background knowledge pro-
vided by WordNet10.

Since the reference alignment of this test case is based on the UMLS Metathesaurus,
we did not included within the results the alignments provided by AML-SBK and AML-
SBK-R. Nevertheless we consider their results very interesting: AML-SBK and AML-
SBK-R averaged F-measures higher than 0.90 in all 6 tasks.

We have also re-run the OAEI 2012 version of GOMMA. The results of GOMMA
may slightly vary w.r.t. those in 2012 since we have used a different reference align-
ment.

9 http://www.nlm.nih.gov/pubs/factsheets/umlslex.html
10 http://wordnet.princeton.edu/

System
FMA-NCI FMA-SNOMED SNOMED-NCI

Average #
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

LogMapLt 7 59 14 101 54 132 61 6
IAMA 13 139 27 217 98 206 117 6
AML 16 201 60 542 291 569 280 6
AML-BK 38 201 93 530 380 571 302 6
AML-R 18 194 86 554 328 639 303 6
GOMMA2012 39 243 54 634 220 727 320 6
AML-BK-R 42 204 121 583 397 635 330 6
YAM++ 93 365 100 401 391 712 344 6
LogMap-BK 44 172 85 556 444 1,087 398 6
LogMap 41 161 78 536 433 1,232 414 6
ServOMap 140 2,690 391 4,059 1,698 6,320 2,550 6
SPHeRe (*) 16 8,136 154 20,664 2,486 10,584 7,007 6
XMapSiG 1,476 - 11,720 - - - 6,598 2
XMapGen 1,504 - 12,127 - - - 6,816 2
Hertuda 3,403 - 17,610 - - - 10,507 2
ODGOMS-v1.1 6,366 - 27,450 - - - 16,908 2
HotMatch 4,372 - 32,243 - - - 18,308 2
ODGOMS-v1.2 10,204 - 42,908 - - - 26,556 2
StringsAuto 6,358 - - - - - 6,358 1
MaasMatch 12,409 - - - - - 12,409 1

Systems 20 12 18 12 12 12 5,906 86

Table 6. System runtimes (s) and task completion. GOMMA is a system provided in 2012. (*)
SPHeRe times were reported by the authors. SPHeRe is a special tool which relies on the utiliza-
tion of cloud computing resources.

6.4 Alignment coherence

Together with Precision, Recall, F-measure and Runtimes we have also evaluated the
coherence of alignments. We report (1) the number of unsatisfiabilities when reasoning
with the input ontologies together with the computed mappings, and (2) the ratio of
unsatisfiable classes with respect to the size of the union of the input ontologies.

We have used the OWL 2 reasoner MORe [2] to compute the number of unsatisfi-
able classes. For the cases in which MORe could not cope with the input ontologies and
the mappings (in less than 2 hours) we have provided a lower bound on the number of
unsatisfiable classes (indicated by ≥) using the OWL 2 EL reasoner ELK [20].

In this OAEI edition, only three systems have shown mapping repair facilities,
namely: YAM++, AML with (R)epair configuration and LogMap. Tables 7-10 show
that even the most precise alignment sets may lead to a huge amount of unsatisfiable
classes. This proves the importance of using techniques to assess the coherence of the
generated alignments.

6.5 Runtimes and task completion

Table 6 shows which systems (including variants) were able to complete each of the
matching tasks in less than 18 hours and the required computation times. Systems have

been ordered with respect to the number of completed tasks and the average time re-
quired to complete them. Times are reported in seconds.

The last column reports the number of tasks that a system could complete. For
example, 12 system configurations were able to complete all six tasks. The last row
shows the number of systems that could finish each of the tasks. The tasks involving
SNOMED were also harder with respect to both computation times and the number of
systems that completed the tasks.

6.6 Results for the FMA-NCI matching problem

Table 7 summarizes the results for the tasks in the FMA-NCI matching problem.
LogMap-BK and YAM++ provided the best results in terms of both Recall and F-
measure in Task 1 and Task 2, respectively. IAMA provided the best results in terms
of precision, although its recall was below average. Hertuda provided competitive re-
sults in terms of recall, but the low precision damaged the final F-measure. On the other
hand, StringsAuto, XMapGen and XMapSiG provided a set of alignments with high
precision, however, the F-measure was damaged due to the low recall of their align-
ments. Overall, the results were very positive and many systems obtained an F-measure
higher than 0.80 in the two tasks.

Efficiency in Task 2 has decreased with respect to Task 1. This is mostly due to
the fact that larger ontologies also involve more possible candidate alignments and it is
harder to keep high precision values without damaging recall, and vice versa.

6.7 Results for the FMA-SNOMED matching problem

Table 8 summarizes the results for the tasks in the FMA-SNOMED matching problem.
YAM++ provided the best results in terms of F-measure on both Task 3 and Task 4.
YAM++ also provided the best Precision and Recall in Task 3 and Task 4, respectively;
while AML-BK provided the best Recall in Task 3 and AML-R the best Precision in
Task 4.

Overall, the results were less positive than in the FMA-NCI matching problem
and only YAM++ obtained an F-measure greater than 0.80 in the two tasks. Further-
more, 9 systems failed to provide a recall higher than 0.4. Thus, matching FMA against
SNOMED represents a significant leap in complexity with respect to the FMA-NCI
matching problem.

As in the FMA-NCI matching problem, efficiency also decreases as the ontology
size increases. The most important variations were suffered by SPHeRe, IAMA and
GOMMA in terms of precision.

6.8 Results for the SNOMED-NCI matching problem

Table 9 summarizes the results for the tasks in the SNOMED-NCI matching problem.
LogMap-BK and ServOMap provided the best results in terms of both Recall and F-
measure in Task 5 and Task 6, respectively. YAM++ provided the best results in terms
of precision in Task 5 while AML-R in Task 6.

Task 1: small FMA and NCI fragments

System Time (s) # Mappings
Scores Incoherence

Prec. F-m. Rec. Unsat. Degree

LogMap-BK 45 2,727 0.95 0.91 0.88 2 0.02%
YAM++ 94 2,561 0.98 0.91 0.85 2 0.02%
GOMMA2012 40 2,626 0.96 0.91 0.86 2,130 20.9%
AML-BK-R 43 2,619 0.96 0.90 0.86 2 0.02%
AML-BK 39 2,695 0.94 0.90 0.87 2,932 28.8%
LogMap 41 2,619 0.95 0.90 0.85 2 0.02%
AML-R 19 2,506 0.96 0.89 0.82 2 0.02%
ODGOMS-v1.2 10,205 2,558 0.95 0.89 0.83 2,440 24.0%
AML 16 2,581 0.95 0.89 0.83 2,598 25.5%
LogMapLt 8 2,483 0.96 0.88 0.81 2,104 20.7%
ODGOMS-v1.1 6,366 2,456 0.96 0.88 0.81 1,613 15.8%
ServOMap 141 2,512 0.95 0.88 0.81 540 5.3%
SPHeRe 16 2,359 0.96 0.86 0.77 367 3.6%
HotMatch 4,372 2,280 0.96 0.84 0.75 285 2.8%
Average 2,330 2,527 0.90 0.81 0.75 1,582 15.5%
IAMA 14 1,751 0.98 0.73 0.58 166 1.6%
Hertuda 3,404 4,309 0.59 0.70 0.87 2,675 26.3%
StringsAuto 6,359 1,940 0.84 0.67 0.55 1,893 18.6%
XMapGen 1,504 1,687 0.83 0.61 0.48 1,092 10.7%
XMapSiG 1,477 1,564 0.86 0.60 0.46 818 8.0%
MaasMatch 12,410 3,720 0.41 0.46 0.52 9,988 98.1%

Task 2: whole FMA and NCI ontologies

System Time (s) # Mappings
Scores Incoherence

Prec. F-m. Rec. Unsat. Degree

YAM++ 366 2,759 0.90 0.87 0.85 9 0.01%
GOMMA2012 243 2,843 0.86 0.85 0.83 5,574 3.8%
LogMap 162 2,667 0.87 0.83 0.79 10 0.01%
LogMap-BK 173 2,668 0.87 0.83 0.79 9 0.01%
AML-BK 201 2,828 0.82 0.80 0.79 16,120 11.1%
AML-BK-R 205 2,761 0.83 0.80 0.78 10 0.01%
Average 1,064 2,711 0.84 0.80 0.77 9,223 6.3%
AML-R 194 2,368 0.89 0.80 0.72 9 0.01%
AML 202 2,432 0.88 0.80 0.73 1,044 0.7%
SPHeRe 8,136 2,610 0.85 0.80 0.75 1,054 0.7%
ServOMap 2,690 3,235 0.73 0.76 0.80 60,218 41.3%
LogMapLt 60 3,472 0.69 0.74 0.81 26,442 18.2%
IAMA 139 1,894 0.90 0.71 0.58 180 0.1%

Table 7. Results for the FMA-NCI matching problem.

As in the previous matching problems, efficiency decreases as the ontology size in-
creases. For example, in Task 6, only ServOMap and YAM++ could reach an F-measure
higher than 0.7. The results were also less positive than in the FMA-SNOMED match-
ing problem, and thus, the SNOMED-NCI case represented another leap in complexity.

Task 3: small FMA and SNOMED fragments

System Time (s) # Mappings
Scores Incoherence

Prec. F-m. Rec. Unsat. Degree

YAM++ 100 6,635 0.98 0.84 0.73 13,040 55.3%
AML-BK 93 6,937 0.94 0.82 0.73 12,379 52.5%
AML 60 6,822 0.94 0.82 0.72 15,244 64.7%
AML-BK-R 122 6,554 0.95 0.80 0.70 15 0.06%
AML-R 86 6,459 0.95 0.80 0.69 14 0.06%
LogMap-BK 85 6,242 0.96 0.79 0.67 0 0.0%
LogMap 79 6,071 0.97 0.78 0.66 0 0.0%
ServOMap 391 5,828 0.95 0.75 0.62 6,018 25.5%
ODGOMS-v1.2 42,909 5,918 0.86 0.69 0.57 9,176 38.9%
Average 8,073 4,248 0.89 0.55 0.44 7,308 31.0%
GOMMA2012 54 3,666 0.92 0.54 0.38 2,058 8.7%
ODGOMS-v1.1 27,451 2,267 0.88 0.35 0.22 938 4.0%
HotMatch 32,244 2,139 0.87 0.34 0.21 907 3.9%
LogMapLt 15 1,645 0.97 0.30 0.18 773 3.3%
Hertuda 17,610 3,051 0.57 0.29 0.20 1,020 4.3%
SPHeRe 154 1,577 0.92 0.27 0.16 805 3.4%
IAMA 27 1,250 0.96 0.24 0.13 22,925 97.3%
XMapGen 12,127 1,827 0.69 0.24 0.14 23,217 98.5%
XMapSiG 11,720 1,581 0.76 0.23 0.13 23,025 97.7%

Task 4: whole FMA ontology with SNOMED large fragment

System Time (s) # Mappings
Scores Incoherence

Prec. F-m. Rec. Unsat. Degree

YAM++ 402 6,842 0.95 0.82 0.72 ≥57,074 ≥28.3%
AML-BK 530 6,186 0.94 0.77 0.65 ≥40,162 ≥19.9%
AML 542 5,797 0.96 0.76 0.62 ≥39,472 ≥19.6%
AML-BK-R 584 5,858 0.94 0.74 0.62 29 0.01%
AML-R 554 5,499 0.97 0.74 0.59 7 0.004%
ServOMap 4,059 6,440 0.86 0.72 0.62 ≥164,116 ≥81.5%
LogMap-BK 556 6,134 0.87 0.71 0.60 0 0.0%
LogMap 537 5,923 0.89 0.71 0.59 0 0.0%
Average 2,448 5,007 0.83 0.59 0.48 40,143 19.9%
GOMMA2012 634 5,648 0.41 0.31 0.26 9,918 4.9%
LogMapLt 101 1,823 0.88 0.30 0.18 ≥4,393 ≥2.2%
SPHeRe 20,664 2,338 0.61 0.25 0.16 6,523 3.2%
IAMA 218 1,600 0.75 0.23 0.13 ≥160,022 ≥79.4%

Table 8. Results for the FMA-SNOMED matching problem.

6.9 Summary results for the top systems

Table 10 summarizes the results for the systems that completed all 6 tasks of the Large
BioMed Track. The table shows the total time in seconds to complete all tasks and
averages for Precision, Recall, F-measure and Incoherence degree. The systems have
been ordered according to the average F-measure.

Task 5: small SNOMED and NCI fragments

System Time (s) # Mappings
Scores Incoherence

Prec. F-m. Rec. Unsat. Degree

LogMap-BK 444 13,985 0.89 0.77 0.68 ≥40 ≥0.05%
LogMap 433 13,870 0.90 0.77 0.67 ≥47 ≥0.06%
ServOMap 1,699 12,716 0.93 0.76 0.64 ≥59,944 ≥79.8%
AML-BK-R 397 13,006 0.92 0.76 0.65 ≥32 ≥0.04%
AML-BK 380 13,610 0.89 0.76 0.66 ≥66,389 ≥88.4%
AML-R 328 12,622 0.92 0.75 0.63 ≥36 ≥0.05%
YAM++ 391 11,672 0.97 0.75 0.61 ≥0 ≥0.0%
AML 291 13,248 0.89 0.75 0.64 ≥63,305 ≥84.3%
Average 602 12,003 0.92 0.72 0.60 32,222 42.9%
LogMapLt 55 10,962 0.94 0.70 0.56 ≥60,427 ≥80.5%
GOMMA2012 221 10,555 0.94 0.68 0.54 ≥50,189 ≥66.8%
SPHeRe 2,486 9,389 0.92 0.62 0.47 ≥46,256 ≥61.6%
IAMA 99 8,406 0.96 0.60 0.44 ≥40,002 ≥53.3%

Task 6: whole NCI ontology with SNOMED large fragment

System Time (s) # Mappings
Scores Incoherence

Prec. F-m. Rec. Unsat. Degree

ServOMap 6,320 14,312 0.82 0.72 0.64 ≥153,259 ≥81.0%
YAM++ 713 12,600 0.88 0.71 0.60 ≥116 ≥0.06%
AML-BK 571 11,354 0.92 0.70 0.56 ≥121,525 ≥64.2%
AML-BK-R 636 11,033 0.93 0.69 0.55 ≥41 ≥0.02%
LogMap-BK 1,088 12,217 0.87 0.69 0.58 ≥1 ≥0.001%
LogMap 1,233 11,938 0.88 0.69 0.57 ≥1 ≥0.001%
AML 570 10,940 0.93 0.69 0.55 ≥121,171 ≥64.1%
AML-R 640 10,622 0.94 0.68 0.54 ≥51 ≥0.03%
Average 1,951 11,581 0.88 0.67 0.55 72,365 38.3%
LogMapLt 132 12,907 0.80 0.66 0.56 ≥150,773 ≥79.7%
GOMMA2012 728 12,440 0.79 0.63 0.53 ≥127,846 ≥67.6%
SPHeRe 10,584 9,776 0.88 0.61 0.47 ≥105,418 ≥55.7%
IAMA 207 8,843 0.92 0.59 0.44 ≥88,185 ≥46.6%

Table 9. Results for the SNOMED-NCI matching problem.

YAM++ was a step ahead and obtained the best average Precision and Recall. AML-
R obtained the second best Precision while AML-BK obtained the second best Recall.

Regarding mapping incoherence, LogMap-BK computed, on average, the mapping
sets leading to the smallest number of unsatisfiable classes. The configurations of AML
using (R)epair also obtained very good results in terms mapping coherence.

Finally, LogMapLt was the fastest system. The rest of the tools, apart from Ser-
voMap and SPHeRe, were also very fast and only needed between 11 and 53 minutes
to complete all 6 tasks. ServOMap required around 4 hours to complete them while
SPHeRe required almost 12 hours.

83

System Total Time (s)
Average

Prec. F-m. Rec. Inc. Degree

YAM++ 2,066 0.94 0.82 0.73 14%
AML-BK 1,814 0.91 0.79 0.71 44%
LogMap-BK 2,391 0.90 0.78 0.70 0%
AML-BK-R 1,987 0.92 0.78 0.69 0%
AML 1,681 0.93 0.78 0.68 43%
LogMap 2,485 0.91 0.78 0.69 0%
AML-R 1,821 0.94 0.78 0.67 0%
ServOMap 15,300 0.87 0.77 0.69 52%
GOMMA2012 1,920 0.81 0.65 0.57 29%
LogMapLt 371 0.87 0.60 0.52 34%
SPHeRe 42,040 0.86 0.57 0.46 21%
IAMA 704 0.91 0.52 0.39 46%

Table 10. Summary results for the top systems (values in italics are not absolute 0 but are caused
by rounding).

6.10 Conclusions

Although the proposed matching tasks represent a significant leap in complexity with
respect to the other OAEI test cases, the results have been very promising and 12 sys-
tems (including all system configurations) completed all matching tasks with very com-
petitive results.

There is, however, plenty of room for improvement: (1) most of the participating
systems disregard the coherence of the generated alignments; (2) the size of the input
ontologies should not significantly affect efficiency, and (3) recall in the tasks involving
SNOMED should be improved while keeping the current precision values.

The alignment coherence measure was the weakest point of the systems participat-
ing in this test case. As shown in Tables 7-10, even highly precise alignment sets may
lead to a huge number of unsatisfiable classes. The use of techniques to assess mapping
coherence is critical if the input ontologies together with the computed mappings are
to be used in practice. Unfortunately, only a few systems in OAEI 2013 have shown to
successfully use such techniques. We encourage ontology matching system developers
to develop their own repair techniques or to use state-of-the-art techniques such as Al-
como [21], the repair module of LogMap (LogMap-Repair) [17] or the repair module
of AML [26], which have shown to work well in practice [19].

7 MultiFarm

For evaluating the ability of matching systems to deal with ontologies in different natu-
ral languages, the MultiFarm data set has been proposed [22]. This data set results from
the translation of 7 Conference test case ontologies (cmt, conference, confOf, iasted,
sigkdd, ekaw and edas), into 8 languages (Chinese, Czech, Dutch, French, German,
Portuguese, Russian, and Spanish, in addition to English). The 9 language versions re-
sult in 36 pairs of languages. For each pair of language, we take into account the align-
ment direction (cmten→confOfde and cmtde→confOfen, for instance, as two matching

tasks), what results in 49 alignments. Hence, MultiFarm contains 36 × 49 matching
tasks.

7.1 Experimental setting

For the 2013 evaluation campaign, we have used a subset of the whole MultiFarm data
set, omitting all the matching tasks involving the edas and ekaw ontologies (resulting in
36×25 = 900 matching tasks). In this sub set, we can distinguish two types of matching
tasks: (i) those test cases where two different ontologies have been translated in different
languages, e.g., cmt→confOf, and (ii) those test cases where the same ontology has
been translated in different languages, e.g., cmt→cmt. For the test cases of type (ii),
good results are not necessarily related to the use of specific techniques for dealing
with ontologies in different natural languages, but on the ability to exploit the fact that
both ontologies have an identical structure (and that the reference alignment covers all
entities described in the ontologies).

This year, 7 systems (out of 23 participants, see Table 2) use specific cross-lingual11

methods : CIDER-CL, MapSSS, RiMOM2013, StringsAuto, WeSeE, WikiMatch, and
YAM++. This maintains the number of participants implementing specific modules as
in 2012 (ASE, AUTOMSv2, GOMMA, MEDLEY, WeSeE, WikiMatch, and YAM++),
counting on 4 new participants (some of them, extensions of systems participating in
previous campaigns). The other systems are not specifically designed to match ontolo-
gies in different languages nor do they use any component for that purpose. CIDER-
CL uses textual definitions of concepts (from Wikipedia articles) and computes co-
occurrence information between multilingual definitions. MapSSS, StringsAuto and
RiMOM201312 apply translation, using Google Translator API, before the matching
step. In particular, RiMOM2013 uses a two-step translation: a first step for translating
labels from the target language into the source language and a second step for translat-
ing all labels into English (for using WordNet). WeSeE uses the Web Translator API
and YAM++ uses Microsoft Bing Translation, where both of them consider English as
pivot language. Finally, WikiMatch exploits Wikipedia for extracting cross-language
links for helping in the task of finding correspondences between the ontologies.

7.2 Execution setting and runtime

All systems have been executed on a Debian Linux virtual machine configured with
four processors and 20GB of RAM running under a Dell PowerEdge T610 with 2*Intel
11 We have revised the definitions of multilingual and cross-lingual matching. Initially, as re-

ported in [22], MultiFarm was announced as a benchmark for multilingual ontology matching,
i.e., multilingual in the sense that we have a set of ontologies in 8 languages. However, it
is more appropriate to use the term cross-lingual ontology matching. Cross-lingual ontology
matching refers to the matching cases where each ontology uses a different natural language
(or a different set of natural languages) for entity naming, i.e., the intersection of sets is empty.
It is the case of the matching tasks in MultiFarm.

12 These 3 systems have encountered problems for accessing Google servers. New versions of
these tools were received after the deadline, improving, for some test cases, the results reported
here.

Xeon Quad Core 2.26GHz E5607 processors and 32GB of RAM, under Linux ProxMox
2 (Debian). The runtimes for each system can be found in Table 11. The measurements
are based on 1 run. We can observe large differences between the time required for a
system to complete the 900 matching tasks. While RiMOM requires around 13 minutes,
WeSeE takes around 41 hours. As we have used this year a different setting from the
one in 2012, we are not able to compare runtime measurements over the campaigns.

7.3 Evaluation results

Overall results Before discussing the results per pairs of languages, we present the ag-
gregated results for the test cases within type (i) and (ii) matching task. Table 11 shows
the aggregated results. Systems not listed in this table have generated empty alignments,
for most test cases (ServOMap) or have thrown exceptions (CroMatcher, XMapGen,
XMapSiG). For computing these results, we do not distinguish empty and erroneous
alignments. As shown in Table 11, we observe significant differences between the re-
sults obtained for each type of matching task (specially in terms of precision). Most
of the systems that implement specific cross-lingual techniques – YAM++ (.40), Wiki-
Match (.27), RiMOM2013 (.21), WeSeE (.15), StringsAuto (.14), and MapSSS (.10) –
generate the best results for test cases of type (i). For the test cases of type (ii), systems
non specifically designed for cross-lingual matching – MaasMatch and OntoK – are
in the top-5 F-measures together with YAM++, WikiMatch and WeSeE. Concerning
CIDER-CL, this system in principle is able to deal with a subset of languages, i.e., DE,
EN, ES, and NL.

Overall (for both types i and ii), in terms of F-measure, most systems implementing
specific cross-lingual methods outperform non-specific systems: YAM++ (.50), Wiki-
Match (.22), RiMOM (.17), WeSeE (.15) – with MaasMatch given its high scores on
cases (ii) – and StringsAuto (.10).

Comparison with previous campaigns In the first year of evaluation of MultiFarm,
we have used a subset of the whole data set, where we omitted the ontologies edas and
ekaw, and suppressed the test cases where Russian and Chinese were involved. Since
2012, we have included Russian and Chinese translations, but still have not included
edas and ekaw. In the 2011.5 intermediary campaign, 3 participants (out of 19) used
specific techniques – AUTOMSv2, WeSeE, and YAM++. In 2012, 7 systems (out of
24) implemented specific techniques for dealing with ontologies in different natural lan-
guages – ASE, AUTOMSv2, GOMMA, MEDLEY, WeSeE, WikiMatch, and YAM++.
This year, as in 2012, 7 participants out of 21 use specific techniques: 2 of them have
been participating since 2011.5 (WeSeE and YAM), 1 since 2012 (WikiMatch), 3 sys-
tems (CIDER-CL, RiMOM2013 and MapSSS) have included cross-lingual approaches
in their implementations, and 1 new system (StringsAuto) has participated.

Comparing 2012 and 2013 results (on the same basis), WikiMatch improved preci-
sion for both test case types – from .22 to .34 for type (i) and .43 to .65 for type (ii) –
preserving its values of recall. On the other hand, WeSeE has decreased both precision
– from .61 to .22 – and recall – from .32 to .12 – for type (i) and precision – from .90 to
.56 – and recall – from .27 to .09 – for type (ii).

Different ontologies (i) Same ontologies (ii)

System Runtime Prec. F-m. Rec. Prec. F-m. Rec.
C

ro
ss

-l
in

gu
al

CIDER-CL 110 .03 .03 .04 .18 .06 .04
MapSSS 2380 .27 .10 .07 .50 .06 .03

RiMOM2013 13 .52 .21 .13 .87 .14 .08
StringsAuto 24 .30 .14 .09 .51 .07 .04

WeSeE 2474 .22 .15 .12 .56 .16 .09
WikiMatch 1284 .34 .27 .23 .65 .18 .11

YAM++ 443 .51 .40 .36 .91 .60 .50

N
on

sp
ec

ifi
c

AML 7 .14 .04 .03 .35 .03 .01
HerTUDA 46 .00 .01 1.0 .02 .03 1.0
HotMatch 17 .00 .00 .00 .41 .04 .02

IAMA 15 .15 .05 .03 .58 .04 .02
LogMap 18 .18 .05 .03 .35 .03 .01

LogMapLite 6 .13 .04 .02 .25 .02 .01
MaasMatch 70 .01 .02 .03 .62 .29 .19
ODGOMS 44 .26 .10 .06 .47 .05 .03

OntoK 1602 .01 .01 .05 .16 .16 .15
Synthesis 67 .30 .05 .03 .25 .04 .03

Table 11. MultiFarm aggregated results per matcher, for each type of matching task – types (i)
and (ii). Runtime is measured in minutes (time for completing the 900 matching tasks).

Language specific results Table 12 shows the results aggregated per language pair,
for the the test cases of type (i). For the sake of readability, we present only F-measure
values. The reader can refer to the OAEI results web page for more detailed results on
precision and recall. As expected and already reported above, the systems that apply
specific strategies to match ontology entities described in different natural languages
outperform the other systems. For most of these systems, the best performance is ob-
served for the pairs of language including Dutch, English, German, Spanish, and Por-
tuguese: CIDER-CL (en-es .21, en-nl and es-nl .18, de-nl .16), MapSSS (es-pt and en-es
.33, de-en .28, de-es .26), RiMOM2013 (en-es .42, es-pt .40, de-en .39), StringsAuto
(en-es .37, es-pt .36, de-en .33), WeSeE (en-es .46, en-pt .41, en-nl .40), WikiMatch
(en-es .38, en-pt, es-pt and es-fr .37, es-ru .35). The exception is YAM++ which gener-
ates its best results for the pairs including Czech : cz-en and en-pt .57, cz-pt .56, cz-nl
and fr-pt .53. For all specific systems, English is present in half of the top pairs.

For non-specific systems, most of them cannot deal at all with Chinese and Russian
languages. 7 out of 10 systems generate their best results for the pair es-pt (followed
by the pair de-en). Again, similarities in the language vocabulary have an important
role in the matching task. On the other hand, although it is likely harder to find corre-
spondences between cz-pt than es-pt, for some systems Czech is on pairs for the top-5
F-measure (cz-pt, for AML, IAMA, LogMap, LogMapLite and Synthesis). It can be
explained by the specific way systems combine their internal matching techniques (on-
tology structure, reasoning, coherence, linguistic similarities, etc).

A
M

L

C
ID

E
R

-C
L

H
er

T
U

D
A

H
ot

M
at

ch

IA
M

A

L
og

M
ap

L
og

M
ap

L
ite

M
aa

sM
at

ch

M
ap

SS
S

O
D

G
O

M
S

O
nt

oK

R
iM

O
M

20
13

St
ri

ng
sA

ut
o

Sy
nt

he
si

s

W
eS

eE

W
ik

iM
at

ch

YA
M

++

cn-cz .00 .01 .01 .12 .12 .36
cn-de .00 .01 .00 .01 .18 .15 .37
cn-en .01 .01 .01 .25 .16 .43
cn-es .00 .01 .01 .00 .01 .17 .24 .19
cn-fr .01 .01 .01 .01 .01 .17 .01 .10 .42
cn-nl .00 .01 .01 .00 .01 .16 .19 .31
cn-pt .01 .01 .01 .10 .18 .32
cn-ru .00 .01 .01 .00 .01 .01 .23 .34
cz-de .10 .00 .01 .10 .09 .09 .01 .14 .13 .01 .24 .22 .11 .02 .26 .48
cz-en .04 .00 .01 .12 .05 .04 .02 .25 .24 .01 .25 .29 .06 .08 .18 .57
cz-es .11 .00 .01 .11 .11 .11 .02 .18 .18 .03 .24 .22 .14 .09 .29 .19
cz-fr .01 .00 .01 .01 .01 .01 .01 .01 .15 .07 .02 .17 .17 .02 .04 .22 .52
cz-nl .04 .00 .01 .05 .04 .04 .01 .12 .12 .03 .32 .18 .04 .01 .23 .53
cz-pt .12 .01 .01 .13 .13 .13 .01 .18 .20 .02 .24 .23 .16 .04 .25 .56
cz-ru .01 .01 .01 .25 .48
de-en .20 .12 .01 .21 .22 .20 .05 .28 .30 .01 .39 .33 .22 .33 .32 .50
de-es .07 .15 .01 .07 .09 .06 .02 .26 .24 .01 .31 .29 .08 .28 .29 .19
de-fr .05 .01 .01 .04 .04 .04 .02 .08 .06 .01 .29 .23 .04 .32 .26 .44
de-nl .05 .16 .01 .04 .04 .04 .04 .17 .21 .01 .30 .19 .05 .31 .27 .40
de-pt .07 .01 .08 .07 .07 .02 .13 .11 .02 .27 .18 .09 .34 .26 .41
de-ru .00 .01 .01 .01 .01 .31 .47
en-es .06 .21 .01 .05 .15 .04 .03 .33 .30 .01 .42 .37 .05 .46 .38 .23
en-fr .06 .01 .01 .10 .06 .04 .05 .17 .15 .01 .32 .29 .04 .32 .33 .50
en-nl .07 .18 .01 .07 .07 .10 .05 .22 .24 .02 .35 .24 .08 .40 .32 .52
en-pt .06 .01 .06 .06 .06 .02 .18 .19 .02 .36 .30 .07 .41 .37 .57
en-ru .00 .01 .00 .01 .24 .50
es-fr .03 .01 .06 .06 .01 .03 .17 .14 .02 .36 .29 .02 .25 .37 .20
es-nl .18 .01 .02 .07 .03 .01 .29 .15 .34 .32 .16
es-pt .29 .01 .29 .24 .23 .05 .33 .33 .04 .40 .36 .25 .33 .37 .25
es-ru .00 .01 .02 .35 .19
fr-nl .12 .00 .01 .01 .12 .13 .12 .06 .16 .13 .03 .30 .26 .15 .24 .34 .46
fr-pt .01 .01 .01 .01 .04 .10 .11 .26 .19 .34 .28 .53
fr-ru .01 .01 .00 .01 .33 .46
nl-pt .01 .01 .02 .01 .01 .02 .03 .04 .01 .15 .07 .02 .31 .27 .51
nl-ru .00 .01 .01 .01 .33 .44
pt-ru .00 .01 .00 .01 .29 .47

Table 12. MultiFarm results per pair of languages, for the test cases of type (i). In this detailed
view, we distinguished empty alignments, represented by empty cells, from wrong ones (.00)

7.4 Conclusion

As expected, systems using specific methods for dealing with ontologies in different
languages work much better than non specific systems. However, the absolute results

are still not very good, if compared to the top results of the original Conference data set
(approximatively 75% F-measure for the best matcher). For all specific cross-lingual
methods, the techniques implemented in YAM++, as in 2012, generate the best align-
ments in terms of F-measure (around 50% overall F-measure for both types of matching
tasks). All systems privilege precision rather than recall. Although we count this year
on 4 new systems implementing specific cross-lingual methods, there is room for im-
provements to achieve the same level of compliance as in the original data set.

8 Library

The library test case was established in 201213. The test case consists of matching of
two real-world thesauri: The Thesaurus for the Social Sciences (TheSoz, maintained
by GESIS) and the Standard Thesaurus for Economics (STW, maintained by ZBW).
The reference alignment is based on a manually created alignment from 2006. As ad-
ditional benefit from this test case, the reference alignment is constantly improved by
the maintainers by manually checking the generated correspondences that have not yet
been checked and that are not part of the reference alignment14.

8.1 Test data

Both thesauri used in this test case are comparable in many respects. They have roughly
the same size (6,000 resp. 8,000 concepts), are both originally developed in German,
are today both multilingual, both have English translations, and, most important, de-
spite being from two different domains, they have significant overlapping areas. Not
least, both are freely available in RDF using SKOS15. To enable the participation of
all OAEI matchers, an OWL version of both thesauri is provided, effectively by cre-
ating a class hierarchy from the concept hierarchy. Details are provided in the report
of the 2012 campaign [1]. As stated above, we updated the reference alignment with
all correct correspondences found during the 2012 campaign, it now consists of 3161
correspondences.

8.2 Experimental setting

All matching processes have been performed on a Debian machine with one 2.4GHz
core and 7GB RAM allocated to each system. The evaluation has been executed by
using the SEALS infrastructure. Each participating system uses the OWL version.

To compare the created alignments with the reference alignment, we use
the Alignment API. For this evaluation, we only included equivalence relations
(skos:exactMatch). We computed precision, recall and F1-measure for each matcher.
Moreover, we measured the runtime, the size of the created alignment and checked

13 There has already been a library test case from 2007 to 2009 using different thesauri, as well
as other thesaurus test cases like the food and the environment test cases.

14 With the reasonable exception of XMapGen, which produces almost 40.000 correspondences.
15 http://www.w3.org/2004/02/skos

whether a 1:1 alignment has been created. To assess the results of the matchers, we
developed three straightforward matching strategies, using the original SKOS version
of the thesauri:

– MatcherPrefDE: Compares the German lower-case preferred labels and generates
a correspondence if these labels are completely equivalent.

– MatcherPrefEN: Compares the English lower-case preferred labels and generates a
correspondence if these labels are completely equivalent.

– MatcherPref: Creates a correspondence, if either MatcherPrefDE or Matcher-
PrefEN or both create a correspondence.

– MatcherAllLabels: Creates a correspondences whenever at least one label (pre-
ferred or alternative, all languages) of an entity is equivalent to one label of another
entity.

8.3 Results

Of all 21 participating matchers (or variants), 12 were able to generate an alignment
within 12 hours. CroMatcher, MaasMatch, RiMOM2013, WeSeE and WikiMatch did
not finish in the time frame, OntoK had heap space problems and CiderCL, MapSSS
and Synthesis threw an exception. The results can be found in Table 13.

Matcher Precision F-Measure Recall Time (ms) Size 1:1

ODGOMS 0.70 0.76 0.83 27936433 3761 -
YAM++ 0.69 0.74 0.81 731860 3689 -

MatcherPref 0.91 0.74 0.63 - 2190 -
ServOMap 0.70 0.74 0.78 648138 3540 -

AML 0.62 0.7 0.88 39366 4433 -
MatcherPrefDE 0.98 0.73 0.58 - 1885 -

MatcherAllLabels 0.61 0.72 0.88 - 4605 -
LogMap 0.78 0.70 0.64 98958 2622 -

LogMapLite 0.65 0.70 0.77 20312 3775 -
HerTUDA 0.52 0.67 0.92 11228741 5559 -
HotMatch 0.73 0.65 0.58 12128682 2494

√
MatcherPrefEN 0.88 0.57 0.42 - 1518 -

XmapSig 0.80 0.45 0.32 2914167 1256 -
StringsAuto 0.77 0.30 0.19 1966012 767

√
IAMA 0.78 0.08 0.04 18599 166 -

XmapGen 0.03 0.06 0.37 3008820 38360 -
Table 13. Results of the Library test case (ordered by F-measure).

The best systems in terms of F-measure are ODGOMS and YAM++. These match-
ers also have a higher F-measure than MatcherPref. ServOMap and AML are below
this baseline but better than MatcherPrefDE and MatcherAllLabels. A group of match-
ers including LogMap, LogMapLite, HerTUDA and HotMatch are above the Matcher-
PrefEN baseline. Compared to last year evaluation with the updated reference align-
ment, the matchers clearly improved: in 2012, no matcher was able to beat MatcherPref
and MatcherPrefDE, only ServOMapLt was better than MatcherAllLabels. Today, two

matchers outperformed all baselines; further two matchers outperformed all baselines
but MatcherPref. This is remarkable, as the matchers are still not able to consume SKOS
and therefore neglect the distinction between preferred and alternative labels. The base-
lines are tailored for very high precision by design, while the matchers usually have a
higher recall. This is reflected in the F-measure, where the highest value increased from
0.72 to 0.76 by almost 5 percentage points since last year. The recall mostly increased,
e.g. YAM++ from 0.76 to 0.81 (without affecting the precision negatively, which also
increased from 0.68 to 0.69).

Like in the previous year, an additional intellectual evaluation of the alignments
established automatically was done by a domain expert to further improve the reference
alignment. Unsurprisingly, the matching tools predominantly detected matches based
on the character string. This included the term alone as well as the term’s context.
Especially in the case of short terms, this could easily lead to wrong correspondences,
e.g., “tea” �= “team”, “sheep” �= “sleep”. Except for its sequence of letters the term’s
context was not taken into account.

This sole attention to the character string was a main source of error in cases in
which on the term as well as on the context level similar terminological entities ap-
peared, e.g., “Green revolution” subject category: “Development Politic” �= “permanent
revolution” subject category: “Political Developments and Processes”.

Additionally, identical components of a compound frequently lead to incorrect cor-
respondences, e.g., “prohibition of interest” �= “prohibition of the use of force”. More-
over, terms in different domains might look similar, but in fact have very different mean-
ings. An illustrative example is “Chicago Antitrust Theory” �= “Chicago School”, where
indeed the same Chicago is referenced, but without any effect on the (dis-)similarity of
both concepts.

8.4 Conclusion

The overall performance improvement is encouraging in this test case. While it might
not look impressive to beat simple baselines as ours at first sight, it is actually a notable
achievement. The baselines are not only tailored for very high precision, benefitting
from the fact that in many cases a consistent terminology is used, they also exploit
additional knowledge about the labels. The matchers are general-purpose matchers that
have to perform well in all OAEI test cases. Nonetheless, there does not seems to be
matchers who understand SKOS in order to make use of the many concept hierarchies
provided on the Web.

Generally, matchers still rely too much on the character string of the labels and
the labels of the concepts in the immediate vicinity. During the intellectual evaluation
process, it became obvious that a multitude of incorrect matches could be prevented
if the subject categories, respectively the thesauri’s classification schemes be matched
beforehand. In many cases, misleading candidate correspondences could be discarded
by taking these higher levels of the hierarchy into account. It could be prevented, for
example, to build up correspondences between personal names and subject headings. A
thesaurus, however, is not a classification system. The disjointness of two subthesauri
is therefore not easy to establish, let alone to detect by automatic means. Nonetheless,

thesauri oftentimes have their own classification schemes which partly follow classifi-
cation principles. We believe that further exploiting this context knowledge could be
worthwhile.

9 Interactive matching

The interactive matching test case was evaluated at OAEI 2013 for the first time. The
goal of this evaluation is to simulate interactive matching [23], where a human expert
is involved to validate mappings found by the matching system. In the evaluation, we
look at how user interaction may improve matching results.

For the evaluation, we use the conference data set 5 with the ra1 alignment, where
there is quite a bit of room for improvement, with the best fully automatic, i.e., non-
interactive matcher achieving an F-measure below 80%. The SEALS client was modi-
fied to allow interactive matchers to ask an oracle, which emulates a (perfect) user. The
interactive matcher can present a correspondence to the oracle, which then tells the user
whether the correspondence is right or wrong.

All matchers participating in the interactive test case support both interactive and
non-interactive matching. This allows us to analyze how much benefit the interaction
brings for the individual matchers.

9.1 Results

Overall, five matchers participated in the interactive matching test case: AML and
AML-bk, Hertuda, LogMap, and WeSeE-Match. All of them implement interactive
strategies that run entirely as a post-processing step to the automatic matching, i.e., take
the alignment produced by the base matcher and try to refine it by selecting a suitable
subset.

AML and AML-bk present all correspondences below a certain confidence thresh-
old to the oracle, starting with the highest confidence values. They stop adding refer-
ences once the false positive rate exceeds a certain threshold. Similarly, LogMap checks
all questionable correspondences using the oracle. Hertuda and WeSeE-Match try to
adaptively set an optimal threshold for selecting correspondences. They perform a bi-
nary search in the space of possible thresholds, presenting a correspondence of average
confidence to the oracle first. If the result is positive, the search is continued with a
higher threshold, otherwise with a lower threshold.

The results are depicted in Table 14. Please note that the values in this table slightly
differ from the original values in the conference test case, since the latter uses micro
average recall and precision, while we use macro averages, so that we can compute
significance levels using T-Tests on the series of recall and precision values from the
individual test cases. The reason for the strong divergence of the results for WeSeE
to the conference test case results is unknown. Altogether, the biggest improvement in
F-measure, as well as the best overall result (although almost at the same level as AML-
bk), is achieved by LogMap, which increases its F-measure by four percentage points.
Furthermore, LogMap, AML and AML-bk show a statistically significant increase in
recall as well as precision, while all the other tools except for Hertuda show a significant

AML AML-bk Hertuda LogMap WeSeE
Non-Interactive Results
Precision 0.88 0.88 0.77 0.83 0.57
F-measure 0.69 0.71 0.62 0.68 0.49
Recall 0.59 0.61 0.53 0.62 0.46
Interactive Results
Precision 10.91 10.91 0.79 10.90 10.73
F-measure 10.71 10.73 0.58 10.73 0.47
Recall 50.61 50.63 0.50 50.64 0.40
Average Number of Interactions
Positive 1.43 1.57 1.95 2.57 1.67
Negative 5.14 5.05 10.33 1.76 3.81
Total 6.57 6.67 12.33 4.33 5.48

Table 14. Results of the interactive matching test case. The table reports both the results with and
without interaction, in order to analyze the improvement that was gained by adding interactive
features. Improvements of the interactive variants over the non-interactive variants are shown in
bold. Statistically significant differences are marked with 5(p < 0.05) and 1(p < 0.01). Fur-
thermore, we report the average number of interactions, showing both the positive and negative
examples presented to the oracle.

increase in precision. The increase in precision is in all cases however higher than the
increase of recall. It can be observed for AML, AML-bk and LogMap that a highly
significant increase in precision also increases F-measure at a high significance level,
even if the increase in recall is less significant.

At the same time, LogMap has the lowest number of interactions with the oracle,
which shows that it also makes the most efficient use of the oracle. In a truly interactive
setting, this would mean that the manual effort is minimized. Furthermore, it is the only
tool that presents more positive than negative examples to the oracle.

On the other hand, Hertuda and WeSeE even show a decrease in recall, which can-
not be compensated by the increase in precision. The biggest increase in precision (17
percentage points) is achieved by WeSeE, but on an overall lower level than the other
matching systems. Thus, we conclude that their strategy is not as efficient as those of
the other participants.

Compared to the results of the non-interactive conference test case, the best inter-
active matcher (in terms of F-measure) is slightly below the best matcher (YAM++)
with a F-measure value of 0.76 (using macro averages). Except for YAM++, the inter-
active versions of AML-bk, AML and LogMap achieve better F-measure scores than
all non-interactive matchers.

9.2 Discussion

The results show that current interactive matching tools mainly use interaction as a
means to post-process an alignment found with fully automatic means. There are, how-
ever, other interactive approaches that can be thought of, which include interaction at
an earlier stage of the process, e.g., using interaction for parameter tuning [25], or de-
termining anchor elements for structure-based matching approaches using interactive

methods. The maximum F-measure of 0.73 achieved shows that there is still room for
improvement.

Furthermore, different variations of the evaluation method can be thought of, in-
cluding different noise levels in the oracle’s responses, i.e., simulating errors made by
the human expert, or allowing other means of interactions than the validation of single
correspondences, e.g., providing a random positive example, or providing the corre-
sponding element in one ontology, given an element of the other one.

So far, we only compare the final results of the interactive matching process. In
[23], we have introduced an evaluation method based on learning curves, which gives
insights into how quickly the matcher converges towards its final result. However, we
have not implemented that model for this year’s OAEI, since it requires more changes to
the matchers (each matcher has to provide an intermediate result at any point in time).

10 Instance matching

The instance matching track aims at evaluating the performance of different matching
tools on the task of matching RDF individuals which originate from different sources
but describe the same real-world entity [16].

10.1 RDFT test cases

Starting from the experience of previous editions of the instance matching track in
OAEI [15], this year we provided a set of RDF-based test cases, called RDFT, that is
automatically generated by introducing controlled transformations in some initial RDF
data sets. The controlled transformations introduce artificial distortions into the data,
which include data value transformations as well as structural transformations. RDFT
includes blind evaluation. The participants are provided with a list of five test cases. For
each test case, we provide training data with the accompanying alignment to be used to
adjust the settings of the tools, and contest data, based on which the final results will be
calculated. The evaluation data set is generated by exploiting the same configuration of
the RDFT transformation tool used for generating training data.

The RDFT test cases have been generated from an initial RDF data set about well-
known computer scientists data extracted from DBpedia. The initial data set is com-
posed by 430 resources, 11 RDF properties and 1744 triples. Some descriptive statistics
about the initial data set are available online. Starting from the initial data set, we pro-
vided the participants with five test cases, where different transformations have been
implemented, as follows:

– Testcase 1: value transformation. Values of 5 properties have been changed by
randomly deleting/adding chars, by changing the date format, and/or by randomly
change integer values.

– Testcase 2: structure transformation. The length of property path between re-
sources and values has been changed. Property assertions have been split in two or
more assertions.

– Testcase 3: languages. The same as Testcase 1, but using French translation for
comments and labels instead of English.

tescase01 tescase02 tescase03 tescase04 tescase05
system Prec. F-m. Rec. Prec. F-m. Rec. Prec. F-m. Rec. Prec. F-m. Rec. Prec. F-m. Rec.

LilyIOM 1.00 1.00 0.99 0.74 0.74 0.74 0.94 0.93 0.92 0.71 0.72 0.73 0.71 0.58 0.49
LogMap 0.97 0.80 0.69 0.79 0.88 0.99 0.98 0.84 0.73 0.95 0.80 0.70 0.92 0.74 0.62

RiMOM2013 1.00 1.00 1.00 0.95 0.97 0.99 0.96 0.98 0.99 0.94 0.96 0.98 0.93 0.96 0.99
SLINT+ 0.98 0.98 0.98 1.00 1.00 1.00 0.94 0.92 0.91 0.91 0.91 0.91 0.87 0.88 0.88

Table 15. Results for the RDFT test cases.

– Testcase 4: combined. A combination of value and structure transformations using
French text.

– Testcase 5: cardinality. The same as Testcase 4, but now part of the resources have
none or multiple matching counterparts.

10.2 RDFT results

An overview of the precision, recall and F1-measure results for the RDFT test cases is
shown in Table 15.

All the tools show good performances when dealing with singular type of data trans-
formation, i.e., Testcases 1-3, either value, structural, and language transformations.
Performances drop when different kinds of transformations are combined together, i.e.,
Testcases 4-5, except for RiMOM2013, which still has performances close to 1.0 for
both precision and recall. This suggests that a possible challenge for instance matching
tools is to work in the direction of improving the combination and balancing of different
matching techniques in a single, general-purpose, configuration scheme.

In addition to precision, recall and F1-measure results, we performed also a test
based on the similarity values provided by participating tools. In particular, we selected
the provided mappings by different thresholds on the similarity values, in order to mon-
itor the behavior of precision and recall16. Results of this second evaluation are shown
in Figure 3.

Testing the results when varying the threshold used for mapping selection is useful
to understand how robust are the mappings retrieved by the participating tools. In par-
ticular, RiMOM2013 is the only tool which has very good results with all the threshold
values that have been tested. This means that the retrieved mappings are generally cor-
rect and associated with high levels of similarity. Other tools, especially LilyIOM and
LogMap, retrieve a high number of mappings which are associated with low levels of
confidence. In such cases, when we rely only on mappings between resources that are
considered very similar by the tool, the quality of results becomes lower.

Finally, as a general remark suggested from the result analysis, we stress the oppor-
tunity of working toward two main goals in particular: one one side, on the integration
of different matching techniques and the need of conceiving self-adapting tools, capa-
ble of self-configuring the most suitable combination of matching metrics according to
the nature of data heterogeneity that needs to be handled; on the other side, the need for

16 This experiment is partially useful in the case of SLINT+, where the similarity values are not
in the range [0,1] and are not necessarily proportional to the elements similarity.

●

●

●

● ● ●
● ● ● ●

● ● ● ● ● ● ● ●

● ●

●

●

●

● ● ● ● ● ● ●

● ● ● ● ●
● ● ●

● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ●
● ●

● ●
●

●
●

●
● ● ● ●

● ● ● ● ● ● ● ● ●

●

● ●

●

●
●

●
● ● ● ●

● ●

●

●
●

● ● ● ● ●

● ● ●
● ●

●
● ●

● ●

● ●

●

● ● ● ● ● ● ●

● ●

●

● ● ● ● ● ● ●

● ● ● ● ● ●

● ●

● ●

● ●

●
● ● ● ● ● ● ●

testcase01, f1−measure testcase01, precision testcase01, recall

testcase02, f1−measure testcase02, precision testcase02, recall

testcase03, f1−measure testcase03, precision testcase03, recall

testcase04, f1−measure testcase04, precision testcase04, recall

testcase05, f1−measure testcase05, precision testcase05, recall

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75
Threshold for mapping selection

tool ● LilyIOM LogMap RiMOM2013 SLINT+

Fig. 3. Evaluation test based on the similarity values.

tools capable of providing a degree of confidence which could be used for measuring
the reliability of the provided mappings.

11 Lesson learned and suggestions

There are, this year, very few comments about the evaluation execution:

A) This year indicated again that requiring participants to implement a minimal inter-
face was not a strong obstacle to participation. Moreover, the community seems to
get used to the SEALS infrastructure introduced for OAEI 2011. This might be one
of the reasons for an increasing participation.

B) Related to the availability of the platform, participants checked that their tools were
working on minimal tests and discovered in September that they were not working
on other tests. For that reason, it would be good to set the preliminary evaluation
results by the end of July.

C) Now that all tools are run in exactly the same configuration across all test cases,
some discrepancies appear across such cases. For instance, benchmarks expect only
class correspondences in the name space of the ontologies, some other cases expect
something else. This is a problem, which could be solved either by passing param-
eters to the SEALS client (this would make its implementation heavier) or by post
processing results (which may be criticized).

D) [24] raised and documented objections (on validity and fairness) to the way refer-
ence alignments are made coherent with alignment repair techniques. Appropriate
measures should be taken to mitigate this.

E) Last years we reported that we had many new participants. The same trend can be
observed for 2013.

F) Again and again, given the high number of publications on data interlinking, it is
surprising to have so few participants to the instance matching track.

12 Conclusions

OAEI 2013 saw an increased number of participants and most of the test cases per-
formed on the SEALS platform. This is good news for the interoperability of matching
systems.

Compared to the previous years, we observed improvements of runtimes and the
ability of systems to cope with large ontologies and data sets (testified by the largebio
and instance matching results). This comes in addition to progress in overall F-measure,
which is more observable as the test case is more recent. More preoccupying was the
lack of robustness of some systems observed in the simple benchmarks. This seems
to be due to an increased reliance on the network and networked resources that may
time-out systems.

As usual, most of the systems favour precision over recall. In general, participat-
ing matching systems do not take advantage of alignment repairing system and return
sometimes incoherent alignments. This is a problem if their result has to be taken as in-
put by a reasoning system. They do not generally use natural language aware strategies,
while the multilingual tests show the worthiness of such an approach.

A novelty of this year was the evaluation of interactive systems, included in the
SEALS client. It brings interesting insight on the performances of such systems and
should certainly be continued.

Most of the participants have provided a description of their systems and their ex-
perience in the evaluation. These OAEI papers, like the present one, have not been peer
reviewed. However, they are full contributions to this evaluation exercise and reflect the
hard work and clever insight people put in the development of participating systems.
Reading the papers of the participants should help people involved in ontology match-
ing to find what makes these algorithms work and what could be improved. Sometimes
participants offer alternate evaluation results.

The Ontology Alignment Evaluation Initiative will continue these tests by improv-
ing both test cases and testing methodology for being more accurate. Matching eval-
uation still remains a challenging topic, which is worth further research in order to
facilitate the progress of the field [27]. Further information can be found at:

http://oaei.ontologymatching.org.

Acknowledgements

We warmly thank the participants of this campaign. We know that they have worked
hard for having their matching tools executable in time and they provided insightful
papers presenting their experience. The best way to learn about the results remains to
read the following papers.

We are very grateful to STI Innsbruck for providing the necessary infrastructure to
maintain the SEALS repositories.

We are also grateful to Martin Ringwald and Terry Hayamizu for providing the
reference alignment for the anatomy ontologies and thank Elena Beisswanger for her
thorough support on improving the quality of the data set.

We thank Christian Meilicke for help with incoherence evaluation within the con-
ference and his support of the anatomy test case.

We also thank for their support the other members of the Ontology Alignment
Evaluation Initiative steering committee: Yannis Kalfoglou (Ricoh laboratories, UK),
Miklos Nagy (The Open University (UK), Natasha Noy (Stanford University, USA),
Yuzhong Qu (Southeast University, CN), York Sure (Leibniz Gemeinschaft, DE), Jie
Tang (Tsinghua University, CN), Heiner Stuckenschmidt (Mannheim Universität, DE),
George Vouros (University of the Aegean, GR).

Bernardo Cuenca Grau, Jérôme Euzenat, Ernesto Jimenez-Ruiz, Christian Meilicke,
and Cássia Trojahn dos Santos have been partially supported by the SEALS (IST-2009-
238975) European project in the previous years.

Ernesto and Bernardo have also been partially supported by the Seventh Frame-
work Program (FP7) of the European Commission under Grant Agreement 318338,
“Optique”, the Royal Society, and the EPSRC projects Score!, ExODA and MaSI3.

Cássia Trojahn dos Santos and Roger Granada are also partially supported by the
CAPES-COFECUB Cameleon project number 707/11.

References

1. José Luis Aguirre, Bernardo Cuenca Grau, Kai Eckert, Jérôme Euzenat, Alfio Ferrara,
Robert Willem van Hague, Laura Hollink, Ernesto Jiménez-Ruiz, Christian Meilicke, An-

driy Nikolov, Dominique Ritze, François Scharffe, Pavel Shvaiko, Ondrej Sváb-Zamazal,
Cássia Trojahn, and Benjamin Zapilko. Results of the ontology alignment evaluation initia-
tive 2012. In Proc. 7th ISWC ontology matching workshop (OM), Boston (MA US), pages
73–115, 2012.

2. Ana Armas Romero, Bernardo Cuenca Grau, and Ian Horrocks. MORe: Modular combina-
tion of OWL reasoners for ontology classification. In Proc. 11th International Semantic Web
Conference (ISWC), Boston (MA US), pages 1–16, 2012.

3. Benhamin Ashpole, Marc Ehrig, Jérôme Euzenat, and Heiner Stuckenschmidt, editors. Proc.
K-Cap Workshop on Integrating Ontologies, Banff (Canada), 2005.

4. Olivier Bodenreider. The unified medical language system (UMLS): integrating biomedical
terminology. Nucleic Acids Research, 32:267–270, 2004.

5. Caterina Caracciolo, Jérôme Euzenat, Laura Hollink, Ryutaro Ichise, Antoine Isaac,
Véronique Malaisé, Christian Meilicke, Juan Pane, Pavel Shvaiko, Heiner Stuckenschmidt,
Ondrej Sváb-Zamazal, and Vojtech Svátek. Results of the ontology alignment evaluation ini-
tiative 2008. In Proc. 3rd ISWC ontology matching workshop (OM), Karlsruhe (DE), pages
73–120, 2008.

6. Jérôme David, Jérôme Euzenat, François Scharffe, and Cássia Trojahn dos Santos. The
alignment API 4.0. Semantic web journal, 2(1):3–10, 2011.

7. Jérôme Euzenat, Alfio Ferrara, Laura Hollink, Antoine Isaac, Cliff Joslyn, Véronique
Malaisé, Christian Meilicke, Andriy Nikolov, Juan Pane, Marta Sabou, François Scharffe,
Pavel Shvaiko, Vassilis Spiliopoulos, Heiner Stuckenschmidt, Ondrej Sváb-Zamazal, Vo-
jtech Svátek, Cássia Trojahn dos Santos, George Vouros, and Shenghui Wang. Results of
the ontology alignment evaluation initiative 2009. In Proc. 4th ISWC ontology matching
workshop (OM), Chantilly (VA US), pages 73–126, 2009.

8. Jérôme Euzenat, Alfio Ferrara, Christian Meilicke, Andriy Nikolov, Juan Pane, François
Scharffe, Pavel Shvaiko, Heiner Stuckenschmidt, Ondrej Sváb-Zamazal, Vojtech Svátek, and
Cássia Trojahn dos Santos. Results of the ontology alignment evaluation initiative 2010. In
Proc. 5th ISWC ontology matching workshop (OM), Shanghai (CN), pages 85–117, 2010.

9. Jérôme Euzenat, Alfio Ferrara, Robert Willem van Hague, Laura Hollink, Christian Meil-
icke, Andriy Nikolov, François Scharffe, Pavel Shvaiko, Heiner Stuckenschmidt, Ondrej
Sváb-Zamazal, and Cássia Trojahn dos Santos. Results of the ontology alignment evalu-
ation initiative 2011. In Proc. 6th ISWC ontology matching workshop (OM), Bonn (DE),
pages 85–110, 2011.

10. Jérôme Euzenat, Antoine Isaac, Christian Meilicke, Pavel Shvaiko, Heiner Stuckenschmidt,
Ondrej Svab, Vojtech Svatek, Willem Robert van Hage, and Mikalai Yatskevich. Results of
the ontology alignment evaluation initiative 2007. In Proc. 2nd ISWC ontology matching
workshop (OM), Busan (KR), pages 96–132, 2007.

11. Jérôme Euzenat, Christian Meilicke, Pavel Shvaiko, Heiner Stuckenschmidt, and Cássia Tro-
jahn dos Santos. Ontology alignment evaluation initiative: six years of experience. Journal
on Data Semantics, XV:158–192, 2011.

12. Jérôme Euzenat, Malgorzata Mochol, Pavel Shvaiko, Heiner Stuckenschmidt, Ondrej Svab,
Vojtech Svatek, Willem Robert van Hage, and Mikalai Yatskevich. Results of the ontology
alignment evaluation initiative 2006. In Proc. 1st ISWC ontology matching workshop (OM),
Athens (GA US), pages 73–95, 2006.

13. Jérôme Euzenat, Maria Rosoiu, and Cássia Trojahn dos Santos. Ontology matching bench-
marks: generation, stability, and discriminability. Journal of web semantics, 21:30–48, 2013.

14. Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer-Verlag, Heidelberg (DE),
2nd edition, 2013.

15. Alfio Ferrara, Andriy Nikolov, Jan Noessner, and François Scharffe. Evaluation of instance
matching tools: The experience of OAEI. Journal of Web Semantics, 21:49–60, 2013.

16. Alfio Ferrara, Andriy Nikolov, and François Scharffe. Data linking for the semantic web.
International Journal on Semantic Web and Information Systems, 7(3):46–76, 2011.

17. Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. LogMap: Logic-based and scalable on-
tology matching. In Proc. 10th International Semantic Web Conference (ISWC), Bonn (DE),
pages 273–288, 2011.

18. Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ian Horrocks, and Rafael Berlanga. Logic-
based assessment of the compatibility of UMLS ontology sources. J. Biomed. Sem., 2, 2011.

19. Ernesto Jiménez-Ruiz, Christian Meilicke, Bernardo Cuenca Grau, and Ian Horrocks. Eval-
uating mapping repair systems with large biomedical ontologies. In Proc. 26th Description
Logics Workshop, 2013.

20. Yevgeny Kazakov, Markus Krötzsch, and Frantisek Simancik. Concurrent classification of
EL ontologies. In Proc. 10th International Semantic Web Conference (ISWC), Bonn (DE),
pages 305–320, 2011.

21. Christian Meilicke. Alignment Incoherence in Ontology Matching. PhD thesis, University
Mannheim, 2011.

22. Christian Meilicke, Raúl Garcı́a Castro, Frederico Freitas, Willem Robert van Hage, Elena
Montiel-Ponsoda, Ryan Ribeiro de Azevedo, Heiner Stuckenschmidt, Ondrej Sváb-Zamazal,
Vojtech Svátek, Andrei Tamilin, Cássia Trojahn, and Shenghui Wang. MultiFarm: A bench-
mark for multilingual ontology matching. Journal of web semantics, 15(3):62–68, 2012.

23. Heiko Paulheim, Sven Hertling, and Dominique Ritze. Towards evaluating interactive ontol-
ogy matching tools. In Proc. 10th Extended Semantic Web Conference (ESWC), Montpellier
(FR), pages 31–45, 2013.

24. Catia Pesquita, Daniel Faria, Emanuel Santos, and Francisco Couto. To repair or not to
repair: reconciling correctness and coherence in ontology reference alignments. In Proc. 8th
ISWC ontology matching workshop (OM), Sydney (AU), page this volume, 2013.

25. Dominique Ritze and Heiko Paulheim. Towards an automatic parameterization of ontology
matching tools based on example mappings. In Proc. 6th ISWC ontology matching workshop
(OM), Bonn (DE), pages 37–48, 2011.

26. Emanuel Santos, Daniel Faria, Catia Pesquita, and Francisco Couto. Ontology alignment
repair through modularization and confidence-based heuristics. CoRR, abs/1307.5322, 2013.

27. Pavel Shvaiko and Jérôme Euzenat. Ontology matching: state of the art and future challenges.
IEEE Transactions on Knowledge and Data Engineering, 25(1):158–176, 2013.

28. York Sure, Oscar Corcho, Jérôme Euzenat, and Todd Hughes, editors. Proc. ISWC Workshop
on Evaluation of Ontology-based Tools (EON), Hiroshima (JP), 2004.

29. Cássia Trojahn dos Santos, Christian Meilicke, Jérôme Euzenat, and Heiner Stuckenschmidt.
Automating OAEI campaigns (first report). In Proc. ISWC Workshop on Evaluation of Se-
mantic Technologies (iWEST), Shanghai (CN), 2010.

Oxford, Linköping Mannheim, Grenoble, Milano, Porto Alegre, Toulouse, Köln,
Walldorf, Montpellier, Trento, Prague

November 2013

AgreementMakerLight Results for OAEI 2013

Daniel Faria1, Catia Pesquita1, Emanuel Santos1,
Isabel F. Cruz2, and Francisco M. Couto1

1 LASIGE, Dept Informatics, Faculty of Sciences of the University of Lisbon, Portugal
2 ADVIS Lab, Dept Computer Science, University of Illinois at Chicago, USA

Abstract. AgreementMakerLight (AML) is an automated ontology matching
framework based on element-level matching and the use of external resources
as background knowledge. This paper describes the configuration of AML for
the OAEI 2013 competition and discusses its results.
Being a newly developed and still incomplete system, our focus in this year’s
OAEI were the anatomy and large biomedical ontologies tracks, wherein back-
ground knowledge plays a critical role. Nevertheless, AML was fairly success-
ful in other tracks as well, showing that in many ontology matching tasks, a
lightweight approach based solely on element-level matching can compete with
more complex approaches.

1 Presentation of the system

1.1 State, purpose, general statement

AgreementMakerLight (AML) is an automated ontology matching framework derived
from the AgreementMaker system [2, 4]. It was developed with the main goal of tack-
ling very large ontology matching problems such as those in the life science domain,
which AgreementMaker cannot handle efficiently.

The key design principles of AML were efficiency and simplicity, although flexibil-
ity and extensibility—which are key features of AgreementMaker—were also high on
the list [5]. Additionally, AML drew upon the knowledge accumulated in Agreement-
Maker by reusing, adapting, and building upon many of its components. Finally, one of
the main paradigms of AML is the use of external resources as background knowledge
in ontology matching.

AML is primarily focused on lexically rich ontologies in general and on life sciences
ontologies in particular, although it can be adapted to many other ontology matching
tasks, thanks to its flexible and extensible framework. However, due to its short devel-
opment time (eight months), it does not include components for instance matching or
translation yet, and thus cannot handle all ontology matching tasks.

1.2 Specific techniques used

The AML workflow for the OAEI 2013 can be divided into six steps, as shown in Fig.
1: ontology loading, baseline matching and profiling, background knowledge match-
ing (optional), extension matching and selection, property matching (conditional), and
repair (optional).

Fig. 1. The AgreementMakerLight Workflow for the OAEI 2013.

Ontology Loading In the ontology loading step, AML reads and processes each of
the input ontologies and stores the information necessary for the subsequent steps in its
own data structures.
First, AML reads the localName, labels and synonym properties of all classes, normal-
izes them, and enters them into the Lexicon [5] of that ontology. Then, it derives new
synonyms for each name in the Lexicon by removing leading and trailing stop words
[8], and by removing name sections within parenthesis. After class names, AML reads
the class-subclass relationships and the disjoint clauses and stores them in the Relation-
shipMap [5]. Finally, AML reads the name, type, domain, and range of each property
and stores them in the PropertyList.
Note that AML currently does not store or use comments, definitions, or instances.

Baseline Matching and Profiling In the baseline matching and profiling step, AML
employs an efficient weighted string-equivalence algorithm, the Lexical Matcher [5], to
obtain a baseline class alignment between the input ontologies. Then, AML profiles the
matching problem by assessing the size (i.e., number of classes) of the input ontologies,
the cardinality of the baseline alignment, and the property/class ratio.
Regarding size, AML divides matching problems into three size categories (small,
medium or large), which will affect decisions and thresholds during the background
knowledge matching and the extension matching and selection steps.
Regarding cardinality, AML also considers three categories (near-one, medium and
high), which will determine how selection is performed during the extension match-
ing and selection step.
As for the property/class ratio, it determines whether AML will match properties during
the property matching step.

Background Knowledge Matching For the OAEI 2013, AML employs three sources
of background knowledge: Uberon [6], UMLS [1] and WordNet [10]. When using back-
ground knowledge, AML tests how well each source fits the matching problem by com-
paring the coverage of its alignment with the coverage of the baseline alignment.
The Uberon Matcher uses the Uberon ontology (in OWL) and a table of pre-processed
Uberon cross-references (in a text file). Each input ontology is matched both against
the Uberon ontology using the Lexical Matcher and directly against the cross-reference

table, and AML determines which form of matching is best (giving priority to the cross-
references, since they are more reliable). When Uberon is a good fit for the matching
problem, it is selected as the only source of background knowledge and is used to ex-
tend the Lexicons of the input ontologies [8]. When it is a reasonable fit, its alignment
is merged with the baseline alignment.
The UMLS Matcher uses a pre-processed version of the MRCONSO table from the
UMLS Metathesaurus (in a text file). Each input ontology is matched against the whole
UMLS table, then AML decides whether to use a single UMLS source (by compar-
ing the coverage of all sources) or the whole table. When UMLS is a good fit for the
matching problem, its alignment is used exclusively, and the extension matching and
selection step is skipped. Otherwise, if it is a reasonable fit, its alignment is merged
with the baseline alignment.
The WordNet Matcher queries the WordNet database for synonyms of each name in
the Lexicons of the input ontologies, using the Jaws API CITATION. These synonyms
are used to create temporary extended Lexicons, which are matched with the Lexical
Matcher. Because WordNet is prone to induce errors, AML uses it only to extend the
baseline alignment, meaning that it matches only previously unmatched classes.

Extension Matching and Selection The extension matching and selection step com-
prises two matching sub-steps that alternate with two selection sub-steps. First, AML
employs a word-based similarity algorithm, the Word Matcher [5], to extend the current
alignment globally, followed by a selection algorithm to reduce the alignment to the
desired cardinality. Then AML employs the Parametric String Matcher [5], which im-
plements the Isub string similarity metric [11], to extend the resulting alignment locally
(i.e., by matching the children, parents and siblings of already matched class pairs).
This is followed by a final selection sub-step.
When the matching problem is profiled as ’large’, the Word Matcher is skipped because
it is too memory intensive to be used globally, and its local use is subsumed by that of
the Parametric String Matcher [3].
In the interactive matching track, AML employs an interactive selection algorithm,
which asks the user for feedback about mappings in case of conflict or below a given
similarity threshold, until a given number of negative answers is reached.

Property Matching In the property matching step, AML matches the ontology prop-
erties. AML compares the properties’ types, domains and ranges, looking for mappings
in the class alignment when the domains/ranges are classes. Then, if the properties have
attributes in common, AML measures the word-based similarity between their names
(as per the Word Matcher [5]), employing also WordNet when background knowledge
is turned on.

Repair In the repair step, AML employs a heuristic repair algorithm [9] to ensure that
the final alignment is coherent with regard to disjoint clauses. The repair algorithm was
used by default in all OAEI tracks, except for the Large Biomedical Ontologies track
where we ran AML both with and without repair.

1.3 Link to the system and parameters file

The AML system and the alignments it produced for the OAEI 2013 are available at the
SOMER project page (http://somer.fc.ul.pt/).

2 Results

2.1 Benchmark

AML had a very high precision (100%) but a fairly low recall (40%) in the Bench-
mark track, returning empty alignments in several of the tests. This is a consequence of
AML’s simple framework, which is exclusively based on element-level matching and
does not handle instances. Nevertheless, it was interesting to note that AML had the
highest F-measure/time ratio, which attests to its efficiency.

2.2 Anatomy

The AML Anatomy results are shown in Table 1. AML ran in this track both with and
without background knowledge (AML-BK and AML respectively). In the case of this
track, AML-BK selects Uberon exclusively as the source of background knowledge,
and uses it for Lexicon extension. Thus, the only difference between AML and AML-
BK is that the latter has Lexicons enriched with Uberon synonyms.

Table 1. AgreementMakerLight results in the Anatomy track.

Configuration Precision Recall F-Measure Recall+
AML 95.4% 82.7% 88.6% 54.5%

AML-BK 95.4% 92.9% 94.2% 81.7%

The results of AML-BK were very good, with a fairly high precision, and the high-
est recall, F-measure and recall+ in this year’s evaluation. However, the AML results
without background knowledge were also good, ranking fourth overall in F-measure,
and second if we exclude the systems using Uberon. In fact, we believe that the AML
results are near-optimal for a strategy based solely on element-level matching, and that
background knowledge is required to obtain substantial improvements. The impact and
quality of the Uberon cross-references is clear when we note that AML-BK gained 10%
recall over AML without any loss in precision. Finally, it is also noteworthy that AML
was one of only two systems to produce coherent alignments.

2.3 Conference

The AML Conference results with reference alignment 1 are shown in Table 2 (the
results with reference alignment 2 are slightly worst for all systems, but do not affect
their ranking). AML ran in this track with and without background knowledge, with

Table 2. AgreementMakerLight results in the Conference track with reference alignment 1.

Configuration Precision Recall F-Measure
AML 87% 56% 68%

AML-BK 87% 58% 70%

AML-BK using WordNet as the only source of background knowledge (to match both
classes and properties).

The results of both AML-BK and AML were good, having the highest precision
of this year’s evaluation and ranking second and tied for third in terms of F-measure,
respectively. An important part of the success of AML in this task was the property
matching algorithm, which found 9 and 11 property mappings with 100% precision,
with and without background knowledge respectively.

2.4 Multifarm

As we expected, the performance of AML in the Multifarm track was poor, with F-
measures of only 4% and 3% when comparing different ontologies and the same on-
tologies respectively. Participation in this track was beyond our scope, as AML does not
handle translations or employ structural-level matching, which are essential for success
in this track.

2.5 Library

The results of AML in the Library track were reasonable, as it ranked 4th in terms of
F-measure (with 73%) and had the second highest recall of this year’s OAEI (87.7%).
Nevertheless, there is clearly room for improvement regarding precision, which was
significantly lower than that of other top systems (62.5%) likely due to the fact that
AML does not take the language of labels into account. Indeed, the results of AML
were very similar to the MatcherAllLabels benchmark.

2.6 Interactive Matching

The AML Interactive Matching results are shown in Table 3. AML ran with the same
configurations used in the Conference track, except that in this track the selection algo-
rithm employed is interactive, rather than automatic.

Table 3. AgreementMakerLight results in the Interactive Matching track.

Configuration Precision Recall F-Measure Interactions
AML 91% 60.7% 71.5% 138

AML-BK 91.2% 62.7% 73% 140

The results show that AML’s interactive selection algorithm was effective, gaining
both precision and recall in comparison with the conference results. Nevertheless, this

algorithm is far from optimized, and it should be possible to reduce the number of user
interactions without sacrificing F-measure.

2.7 Large Biomedical Ontologies

The AML Large Biomedical Ontologies results are shown in Table 4. AML ran in this
track with six different configurations: without background knowledge (AML); with
background knowledge (AML-BK); with specialized background knowledge (AML-
SBK); and in all three cases with (-R) and without repair. AML-BK selects Uberon in
all six tasks of this track (although never for Lexicon extension) and selects WordNet
only in the SNOMED-NCI small task. AML-SBK is given access to UMLS, and selects
it exclusively for all six tasks.
Our goals in testing all these configurations were: to assess the impact of using domain
background knowledge both unrelated (Uberon) and directly related (UMLS) to the
reference alignments; to assess the effect of using repair on the quality of the results;
and to contribute to improve the quality of the reference alignments.

Table 4. Summary AgreementMakerLight results in the Large Biomedical Ontologies track.

Configuration Precision Recall F-Measure Incoherence
AML 92.6% 68.3% 78.3% 43.1%

AML-R 93.9% 66.6% 77.6% 0.028%
AML-BK 90.8% 70.9% 79.2% 44.2%

AML-BK-R 92.1% 69.2% 78.5% 0.027%
AML-SBK 96.2% 96.1% 96.2% 55%

AML-SBK-R 97.6% 92.5% 95% 0.015%

The results of AML-SBK were very good, with a marked advantage over all other
systems in this year’s evaluation. This is unsurprising given that AML-SBK derived
its alignments from UMLS using an automatic strategy that is likely analogous to that
used to build the reference alignments in the first place. This evidently gives AML-
SBK an advantage over systems that do not use UMLS. Note, however, that the strategy
employed by AML is a general-purpose strategy for reusing preexisting mappings and
cross-references, which is used for both UMLS and Uberon. The only issue is that the
reference alignments were also automatically derived from UMLS, which makes the
evaluation of AML-SBK positively biased.
The results of AML-BK were also good, ranking second overall in recall and F-measure
if we exclude the systems that used UMLS. However, in this case the evaluation of
AML-BK is negatively biased by the reference alignments. The reason for this is that
AML-BK uses Uberon, and many of the mappings derived from Uberon are not present
in UMLS despite being correct. This is particularly evident in the FMA-NCI matching
problem with whole ontologies, where the contribution of Uberon (based on cross-
references which are manually curated) was approximately neutral, decreasing the pre-
cision as substantially as it increased the recall (in relation to AML). Perhaps extending
the reference alignments by compiling mappings from multiple reliable data sources

such as Uberon could enable a fairer evaluation of the systems competing in this track,
and make the tasks less trivial for systems using background knowledge.
The use of repair led to clearly more coherent alignments, as all AML configurations
with repair obtained very low degrees of unsatisfiability. However, in terms of quality
of the results, the use of repair led to a minor increase in F-measure in some cases, but
a substantial decrease in others, and thus had a negative effect overall. This is tied to
yet another bias in the reference alignments, caused by the fact that they were automat-
ically repaired [7]. Employing a repair strategy that differs from that used to build the
reference alignments can be more penalizing than not doing any repair at all, since for
each different decision a repair algorithm makes, it will remove a “correct” mapping
and keep an “incorrect” one, whereas without repair we would only have the latter. The
problem is that such decisions are essentially arbitrary regarding correctness.

3 General comments

3.1 Comments on the results

On the whole, the results of AML (without background knowledge) were interesting,
and show that, for many ontology matching tasks, a lightweight approach based solely
on element-level matching can compete with more complex approaches. It is worth
highlighting that AML was among the quickest systems in all tracks, and thus had a
consistently high F-measure/time ratio in all tracks except for Multifarm. However, the
results in the Multifarm track, and to a lesser degree those in the Benchmark track, re-
mind us that AML is still a system in development.
The results of AML-BK (and SBK) show that using suitable background knowledge is
critical in specialized domains such as the biomedical, but can be advantageous even
for more typical matching problems (such as those in the Conference track).

3.2 Discussions on the way to improve the proposed system

Implementing efficient and effective structural-level matching algorithms will be crit-
ical to improve the performance of AML overall. Language handling and translation
will also be important to expand the scope of AML, and allow it to tackle tasks such
as those in the Multifarm track. Finally, the inclusion of more sources of background
knowledge will undoubtedly contribute to improve the performance of AML in tasks
beyond the biomedical domain.

4 Conclusion

The participation of AML in the OAEI 2013 was a success overall, with very good
results in the Anatomy, Conference, Interactive Matching and Biomedical Ontologies
tracks, and reasonable results in the Library track. These results validate the background
knowledge paradigm of AML, and demonstrate the effectiveness of a lightweight ontol-
ogy matching strategy based solely on element-level matching. Nevertheless, it is also

clear from the results that AML is not a complete ontology matching system yet, and
that it can benefit from the addition of new tools to its base strategy.
Regarding its namesake, AML was able to build upon the success AgreementMaker
had in the Anatomy track in previous OAEI competitions, and was able to transpose
this success to the Large Biomedical Ontologies track.

Acknowledgments

DF, CP, ES and FMC were funded by the Portuguese FCT through the SOMER project
(PTDC/EIA-EIA/119119/2010) and the multi-annual funding program to LASIGE. CP
was also funded by the FLAD-NSF 2013 PORTUGAL-U.S. Research Networks Pro-
gram through the project “Turning Big Data into Smart Data”. The research of IFC
was partially supported by NSF Awards IIS-0812258, IIS-1143926, IIS-1213013, and
CCF-1331800, by a UIC Area of Excellence Award, and by a IPCE Civic Engagement
Research Fund Award.

References

1. O. Bodenreider. The Unified Medical Language System (UMLS): integrating biomedical
terminology. Nucleic Acids Res, 32(Database issue):267–270, 2004.

2. I. F. Cruz, F. Palandri Antonelli, and C. Stroe. AgreementMaker: Efficient Matching for
Large Real-World Schemas and Ontologies. PVLDB, 2(2):1586–1589, 2009.

3. I. F. Cruz, F. Palandri Antonelli, C. Stroe, U. Keles, and A. Maduko. Using AgreementMaker
to Align Ontologies for OAEI 2009: Overview, Results, and Outlook. In ISWC International
Workshop on Ontology Matching (OM), volume 551 of CEUR Workshop Proceedings, pages
135–146, 2009.

4. I. F. Cruz, C. Stroe, F. Caimi, A. Fabiani, C. Pesquita, F. M. Couto, and M. Palmonari. Using
AgreementMaker to Align Ontologies for OAEI 2011. In ISWC International Workshop on
Ontology Matching (OM), volume 814 of CEUR Workshop Proceedings, pages 114–121,
2011.

5. D. Faria, C. Pesquita, E. Santos, M. Palmonari, I. F. Cruz, and F. M. Couto. The Agreement-
MakerLight Ontology Matching System. In OTM Conferences - ODBASE, pages 527–541,
2013.

6. C. J. Mungall, C. Torniai, G. V. Gkoutos, S. Lewis, and M. A. Haendel. Uberon, an Integra-
tive Multi-species Anatomy Ontology. Genome Biology, 13(1):R5, 2012.

7. C. Pesquita, D. Faria, E. Santos, and F. M. Couto. Using AgreementMaker to Align Ontolo-
gies for OAEI 2011. In ISWC International Workshop on Ontology Matching (OM), CEUR
Workshop Proceedings, page To appear, 2013.

8. C. Pesquita, C. Stroe, D. Faria, E. Santos, I. F. Cruz, and F. M. Couto. What’s in a ”nym”?
Synonyms in Biomedical Ontology Matching. In International Semantic Web Conference
(ISWC), page To appear, 2013.

9. E. Santos, D. Faria, C. Pesquita, and F. M. Couto. Ontology alignment repair through mod-
ularization and confidence-based heuristics. arXiv:1307.5322, 2013.

10. B. Spell. Java API for WordNet Searching (JAWS). http://lyle.smu.edu/∼tspell/jaws/, 2009.
11. G. Stoilos, G. Stamou, and S. Kollias. A string metric for ontology alignment. In Interna-

tional Semantic Web Conference (ISWC), pages 624–637, 2005.

Monolingual and Cross-lingual Ontology Matching with
CIDER-CL: evaluation report for OAEI 2013

Jorge Gracia1 and Kartik Asooja1,2

1 Ontology Engineering Group, Universidad Politécnica de Madrid, Spain
jgracia@fi.upm.es

2 Digital Enterprise Research Institute, National University of Ireland, Galway, Ireland
kartik.asooja@deri.org

Abstract. CIDER-CL is the evolution of CIDER, a schema-based ontology align-
ment system. Its algorithm compares each pair of ontology entities by analysing
their similarity at different levels of their ontological context (linguistic descrip-
tion, superterms, subterms, related terms, etc.). Then, such elementary similari-
ties are combined by means of artificial neural networks. In its current version,
CIDER-CL uses SoftTFIDF for monolingual comparisons and Cross-Lingual Ex-
plicit Semantic Analysis for comparisons between entities documented in differ-
ent natural languages. In this paper we briefly describe CIDER-CL and com-
ment its results at the Ontology Alignment Evaluation Initiative 2013 campaign
(OAEI’13).

1 Presentation of the system

CIDER-CL is the evolution of CIDER (Context and Inference baseD alignER) [7], now
incorporating cross-lingual capabilities. In order to match ontology entities, CIDER-
CL extracts their ontological context and enriches it by applying lightweight inference
rules. Then, elementary similarity comparisons are performed to compare different fea-
tures of the ontological contexts. Such elementary comparisons are combined by means
of artificial neural networks (ANNs) [9] to produce a final similarity value between the
compared entities. The use of ANNs saves a lot of effort on manual tuning and allows to
quickly adapt the system into different domains (as far as there are reference alignments
available for them).

In its current version, the aligner has been re-implemented to include more features
in the comparisons and to add new metrics for similarity computation. In particular,
cross-lingual capabilities have been added by including the use of Cross-Lingual Ex-
plicit Semantic Analysis (CL-ESA) [10] between entities documented in different nat-
ural languages. Further, the previous metrics for monolingual comparison (based on
Vector Space Modelling [8]) have been changed by the SoftTFIDF metric [3]. CIDER-
CL is not intended to be used with large ontologies, particularly in the cross-lingual
case (CL-ESA computation is quite costly in terms of time).

1.1 State, purpose, general statement

According to the high level classification given in [5], our method is a schema-based
system (opposite to others which are instance-based, or mixed), because it relies mostly

on schema-level input information for performing ontology matching. CIDER-CL can
operate in two modes: (i) as an ontology aligner, taking two ontologies as input and
giving their alignment as output, and (ii) as a similarity service, taking two ontology
entities as input and giving the similarity value between them as output. In the first case
the input to CIDER-CL are two OWL ontologies and a threshold value and the output
is an RDF file expressed in the alignment format3, although it can be easily translated
into another formats such as EDOAL4.

The type of alignment that CIDER-CL obtains is semantic equivalence. In its cur-
rent implementation the following languages are covered: English (EN), Spanish (ES),
German (DE), and Dutch (NL).

1.2 Specific techniques used

In this section we briefly introduce the monolingual and cross-lingual metrics used by
CIDER-CL, as well as the overall architecture of the ontology aligner.

SoftTFIDF. SoftTFIDF [3] is a hybrid string similarity measure that combines TF-IDF,
a token-based similarity widely used in information retrieval [8], with an edit-based
similarity such as Jaro-Winkler [11] (although any other could be used instead).

Typically, string comparisons to compute TF-IDF weights are based on exact match-
ing (after some normalisation or tokenisation step). The idea of SoftTFIDF is to use an
edit distance instead to support a higher degree of variation between the terms. In par-
ticular, we use Jaro-Winkler similarity with a 0.9 threshold, above which two strings
are consider equal. SoftTFIDF measure has proved to be very effective when compar-
ing short strings [3]. In our case, the corpus used by SoftTFIDF is dynamically created
with the lexical information coming from the two compared ontologies (extracting their
labels, comments, and URI fragments).

CL-ESA. For cross-lingual ontology matching we propose the use of CL-ESA [10],
a cross-lingual extension of an approach called Explicit Semantic Analysis [6] (ESA).
ESA allows comparing two texts semantically with the help of explicitly defined con-
cepts. This method uses the co-occurrence information of the words from the textual
definitions of the concepts using, for instance, the Wikipedia articles. In short, ESA ex-
tends a simple bag of words model to a bag of concepts model. Some reports [2] have
demonstrated the good behaviour of CL-ESA for certain tasks such as cross lingual
information retrieval.

To compare two texts in different languages semantically, Wikipedia-based CL-
ESA represents the two texts as vectors in a vector space that has the Wikipedia titles
(articles) as dimensions, each vector in its own language specific Wikipedia. The mag-
nitude of each title/dimension is the associativity weight of the text to that title. To
quantify this associativity, the textual content of the Wikipedia article is utilized. This
weight can be calculated by using different methods, for instance, TF-IDF score.

3 http://alignapi.gforge.inria.fr/format.html
4 http://alignapi.gforge.inria.fr/edoal.html

For implementing CL-ESA, we followed an information retrieval-based approach
by creating a Lucene inverted index of the Wikipedia extended abstracts that exist in
all the considered languages i.e., EN, ES, NL, and DE. To create the weighted vector
of concepts, the term is searched over the index of the respective languages to retrieve
the top associated Wikipedia concepts and the Lucene ranking scores are taken as the
associativity weights of the concepts to the term. We used DBpedia URIs [1] as the
pivot between cross-lingual Wikipedia spaces and to identify a Wikipedia concept no
matter the language.

Scheme of the Aligner. Briefly explained, the alignment process is as follows (see
Figure 1):

Fig. 1. Scheme of the matching process.

1. First, the ontological context of each ontology term is extracted. This process is
enriched by applying a lightweight inference mechanism5, in order to add more
semantic information that is not explicit in the asserted ontologies.

2. Second, similarities are computed between different parts of the ontological con-
text. In particular, ten different features are considered: labels, comments, equiv-
alent terms, subterms, superterms, direct subterms, direct superterms (both for
classes and properties) and properties, direct properties, and related classes (for
classes) or domains, direct domains, and ranges (for properties).

3. Third, the different similarities are combined within an ANN to provide a final
similarity degree. CIDER-CL uses four different neural networks (multilayer per-
ceptrons in particular) for computing monolingual and cross-lingual similarities
between classes and properties, respectively.

4. Finally, a matrix (M in Figure 1) with all similarities is obtained. The final align-
ment (A) is then extracted from it, finding the highest rated one-to-one relationships
among terms and filtering out the ones below the given threshold.

5 Typically transitive inference, although RDFS or more complex rules can be also applied, at
the cost of processing time.

Implementation. Some datasets used in OAEI campaigns are open and the reference
alignments available for download. We have used part of such data to train our system.
In particular, we chose a subset of the OAEI’11 benchmark track to train our neural
networks for the monolingual case. We used the whole dataset but excluding cases 202
and 248-266, which present a total absence or randomization of labels and comments
(however their variations, 248-2, 248-4, etc., were not excluded). Also the reference
alignments of the conference track, which are also open, were added to the training
data set.

The use of the benchmark track for adjusting the ANNs is motivated by the fact
that it covers many possible situations and variations well, such as presence or ab-
sence of certain ingredients (labels, comments, etc.) or the effect of aligning at different
granularity levels (flattened/expanded hierarchies), etc. Further, we add also data of the
conference track to include training data coming from “real world” ontologies.

For the cross-lingual case, we trained the neural networks with a subset of the on-
tologies of the OAEI’13 Multifarm track (in EN, ES, DE, and NL): cmt, conference,
confOf, and sigkdd. Comparisons were run among the different ontologies in the dif-
ferent languages, excluding comparisons between the same ontologies. Due to the slow
performance of CL-ESA, we decided to perform an attribute selection analysis to dis-
cover which features have more predictive power. As result, we limited the system to
compute these features for classes: labels, subterms, direct superterms, direct subterms,
and properties; while for properties they were limited to: labels, subterms, and ranges.

CIDER-CL has been developed in Java, extending the Alignment API [4]. To create
and manipulate neural networks we use Weka6 data mining framework. For SoftTFIDF
we use SecondString7 and for CL-ESA we use the implementation developed by the
Monnet project8, which is available in GitHub as open source9.

1.3 Adaptations made for the evaluation

The weights and the configuration of the neural networks remained constant for all
the tests and tracks of OAEI’13, as well as the threshold. In particular we selected a
threshold of 0.0025. The intention of such a small value was to promote recall over
precision (while filtering out some extremely low values). Therefore, later filtering can
be made to perform a threshold analysis as the organisers of some OAEI tracks do (e.g.,
conference track).

Some minor technical adaptations were needed to integrate the system into the Seals
platform, like solving compatibility issues with the libraries used by the Seals wrapper.

1.4 Link to the system and parameters file

The version of CIDER-CL used for this evaluation (v1.1) was uploaded to the Seals
platform: http://www.seals-project.eu/ . More information can be found at CIDER-CL’s
website http://www.oeg-upm.net/files/cider-cl .

6 http://www.cs.waikato.ac.nz/ml/weka/
7 http://secondstring.sourceforge.net/
8 http://www.monnet-project.eu/
9 https://github.com/kasooja/clesa

1.5 Link to the set of provided alignments (in align format)

The resultant alignments will be provided by the Seals platform: http://www.seals-
project.eu/

2 Results

For OAEI’13 campaign, CIDER-CL participated in all the Seals-based tracks10. In the
following, we report the results of CIDER-CL for benchmark, conference, anatomy, and
multifarm tracks. For the other tracks, the system was not fit for the type of evaluation
(e.g., interactive track) or could not complete the task (e.g., library). Details about the
test ontologies, the evaluation process, and the complete results for all tracks can be
found at the OAEI’13 website11.

2.1 Benchmark

This year, a blind test set was generated based on a seed ontology of the bibliographic
domain. Out of the 21 systems participating in this track, CIDER-CL was within the
three best systems in terms of F-measure. In particular, the obtained results were:

Precision(P)=0.85, Recall(R)=0.67 and F-Measure(F)=0.75

Compare to the F=0.41 of edna, a simple edit distance-based baseline. In addition,
confidence-weighted measures were also computed for those systems that provided a
confidence value. In almost all cases the results were worse, as it was also the case of
CIDER-CL: P=0.84, R=0.55, and F=0.66

Also the time spent in the evaluation was calculated. CIDER-CL took 844±19 sec-
onds, which was slower than most of the systems (the median value was 173 sec) al-
though still far from the slowest one (10241±347 sec).

2.2 Conference

In this track, several ontologies from the conference domain were matched, resulting
in 21 alignments. In this case the organisers explored different thresholds and selected
the best achievable results. This test is not blind and the participants have the reference
alignments at their disposal before the evaluation phase.

Two reference alignments were used in this track: the original reference alignment
(ra1) and its transitive closure (ra2). Two baselines (edna and string equivalence) were
computed for comparison. Notice that the results for CIDER-CL in this track are merely
illustrative and should not be taken as a proper test, due to the fact that part of the train-
ing data of its neural networks came from the conference track reference alignments
(i.e., training and test data coincide partially).

Out of the 25 systems participating in this track (some of them were variations of
the same system), CIDER-CL performance was close to the average. The results were:
10 http://oaei.ontologymatching.org/2013/seals-eval.html
11 http://oaei.ontologymatching.org/2013

test ra1 (original): P = 0.75, R = 0.47, and F = 0.58 with threshold= 0.14
test ra2 (entailed): P = 0.72, R = 0.44, and F = 0.55 with threshold= 0.08

CIDER-CL was in the group of systems that performed better than the two base-
lines for ra2 and between the two baselines for ra1. The results for ra1 illustrates an
improvement with respect to the results obtained by its previous version (CIDER v0.4)
for the same test at OAEI’11 (F=0.53). The runtime was also registered: CIDER-CL
took less than 10 minutes for computing the 21 alignments. The other systems ranged
from 1 minute to more than 40.

2.3 Anatomy

This year, the current version of CIDER-CL completed the task and gave results for the
first time. In fact, in previous editions of OAEI, CIDER gave time-outs and the tool did
not finish the task, due to the big size of the involved ontologies. The results are:

P = 0.65, R = 0.73, F = 0.69, R+ = 0.31

These results are below the average of the overall results (F-Measure ranging from
0.41 to 0.94, with a median value of 0.81). An “extended recall” (R+) was also com-
puted, that is, the amount of detected non-trivial correspondences (that do not have the
same normalized label). For this metric CIDER-CL behaved better than the median
value (0.23). In terms of running time, CIDER-CL was the third slowest system (12308
sec) in this track, after discarding those that gave time-out.

2.4 Multifarm

This track is based on the alignment of ontologies in nine different languages: EN, DE,
ES, NL, CZ, RU, PT, FR, and CN. All pairs of languages (36 pairs) were considered in
the evaluation. A total of 900 matching tasks were performed. There were 21 partici-
pants in this track, 7 of them implementing specific cross-lingual modules as it was the
case of CIDER-CL.

The organisers divided the results in two types: comparisons between different on-
tologies (type i) and comparisons between the same ontologies (type ii). The result sum-
mary published by the organisers aggregates the individual results for all the language
pairs. In the case of CIDER-CL this hampers direct comparisons with other systems,
owing to the fact that CIDER-CL only covers a subset of languages (EN, DE, ES, NL)
and non produced alignments in other languages penalised the overall results. For this
reason we have filtered the language specific results to consider only such subset of
languages. The averaged results for CIDER-CL are:

type i (different ontologies): P = 0.16, R = 0.19, F = 0.17
type ii (same ontologies): P = 0.82 , R = 0.16, F = 0.26

For type ii, CIDER-CL got the 4th best result overall in terms of F-Measure and
the 3rd best result in the set of systems implementing specific cross-lingual techniques
(the results for such systems ranged from F = 0.12 to F = 0.44 for the referred subset of

languages). On the other hand, for type i CIDER-CL was in 8th position out of the 21
participants, although in the last place among the set of systems implementing cross-
lingual techniques (F-measure of the other techniques ranged from 0.17 to 0.35).

3 General comments

The following subsections contain some remarks and comments about the results ob-
tained and the evaluation process.

3.1 Comments on the results

CIDER-CL obtained good results for the benchmark track (third place out of 21 par-
ticipants). This shows that our system performs well for domains in which the system
could be trained with available reference data. Also that SoftTFIDF is suitable for on-
tology matching. In contrast, the results for the anatomy track were relatively poor. This
shows that creating a general purpose aligner based on our technique is not immediate.
Adding more training data from other domains would help to solve this.

The results from the multilingual track are rather modest, but the fact that even the
best systems scored low illustrates the difficulty of the problem. We consider that the
use of CL-ESA is promising for cross-lingual matching, but it will require more study
and adaptation to achieve better results.

3.2 Discussions on the way to improve the proposed system

More reference alignments from “real world” ontologies will be used in the future for
training the ANNs, in order to cover more domains and different types of ontologies.
Regarding the cross-lingual matching, there is still room for continuing improving the
use of CL-ESA to that end. We plan also to combine this novel technique with other
ones such as machine translation.

Time response in CIDER-CL is still an issue and has to be further improved. In
fact CIDER-CL works well with small and medium sized ontologies but not with large
ones. Partitioning and other related techniques will be explored in order to solve this.

3.3 Comments on the OAEI 2013 test cases

The variety of tracks and the improvements introduced along the years makes the
campaign very useful to test the performance of ontology aligners and analyse their
strengths and weaknesses. Nevertheless, we miss blind tests cases in more tracks, which
would allow a fair comparison between systems.

4 Conclusion

CIDER-CL is a schema-based alignment system that compares the ontological context
of each pair of terms in the aligned ontologies. Several elementary comparisons are

computed and combined by means of artificial neural networks. Monolingual and cross-
lingual metrics are used in the matching.

We have presented here some results of the participation of CIDER-CL at OAEI’13
campaign. The results vary depending on the track, from the good results in the bench-
mark track to the relatively limited behaviour in anatomy, for instance. We confirmed
that the proposed technique, based on ANNs, is suitable in conjunction with SoftTFIDF
metric for monolingual ontology matching. The use of CL-ESA metric for cross-lingual
matching is promising but requires more study.

Acknowledgments. This work is supported by the Spanish national project BabeLData
(TIN2010-17550) and the Spanish Ministry of Economy and Competitiveness within
the Juan de la Cierva program.

References

1. C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hellmann.
DBpedia - a crystallization point for the web of data. Web Semantics: Science, Services and
Agents on the World Wide Web, 7(3):154–165, Sept. 2009.

2. P. Cimiano, A. Schultz, S. Sizov, P. Sorg, and S. Staab. Explicit versus latent concept mod-
els for cross-language information retrieval. In Proceedings of the 21st international jont
conference on Artifical intelligence, IJCAI’09, pages 1513–1518, San Francisco, CA, USA,
2009. Morgan Kaufmann Publishers Inc.

3. W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string distance metrics for
name-matching tasks. In Proc. Workshop on Information Integration on the Web (IIWeb-03)
@ IJCAI-03, Acapulco, Mexico, pages 73–78, Aug. 2003.

4. J. Euzenat. An API for ontology alignment. In 3rd International Semantic Web Conference
(ISWC’04), Hiroshima (Japan). Springer, November 2004.

5. J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag, 2007.
6. E. Gabrilovich and S. Markovitch. Computing semantic relatedness using wikipedia-based

explicit semantic analysis. In In Proceedings of the 20th International Joint Conference on
Artificial Intelligence, pages 1606–1611, 2007.

7. J. Gracia, J. Bernad, and E. Mena. Ontology matching with CIDER: Evaluation report for
OAEI 2011. In Proc. of 6th Ontology Matching Workshop (OM’11), at 10th International
Semantic Web Conference (ISWC’11), Bonn (Germany), volume 814. CEUR-WS, Oct. 2011.

8. V. V. Raghavan and M. S. K. Wong. A critical analysis of vector space model for information
retrieval. Journal of the American Society for Information Science, 37(5):279–287, 1986.

9. M. Smith. Neural Networks for Statistical Modeling. John Wiley & Sons, Inc., New York,
NY, USA, 1993.

10. P. Sorg and P. Cimiano. Exploiting wikipedia for cross-lingual and multilingual information
retrieval. Data Knowl. Eng., 74:26–45, Apr. 2012.

11. W. E. Winkler. String comparator metrics and enhanced decision rules in the Fellegi-Sunter
model of record linkage. In Proceedings of the Section on Survey Research, pages 354–359,
1990.

CroMatcher - Results for OAEI 2013

1, Boris Vrdoljak2

1 Faculty of Maritime Studies, Rijeka, Croatia
marko.gulic@pfri.hr

2 Faculty of Electrical Engineering and Computing, Zagreb, Croatia
boris.vrdoljak@fer.hr

Abstract. CroMatcher is an ontology matching system based on terminological
and structural matchers. The most important part of the system is automated
weighted aggregation of correspondences produced by using different basic
ontology matchers. This is the first year CroMatcher has been involved in the
OAEI campaign. The results obtained this year will certainly help in finding
and resolving shortcomings in the system before the next campaign.

1 Presentation of the system

CroMatcher is an automatic ontology matching system for determining
correspondences between entities of two different ontologies. There are several
terminological and structural basic matchers in CroMatcher. The system is based on a
weighted aggregation that automatically determines the importance of each basic
matcher according to the produced correspondences. As this is the first time the
CroMatcher has taken part in the OAEI campaign, CroMatcher is fully prepared only
for benchmark test set.

1.1 State, purpose, general statement

CroMatcher is a system that executes several basic matchers and then aggregates the
results obtained by these matchers. The system does not use any external resource.
After the execution of terminological basic matchers, the automatic weighted
aggregation is executed. The results of certain terminological basic matcher are
included into the common results depending on their importance. The importance of
certain basic matcher is determined automatically within weighted aggregation. Then,
the several iterative structural matchers are executed (e.g. if the child entities are
similar, the parent entities are similar too). To find correspondences with structural
matchers, the common results of terminological matchers are used. After the
execution of structural basic matchers, the automatic weighted aggregation is
executed too. At the end of matching process, the weighted aggregation is executed
for the terminological and structural common results. Finally, the method of final
alignment (choosing the relevant correspondences between entities of two ontologies)
is executed. This method iteratively takes the best correspondences between two

certain entities into the final alignment. Each entity can be related just to one entity of
other ontology.

1.2 Specific techniques used

In this section, the main components of the CroMatcher will be described in details.
The workflow and the main components of the system can be seen in the Fig. 1. The
CroMatcher consists of the following components:

1. Data extraction from ontologies - the information of every entity is extracted
from given ontologies. After extraction of all data about certain entity, all textual
data is normalized by tokenizing into set of tokens, and removing stop words.

Data extraction from
ontologies Terminological matchers

Autoweighted aggregation
(aggregated correspondences
of terminological matchers)

Structural matchers

Autoweighted aggregation
(final aggregation)

Autoweighted aggregation
(aggregated correspondences

of structural matchers)

Final
alignment

Parallel composition

Parallel composition

Fig. 1. The workflow and the main components of the Cromatcher

2. Terminological matchers:

properties) with the bi(tri)gram matcher (tests how many bi(tri)grams, i.e.
(substrings of length 2, 3) are the same within two names, e.g. FTP and
FTPServer have 2 bigrams - FT and TP) [1]

 does not have label)
of two entities (classes or properties) with the bi(tri)gram matcher

 Matcher that compares textual profiles of two entities with TF/IDF [2] and
cosine similarity [3]. A profile of class entity contains annotations of actual class
entity (and all sub classes) and annotations of every property whose domain is
actual class. A profile of property entity contains annotations of actual property
entity and all sub properties.

 Matcher that compares individuals of two entities with TF/IDF and cosine
similarity. An individual of class entity contains individual values of actual class
entity and individual values of all subclasses. An individual of property entity
contains individual values of its range class entities.

 Matcher that compares extra individuals of two entities with TF/IDF and cosine
similarity. An extra individual of class entity contains individual values of first
super class of actual class entity. An extra individual of property entity contains
individual values of its domain and range class entities.

 Matcher that compares some general data about the entities. A general data of
class entity contains number of object (data) properties, number of restrictions
and number of sub (super) class entities. A general data of property entity
contains number of sub (super) property entities, number of domain class
entities. More similar the general data, there is the greater correspondence
between entities.

3. Structural matchers:
 Matcher that compares the similarity between super entities (classes or

properties) of currently compared entities. If the super entities are similar,
compared entities are similar too. The matcher is executed iteratively and it ends
when the correspondence value of compared entities stops changing. In each
step, the new correspondence value of compared entities is calculated by
summing 50% of the previous similarity value and 50% of the similarity value
between super entities.

 Matcher that compares the similarity between sub entities (classes or properties)
of currently compared entities. If the sub entities are similar, the compared
entities are similar too. The matcher is executed iteratively and it ends when the
correspondence value of compared entities stops changing. In each step, the new
correspondence value of compared entities is calculated by summing 50% of the
previous similarity value and 50% of the similarity value between sub entities.

 Matcher that compares the similarity between properties (and its range classes)
that have the currently compared classes as their domain. A part of matcher for
similarity between properties compares domain classes of properties.

 Matcher that compares the similarity between range classes of currently
compared properties.

4. Autoweighted aggregation for parallel composition of basic matchers:
After the execution of terminological and structural matchers, the results of these

matchers have to be aggregated together. In our system, we used a parallel
composition of matchers for integration of multiple matchers. The main problem in
parallel composition is how to aggregate the results obtained by every basic matcher.
Weighted aggregation is one of the methods for aggregation of matchers [4]. This
method determines a weighted sum of similarity values of the basic matchers and
needs relative weights which should correspond to the expected importance of the
basic matchers. The problem is how to determine the importance of every basic
matcher. Our automatic Autoweight method proposed in [5] automatically defines the
importance of various basic matchers in order to improve overall performance of the
matching system. In this method, the importance of certain basic matcher is specified

by determining the importance of individual best correspondences (greatest
correspondences between two entities in both directions of mapping, as those
correspondences are the most relevant) within the results obtained by that matcher.
The importance of a certain correspondence found within the results of a basic
matcher is higher when the same correspondence is found within a smaller number of
other basic matchers. The method that finds the same correspondences as all other
methods does not provide any new significant information for the matching process.

5. Process of final alignment:
At the end, the selection of relevant correspondences, for inclusion in the final

alignment, is executed iteratively. The final alignment includes only the greatest
correspondences between entity1i (first ontology) and entity2j (second ontology). A
correspondence between entity1i and entity2j is the greatest correspondence only if it
has the greatest value among all correspondences in which the entity1i (or entity2j) is
included. Threshold for these greatest correspondences is set to 0.15. We consider that
this threshold is sufficient because the final alignment included only those
correspondences that are the greatest for both compared entities.

1.3 Link to the system and parameters file

A system can be downloaded from the http://www.seals-project.eu (tool identifier:
e0fe95d5-943e-4652-bc53-5b36b712c9cb, version: 1.0).

2 Results

In this section, the evaluation results of CroMatcher matching system executed on the
SEALS platform are presented.

2.1 Benchmark

In OAEI 2013, benchmark includes one blind test (biblio). In Table 1 the result
obtained by running the CroMatcher ontology system can be seen.

Test set Recall Precision F-Measure Time (s)
Benchmark 0.82 0.95 0.88 1114

Table 1. CroMatcher result for benchmark track

2.2 Anatomy, conferences, multifarm, library, large biomedical ontologies and
instance matching

This is the first year CroMatcher has been involved in the OAEI campaign and the
focus was on benchmark track. Therefore, the system had problems with other tracks
because we did not manage to test the system for other tracks before the evaluation
due the lack of time. This year, the ontology matching system had to finish matching

the anatomy ontologies within 10 hours, and our system has not finished even after 30
hours therefore we need to speed up the system before the next OAEI campaign. In
the conference track, our system was partially evaluated because it could not process
several ontologies. In the multifarm, library, large biomedical ontologies, our system

next evaluation. Regarding the instance matching, we did not participate in this track.

3 General comments

As we stated before, this is the first time the CroMatcher system participates in the
OAEI campaign. We are very pleased that our ontology matching system was
evaluated on the SEALS platform because this way we could compare our system
with existing systems. There are many different test cases and we think that these test
cases will help us to improve our system in the future.

3.1 Comments on the results

Our system shows great results in benchmark track. Considering the fact that the
benchmark track contains the largest number of ontologies in which the different parts
are missing, we can conclude that our system performs well but only while matching
small ontologies like these in the benchmark track. While matching big ontologies
(thousands of entities), our system is quite slow and it cannot handle big ontologies
yet.

3.2 Discussions on the way to improve the proposed system

We will have to find faster measure than TF/IDF to compare different documents of
entities. Also, we will have to store the data about the entities in a separate file instead
in the java objects in order to reduce the usage of memory in the system.

4 Conclusion

The CroMatcher ontology matching system and its results of evaluation on different
OAEI track were presented in this paper. The evaluation results show that CroMatcher
successfully matches small ontologies but it has problems dealing with ontologies that
have a large number of entities. We will try to solve this problem and prepare the
system to be competitive in all OAEI tracks next year.

References

1. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, 2007.

2. Salton, G., McGill, M.H.: Introduction to Modern Information Retrieval. McGraw-Hill,
New York (1983)

3. Baeza-Yates, R., Ribeiro-Neto B.: Modern Information Retrieval. Addison-Wesley, Boston
(1999)

4. Do, H., Rahm, E.: COMA - a system for flexible combination of schema matching
approaches. In Proc. 28th International Conference on VLDB, pages 610-621, 2002.

5
Matchers in Ontology Matching Process. In: Barriocanal, E. G., Cebeci, Z., Okur, M. C.,
Öztürk, A. (eds.) MTSR 2011. Communications in Computer and Information Science, vol.
240, pp. 22-33. Springer, Berlin Heidelberg (2011)

IAMA Results for OAEI 2013

Yuanzhe Zhang1, Xuepeng Wang1, Shizhu He1,
Kang Liu1, Jun Zhao1, and Xueqiang Lv2

1 Institute of Automation, Chinese Academy of Sciences, China
{yzzhang, xpwang, shizhu.he, kliu, jzhao}@nlpr.ia.ac.cn
2 Beijing Key Laboratory of Internet Culture and Digital Dissemination Research

lxq@bistu.edu.cn

Abstract. This paper presents the results of IAMA on OAEI 2013. IAMA (Insti-
tute of Automation’s Matcher) is an ontology matching system with the capability
to deal with large scale ontologies. IAMA is designed to find out the correspon-
dences between two ontologies by using multiple similarity measures. Candidate
filtering technique is adopted when processing ontologies at large scale.

1 Presentation of the system

1.1 State, purpose, general statement

Large amount of ontologies has been published since the semantic web emerged. How-
ever, managing the heterogeneity among various ontologies is still a problem [1]. For
example, many ontologies describe the same entity (i.e., class or property) using dif-
ferent terminologies, while the entities having the same name belonging to different
ontologies may refer to disparate objects. Finding the matching between different on-
tologies is still challenging. Ontology matching, as a solution to the aforementioned
problem, has received great interests in these years.

The principal goal of IAMA is to discover equivalent entities rapidly between d-
ifferent ontologies. We use efficient terminology matching techniques and do not turn
to any external resource at this stage. IAMA is able to match classes and properties
of two input ontologies. The system could achieve qualified results, though neglecting
the structural information. The Matching process takes little time to cope with small
ontologies. When processing large scale ontologies, IAMA could still, with the help of
candidate filtering, yield the alignment in reasonable time. We tend to make an universal
and extensible system, so more matching methods could be conveniently incorporated
in the future.

1.2 Specific techniques used

IAMA employs various similarity measures to take advantage of the available informa-
tion in the ontologies. The entities in two ontologies are pairwise compared, and lexical
similarities and structural similarities are calculated respectively. In the current version,
only 1:1 alignment is considered.

Let O1 and O2 denote the two input ontologies, and e1 is an entity in O1. Each enti-
ty e2 in O2 has a similarity with e1 indicated as sim(e1, e2). We are able to find out the
maximum value as sim(e1, ê). If sim(e1, ê) is greater than a predetermined threshold
t1, entity pair (e1, ê) will be added to the alignment. In the following paragraphs, we
will present the used similarity measures in our system.

Lexical Similarity
The system extracts local names, labels, and comments of the entities in the two

input ontologies as lexical features. For most situations, the lexical information is ef-
fective.

Local Name similarity measures the similarity between the names of two entities.
We get rid of the spaces and other punctuations because the entity name is comprised
of multiple words or contains hyphens at times. All the letters are turned to lower case
simultaneously. Label Similarity measures the similarity between the labels. Not all the
entities have labels, and many entities have a label exactly the same as its local name.
Comment Similarity measures the similarity between the comments. A comment of an
entity is usually a brief descriptive sentence, which is helpful when the two ontologies
name their entities with quite different style. Both labels and comments are processed
as local names, thereby treated as a single word.

IAMA uses Levenshtein [2] distance, which is proved competent in [3], to calculate
lexical similarities. For the three lexical similarities mentioned above, we do not take
them equally. Each similarity is assigned a weight intuitively. Local name similarity has
a greater weight than label similarity, while comments similarity has the lowest weight.

Individual Similarity
Between the classes that have individuals, Individual Similarity is additionally cal-

culated. The names of individuals that belong to a class are extracted to a set of string.
Assume S1 and S2 are two sets, then the similarity between them is computed as fol-
lows:

sim(S1, S2) = 2× #(S1 ∩ S2)

#S1 +#S2
(1)

For example, if c1 is a class in ontology O1, and c2 is a class in ontology O2. The names
of the individuals belonging to c1 is a set of string i1 = {s1, s2, s3}, and similarly we
get i2 = {s2, s3, s4, s5}. The individual similarity simi(c1, c2) is:

simi(c1, c2) = 2× #(i1 ∩ i2)

#i1 +#i2
= 2× 2

3 + 4
= 0.571

IAMA adopts the maximum value of all the similarities as the final similarity of
the entity pair. It is worth noting that other similarities such as superclass similarity,
subclass similarity, domain similarity and range similarity are also tested in our earli-
er attempts. But they contributed little considering the time increased. They could be
added easily if needed, which makes IAMA extensible.

Candidate Filtering

Pairwise compare is time consuming. In most cases, calculating similarities for ev-
ery entity pair is unnecessary. Candidate Filtering helps to find out a few promising
entity pairs in advance, thus saving running time dramatically.

Assume the two input ontologies are O1 and O2, and O2 has more entities than
O1. For each entity in O1, we attempt to find out potential entities in O2 to construct
a candidate set. The idea is implemented as follow. First, the lexical information in
the bigger ontology O2, namely name, label and comment is tokenized and indexed
by Lucene3. Second, we construct search query for each entity in O1. For instance,
the lexical information of an entity in O1 is ”Reference”, ”Reference”, ”Base class for
all entries”. We split it into index tokens, and every single token is searched in the
constructed index, yielding top-k entities as a candidate set. Last, our system calculates
the final similarity values pairwise.

The time used for indexing and searching is acceptable. For large input ontologies,
candidate filtering improves the matching speed substantially. Take anatomy track for
example, the difference can be seen in Table 1. The experiment is conducted on a com-
puter with 4.7GHz Intel i5 CPU (4 core) and 8GB RAM.

Precision F-Measure Recall Runtime (ms)
IAMA without candidate filtering 0.994 0.719 0.563 117,503

IAMA with candidate filtering 0.995 0.713 0.555 5,376

Table 1. The impact of candidate filtering in Anatomy track

Candidate filtering could still miss some potential entity pairs though negligible.
IAMA defined an alterable trigger threshold t2, which is set to 500 empirically. Only
both the two ontologies have more than 500 entities, candidate filtering is employed.

1.3 Adaptations made for the evaluation

There are two key parameters in IAMA (i.e., t1 and t2). Specifically, if the final similar-
ity of an entity pair is greater than t1, the pair will be added to the alignment. t2 is the
trigger threshold of candidate filtering component as mentioned before. In the version
to participate in OAEI 2013, t1 is set to 0.9 and t2 is set to 500.

1.4 Link to the system and parameters file

The latest version of IAMA can be seen on https://github.com/YuanzheZhang/IAMA.

2 Results

This section presents the results of IAMA achieved in OAEI 2013. Our system mainly
focuses on benchmark, anatomy, conference, and large biomedical ontologies. We do
not provide multilingual support for the moment.

3 http://lucene.apache.org

2.1 benchmark

The goal of the benchmark data set is to provide a stable and detailed picture of each
algorithm[4]. The benchmark test library consists of several test suits. The test suites
are generated from the usual bibliography ontology this year, and they are blind to
participants. Table 2 shows the results of benchmark track. Pt F-m./s means the average
F-measure point provided per second.

Precision F-Measure Recall Time (s) pt F-m./s
0.99 0.73 0.57 102 0.72

Table 2. Results for Benchmark track

Our system acquired its best results in this track. Concerning F-measure, IAMA ranked
fourth in the 21 systems. The comparison with other top systems is shown in Table 3

System Precision F-Measure Recall Time (s) pt F-m./s
YAM++ 0.97 0.89 0.82 702 0.13

CroMatcher 0.95 0.88 0.82 1,114 0.08
CIDER-CL 0.85 0.75 0.67 844 0.09

IAMA 0.99 0.73 0.57 102 0.72
ODGOMS 0.99 0.71 0.55 100 0.71

Table 3. Comparison with other top systems in Benchmark track

2.2 anatomy

The task of anatomy track is to find the alignment between the Adult Mouse Anatomy
and a part of the NCI Thesaurus. These two ontologies describe the mouse anatomy and
the human anatomy respectively. The results of our system on anatomy are shown in
Table 4.

Runtime Size Precision F-Measure Recall Recall Coherent
10 845 0.996 0.713 0.555 0.014 -

Table 4. Results for Anatomy track

Since both the two ontologies have the scale larger than 500 entities, candidate filtering
is employed. As a result, IAMA finishes this track in 10 seconds. Only two system-
s are faster than IAMA. The simple use of lexical similarity generates mostly trivial
correspondences, leading the low recall+ measure.

2.3 conference

Conference track contains sixteen ontologies from the conference organization domain.
There are two versions of reference alignment. The original reference alignment is la-
beled as ra1, and the new reference alignment, generated as a transitive closure com-
puted on the original reference alignment, is labeled as ra2. Table 5 shows the results
of our system in this track.

Precision F-Measure Recall
ra1 0.78 0.59 0.48
ra2 0.74 0.55 0.44

Table 5. Results for Conference track

IAMA finishes the conference track in 53 seconds. Candidate filtering has not been
activated.

2.4 multifarm

The MultiFarm data set contains ontologies in eight different languages. These ontolo-
gies are translated from conference track. IAMA does not design a multilingual method
specifically, thus obtained relatively poor results. We managed to utilize language detec-
tion and translation API. Unfortunately, it increased the processing time of our system
and led to other problems. In the next version, IAMA will adopt specialized method to
deal with multilingual ontologies. The results are presented in Table 6.

Average Precision Average F-Measure Average Recall
0.30 0.05 0.03

Table 6. Results for MultiFarm track

2.5 library

The task of library track is to match two real-world thesaurus, namely STW and TheSoz.
IAMA does not provide particular method aiming at this track. The results can be seen
in Table 7. IAMA does not apply particular method for this track.

Precision F-Measure Recall
0.78 0.04 0.08

Table 7. Results for Library track

2.6 large biomedical ontologies

Large Biomedical track challenges matching tools by offering large scale ontologies.
The task of this track is to find alignments between Foundational Model of Anatomy
(FMA), SNOMED CT, and the National Cancer Institute Thesaurus (NCI). IAMA fin-
ishes the task in reasonable time owe to the use of candidate filtering. Table 8 shows the
results.

Task 1: Small FMA and NCI fragments
P F R #Mappings Runtime (s)

0.979 0.733 0.585 1,751 14
Task 2: Whole FMA and NCI ontologies

P F R #Mappings Runtime (s)
0.901 0.708 0.582 1,894 139

Task 3: Small FMA and SNOMED fragments
P F R #Mappings Runtime (s)

0.962 0.236 0.134 1,250 27
Task 4: Whole FMA and SNOMED ontologies

P F R #Mappings Runtime (s)
0.749 0.227 0.134 1,600 218

Task 5: Small SNOMED and NCI fragments
P F R #Mappings Runtime (s)

0.965 0.604 0.439 8,406 99
Task 6: Whole SNOMED and NCI ontologies

P F R #Mappings Runtime (s)
0.917 0.593 0.439 8,843 207

Table 8. Results for Large Biomedical track

IAMA is one of the fifteen systems that are able to complete all six tasks, and
provides the best results in terms of precision in task 1 and task 2. Furthermore, our
system finishes all the tasks in 704 seconds, only slower than LogMapLt (371 seconds).
The average results are shown in Table 9.

Precision F-Measure Recall Incoherence Total time (s)
0.912 0.517 0.386 46.4% 704

Table 9. The average results for Large Biomedical track

3 General comments

3.1 Comments on the results

IAMA achieved qualified results in its first participation in OAEI. The results for bench-
mark, conference, and large biomedical track is better. Since the system does not design
specific method to handle MultiFarm and library track, the results are relatively poor. It
is evident that IAMA got relatively high precision but low recall. The reason is that the
threshold t1 is fixed to a high value of 0.9. Candidate filtering, as already mentioned,
cuts down the recall as well.

3.2 Discussions on the way to improve the proposed system

IAMA remains much to be improved. First, the system does not take advantage of
structural information, which is beneficial when lack of lexical information. We tried
to calculate structural similarity like subclass similarity and superclass similarity, but
did not receive expected results. The hierarchy information is also remained to be ex-
ploited. Second, predetermining all the parameters loses the flexibility. The influence
of parameter t1 can be seen in Table 10. The experiment is conducted on a computer
with 4.7GHz Intel i5 CPU (4 core) and 8GB RAM. A self-adjust mechanism is to be
employed in the future. Third, the system lacks the ability to match ontologies in dif-
ferent languages. The next version will support multi-language inputs. We expect the
optimized system would become an eligible universal ontology matching system.

Precision F-Measure Recall
t1=0.7 0.800 0.752 0.710
t1=0.8 0.945 0.783 0.668
t1=0.9 0.995 0.719 0.563

Table 10. Impact of parameter t1 in anatomy track (without candidate filtering)

4 Conclusion

This paper has reported the results of IAMA in OAEI 2013. The results reflect that
IAMA has the ability to deal with a majority of ontologies, including large ones. On
the other hand, for those disadvantages exposed, we discuss the possible solutions. By
and large, IAMA achieved reasonable results for its first participation in OAEI, and it
is promising to be much improved in the future.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No.
61070106,61272332,61202329) and the Opening Project of Beijing Key Laboratory of
Internet Culture and Digital Dissemination Research(ICDD201201).

References

1. P Shvaiko and Jérôme Euzenat. Ontology matching: State of the art and future challenges.
Knowledge and Data Engineering, IEEE Transactions on, (99), 2012.

2. Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions and reversals.
In Soviet physics doklady, volume 10, page 707, 1966.

3. Giorgos Stoilos, Giorgos Stamou, and Stefanos Kollias. A string metric for ontology align-
ment. In The Semantic Web–ISWC 2005, pages 624–637. Springer, 2005.

4. José Luis Aguirre, Bernardo Cuenca Grau, Kai Eckert, Jérôme Euzenat, Alfio Ferrara,
Robert Willem van Hague, Laura Hollink, Ernesto Jimenez-Ruiz, Christian Meilicke, An-
driy Nikolov, et al. Results of the ontology alignment evaluation initiative 2012. In Proc. 7th
ISWC workshop on ontology matching (OM), pages 73–115, 2012.

LogMap and LogMapLt results for OAEI 2013

Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ian Horrocks

Department of Computer Science, University of Oxford, Oxford, UK

Abstract. We present the results obtained in the OAEI 2013 campaign by our on-
tology matching system LogMap and its ‘lightweight” variant called LogMapLt.
The LogMap project started in January 2011 with the objective of developing a
scalable and logic-based ontology matching system. This is our fourth participa-
tion in the OAEI and the experience has so far been very positive.

1 Presentation of the system

LogMap [11, 12] is a highly scalable ontology matching system with built-in reasoning
and inconsistency repair capabilities. LogMap also supports (real-time) user interaction
during the matching process, which is essential for use cases requiring very accurate
mappings. LogMap is one of the few ontology matching system that (1) can efficiently
match semantically rich ontologies containing tens (and even hundreds) of thousands
of classes, (2) incorporates sophisticated reasoning and repair techniques to minimise
the number of logical inconsistencies, and (3) provides support for user intervention
during the matching process. LogMap is also available as a “lightweight” variant called
LogMapLt, which essentially only applies (efficient) string matching techniques.

LogMap relies on the following elements, which are keys to its favourable scalabil-
ity behaviour (see [11, 12] for details).

Lexical indexation. An inverted index is used to store the lexical information contained
in the input ontologies. This index is the key to efficiently computing an initial set of
mappings of manageable size. Similar indexes have been successfully used in informa-
tion retrieval and search engine technologies [4].

Logic-based module extraction. The practical feasibility of unsatisfiability detection
and repair critically depends on the size of the input ontologies. To reduce the size of
the problem, we exploit ontology modularisation techniques. Ontology modules with
well-understood semantic properties can be efficiently computed and are typically much
smaller than the input ontology (e.g. [7]).

Propositional Horn reasoning. The relevant modules in the input ontologies together
with (a subset of) the candidate mappings are encoded in LogMap using a Horn propo-
sitional representation. Furthermore, LogMap implements the classic Dowling-Gallier
algorithm for propositional Horn satisfiability [8, 10]. Such encoding, although incom-
plete, allows LogMap to detect unsatisfiable classes soundly and efficiently.

Axiom tracking and greedy repair. LogMap extends Dowling-Gallier’s algorithm to
track all mappings that may be involved in the unsatisfiability of a class. This exten-
sion is key to implementing a highly scalable repair algorithm.

Semantic indexation. The Horn propositional representation of the ontology modules
and the mappings are efficiently indexed using an interval labelling schema [1] — an
optimised data structure for storing directed acyclic graphs (DAGs) that significantly
reduces the cost of answering taxonomic queries [6, 17]. In particular, this semantic
index allows us to answer many entailment queries over the input ontologies and the
mappings computed thus far as an index lookup operation, and hence without the need
for reasoning. The semantic index complements the use of the propositional encoding
to detect and repair unsatisfiable classes.

1.1 Adaptations made for the 2013 evaluation

The new version of LogMap also integrates MORe [2, 3] as OWL 2 reasoner. MORe is
a modular reasoner which combines a fully-fledged (and slower) reasoner with a profile
specific (and more efficient) reasoner.

LogMap’s algorithm described in [11–13] has also been adapted to meet the re-
quirements of the new interactive matching track which uses an Oracle as expert user.

LogMap aims at making a reduced number of calls to the Oracle, i.e.: only those
borderline mappings that cannot be clearly included or excluded with automatic heuris-
tics. For each call to the Oracle, LogMap applies conflict and ambiguity based heuristics
(see [12] for details) to reduce the remaining number of calls (i.e. mappings).

Additionally, the interactive algorithm described in [12] has been slightly extended
to include object and data properties in the process.

1.2 Link to the system and parameters file

LogMap is open-source and released under GNU Lesser General Public License 3.0.1

Latest components and source code are available from the LogMap’s Google code page:
http://code.google.com/p/logmap-matcher/.

LogMap distributions can be easily customized through a configuration file contain-
ing the matching parameters.

LogMap, including support for interactive ontology matching, can also be used di-
rectly through an AJAX-based Web interface: http://csu6325.cs.ox.ac.uk/.
This interface has been very well received by the community, with more than 900 re-
quests processed so far coming from a broad range of users.

1.3 Modular support for mapping repair

Only very few systems participating in the OAEI 2013 competition implement repair
techniques. As a result, existing matching systems (even those that typically achieve
very high precision scores) compute mappings that lead in many cases to a large number
of unsatisfiable classes.

We believe that these systems could significantly improve their output if they were
to implement repair techniques similar to those available in LogMap. Therefore, with

1 http://www.gnu.org/licenses/

Table 1: Results for Benchmark track.

System
biblio 2012 biblioc
P R F P R F

LogMap 1.00 0.47 0.64 0.73 0.42 0.53
LogMapLt 0.95 0.50 0.66 0.43 0.50 0.46

Table 2: Results for Anatomy track.

System P R F Time (s)

LogMap 0.918 0.846 0.881 13
LogMapLt 0.962 0.728 0.829 7

the goal of providing a useful service to the community, we have made LogMap’s ontol-
ogy repair module (LogMap-Repair) available as a self-contained software component
that can be seamlessly integrated in most existing ontology matching systems [14].

2 Results

In this section, we present a summary of the results obtained by LogMap and LogMapLt
in the OAEI 2013 campaign. Please refer to http://oaei.ontologymatching.
org/2013/results/index.html for complete results.

2.1 Benchmark track

Ontologies in this track have been synthetically generated. The goal of this track is to
evaluate the matching systems in scenarios where the input ontologies lack important
information (e.g., classes contain no meaningful URIs or labels) [9].

Table 1 summarises the average results obtained by LogMap and LogMapLt. Note
that the computation of candidate mappings in LogMap and LogMapLt heavily relies
on the similarities between the vocabularies of the input ontologies; hence, there is a
direct negative impact in the cases where the labels are replaced by random strings.

2.2 Anatomy track

This track involves the matching of the Adult Mouse Anatomy ontology (2,744 classes)
and a fragment of the NCI ontology describing human anatomy (3,304 classes). The ref-
erence alignment has been manually curated [19], and it contains a significant number
of non-trivial mappings.

Table 2 summarises the results obtained by LogMap and LogMapLt. LogMap ranked
3rd among the systems not using specialised background knowledge. Regarding map-
ping coherence, only two tools (including LogMap) generated coherent alignments. The
evaluation was run on a server with 3.46 GHz (6 cores) and 8GB RAM.

Table 3: Results for Conference track.

System
RA1 reference RA2 reference

Time (s)
P R F P R F

LogMap 0.80 0.59 0.68 0.76 0.54 0.63 24
LogMapLt 0.73 0.50 0.59 0.68 0.45 0.54 21

Table 4: Results for Library track.

System P R F Time (s)

LogMap 0.777 0.645 0.705 99
LogMapLt 0.646 0.771 0.703 20

2.3 Conference track

The Conference track uses a collection of 16 ontologies from the domain of academic
conferences [18]. These ontologies have been created manually by different people and
are of very small size (between 14 and 140 entities). The track uses two reference align-
ments RA1 and RA2. RA1 contains manually curated mappings between 21 ontology
pairs, while RA2 also contains composed mappings based on the alignments in RA1.

Table 3 summarises the average results obtained by LogMap and LogMapLt. The
last column represents the total runtime on generating all 21 alignments. Tests were
run on a laptop with Intel Core i5 2.67GHz and 8GB RAM. LogMap ranked 3rd and
produced coherent alignments.

2.4 Multifarm track

This track is based on the translation of the OntoFarm collection of ontologies into
9 different languages [16]. Both LogMap and LogMapLt, as expected, obtained poor
results since they do not implement specific multilingual techniques.

2.5 Library track

The library track involves the matching of the STW thesaurus (6,575 classes) and the
TheSoz thesaurus (8,376 classes). Both of these thesauri provide vocabulary for eco-
nomic and social sciences. Table 4 summarises the results obtained by LogMap and
LogMapLt. The track was run on a computer with one 2.4GHz core with 7GB RAM
and 2 cores. LogMap ranked 5th in this track.

2.6 Interactive matching track

The interactive track is based on the conference track and it uses the RA1 reference
alignment as Oracle. Table 5 summarizes the obtained results by LogMap with and
without the interactive mode activated. LogMap with interactivity (LogMap-Int) im-
proved both the average Precision and Recall wrt LogMap with the interactive mode

Table 5: Results for Interactive track.

System
RA1 reference

Calls Time (s)
P R F

LogMap 0.80 0.59 0.68 0 24
LogMap-Int 0.90 0.64 0.73 91 27

Table 6: Summary results for the Large BioMed track

System Total Time (s) P R F Inc. Degree.

LogMap-BK 2,391 0.904 0.700 0.785 0.013%
LogMap 2,485 0.910 0.689 0.780 0.015%
LogMapLt 371 0.874 0.517 0.598 34.1%

deactivated, and it only performed 91 calls to the Oracle along the 21 matching tasks
(i.e. less than 5 questions per ontology pair).

Not that, although LogMap-Int ranked 1st in the interactive matching track, it could
not outperform the best tool in the conference track, which obtained a F-measure of 0.74
(wrt the RA1 reference alignment). Nevertheless, there is still room for improvement
and we aim at implementing more sophisticated matching and interactive techniques.

2.7 Large BioMed track

This track consists of finding alignments between the Foundational Model of Anatomy
(FMA), SNOMED CT, and the National Cancer Institute Thesaurus (NCI). These on-
tologies are semantically rich and contain tens of thousands of classes. UMLS Metathe-
saurus [5] has been selected as the basis for the track reference alignments.

In this track LogMap has been evaluated with two variants: LogMap and LogMap-
BK. LogMap-BK uses normalisations and spelling variants from the general (biomedi-
cal) purpose UMLS Lexicon,2 while LogMap has this feature deactivated.

Table 6 summarises the results obtained by LogMap and LogMapLt. The table
shows the total time in seconds to complete all tasks in the track and averages for Pre-
cision, Recall, F-measure and Incoherence degree. The track was run on a server with
16 CPUs and allocating 15GB RAM.

Regarding mapping coherence, only two tools (including LogMap and its variant
LogMap-BK) generated almost coherent alignments. LogMap-BK ranked 3rd among
the systems not using specialised background knowledge and 1st among the systems
computing almost coherent alignments. LogMapLt was the fastest to complete all tasks.

2 http://www.nlm.nih.gov/pubs/factsheets/umlslex.html

Table 7: Results for Instance matching track.

System
RDFT

P R F

LogMap 0.922 0.746 0.812

2.8 Instance matching

This year only LogMap participated in the Instance Matching track. The dataset was
based on dbpedia ontology3 and included controlled transformations in the data (i.e.
value and structure transformations).

Table 7 summarises the average results obtained by LogMap. The results are quite
promising considering that LogMap does not implement sophisticated instance match-
ing techniques. Furthermore, LogMap outperformed one of the participating tools spe-
cialised in instance matching.

Adaptations to the original dataset The original provided dataset was preprocessed
in order to be properly interpreted by the OWL API and to avoid inconsistencies when
reasoning. Next we summarise the performed changes:

– Added import of dbpedia: The dataset (ABOX) is based on dbpedia, however, the
dbpedia ontology was not included as TBOX. Hence the OWL API was interpret-
ing the instance entities of the dataset as “annotations” and not as “OWL named
individuals”. Furthermore, by adding dbpedia TBOX to the datasets, an OWL 2
reasoner could be used to infer the corresponding class type for each instance.

– Minor changes to dbpedia: The integration of the provided dataset (ABOX) and
dbpedia (TBOX) resulted in an inconsistent knowledge base. The inconsistencies
were due to some data property assertion axioms pointing to the incorrect datatype
and a functional datatype property which was used in two or more data property
assertion axioms with the same subject. To avoid these inconsistencies dbpedia was
slightly modified by removing the range and the functionality of the corresponding
data properties.

– Added additional object properties: The dataset also references the object proper-
ties “curriculum”, “places” and “label” which are not included in the dbpedia ontol-
ogy. Hence, these properties has been explicitly declared as OWL object properties.

– Removal of invalid characters: the dataset also included some characters that could
not be processed by the OWL API and Protégé (e.g. \u).

3 General comments and conclusions

3.1 Comments on the results

LogMap, apart from Benchmark and Multifarm tracks for which does not implement
specific techniques, has been one of the top systems in the OAEI 2013. Furthermore,

3 http://dbpedia.org/

it has also been one of the few systems implementing repair techniques and providing
(almost) coherent mappings in all tracks.

LogMap’s main weakness relies on the fact that the computation of candidate map-
pings is based on the similarities between the vocabularies of the input ontologies;
hence, there is a direct negative impact in the cases where the ontologies are lexically
disparate or do not provide enough lexical information (e.g. Benchmark and Multifarm).

3.2 Discussions on the way to improve the proposed system

LogMap is now a stable and mature system that has been made available to the commu-
nity. There are, however, many exciting possibilities for future work. For example we
aim at exploiting background knowledge to be competitive in the Multifarm track and
to improve the performance in the other tracks.

3.3 Comments on the OAEI test cases

The number and quality of the OAEI tracks is growing year by year. However, there is
always room for improvement:

Comments on the OAEI instance matching track. I consider the 2012 IIMB Instance
Matching track more challenging, from the logical point of view, than the current task.
The IIMB dataset included a TBOX and the controlled transformations also involved
changes on the instance class types. Thus the application of logic based techniques had
an important impact since lexically similar instances belonging to two disjoint class
types should not be matched.

Comments on the OAEI interactive matching track. The new interactive track has been a
very important step forward in the OAEI, however, larger and more challengings tasks
should be included. For example, matching tasks (e.g. anatomy and largebio) where
the number of questions to the expert user or Oracle may be critical. Furthermore, it is
quite unlikely that the expert user will be perfect, thus, the interactive matching track
should also consider the evaluation of several Oracles with different error rates such as
the evaluation performed in [12].

Comments on the OAEI largebio track. One of the objectives of the largebio track is the
creation of a “silver standard” reference alignment by harmonising the output of the dif-
ferent participating systems. In the next OAEI campaign it would be very interesting to
actively use this “silver standard” in the construction of the track’s reference alignment.

3.4 Comments on the OAEI 2013 measures

Although the mapping coherence is a measure already used in the OAEI we consider
that is not given yet the required weight in the evaluation. Thus, developers focus on
creating matching systems that maximize the F-measure but they disregard the impact
of the generated output in terms of logical errors. As a result, even highly precise map-
pings lead to a large number of unsatisfiable classes.

Thus, we encourage ontology matching system developers to develop their own re-
pair techniques or to use state-of-the-art techniques such as Alcomo [15] and LogMap-
Repair (see Section 1.3), which have shown to work well in practice [14].

Acknowledgements

This work was supported by the Seventh Framework Program (FP7) of the European
Commission under Grant Agreement 318338, ”Optique”, the Royal Society, and the
EPSRC projects Score!, ExODA and MaSI3.

References

1. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive relationships
in large data and knowledge bases. In: ACM SIGMOD Conf. on Management of Data. pp.
253–262 (1989)

2. Armas Romero, A., Cuenca Grau, B., Horrocks, I.: MORe: Modular Combination of OWL
Reasoners for Ontology Classification. In: Int’l Sem. Web Conf. (ISWC). pp. 1–16 (2012)

3. Armas Romero, A., Cuenca Grau, B., Horrocks, I., Jiménez-Ruiz, E.: MORe: a Modular
OWL Reasoner for Ontology Classification. In: OWL Reasoning Evaluation (ORE) (2013)

4. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press /
Addison-Wesley (1999)

5. Bodenreider, O.: The unified medical language system (UMLS): integrating biomedical ter-
minology. Nucleic Acids Research 32, 267–270 (2004)

6. Christophides, V., Plexousakis, D., Scholl, M., Tourtounis, S.: On labeling schemes for the
Semantic Web. In: Int’l World Wide Web (WWW) Conf. pp. 544–555 (2003)

7. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: Theory
and practice. J. Artif. Intell. Res. 31, 273–318 (2008)

8. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of proposi-
tional Horn formulae. J. Log. Prog. 1(3), 267–284 (1984)

9. Euzenat, J., Rosoiu, M.E., dos Santos, C.T.: Ontology matching benchmarks: Generation,
stability, and discriminability. J. Web Sem. 21, 30–48 (2013)

10. Gallo, G., Urbani, G.: Algorithms for testing the satisfiability of propositional formulae. J.
Log. Prog. 7(1), 45–61 (1989)

11. Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: Logic-based and Scalable Ontology Matching.
In: Int’l Sem. Web Conf. (ISWC). pp. 273–288 (2011)

12. Jiménez-Ruiz, E., Cuenca Grau, B., Zhou, Y., Horrocks, I.: Large-scale interactive ontology
matching: Algorithms and implementation. In: European Conf. on Artif. Intell. (ECAI). pp.
444–449 (2012)

13. Jiménez-Ruiz, E., Grau, B.C., Horrocks, I.: LogMap and LogMapLt results for OAEI 2012.
In: Proceedings of the 7th International Workshop on Ontology Matching (2012)

14. Jimenez-Ruiz, E., Meilicke, C., Cuenca Grau, B., Horrocks, I.: Evaluating mapping repair
systems with large biomedical ontologies. In: 26th Description Logics Workshop (2013)

15. Meilicke, C.: Alignment Incoherence in Ontology Matching. Ph.D. thesis, University of
Mannheim (2011)

16. Meilicke, C., Castro, R.G., Freitas, F., van Hage, W.R., Montiel-Ponsoda, E., de Azevedo,
R.R., Stuckenschmidt, H., Šváb-Zamazal, O., Svátek, V., Tamilin, A., Trojahn, C., Wang, S.:
MultiFarm: a benchmark for multilingual ontology matching. J. Web Sem. (2012)

17. Nebot, V., Berlanga, R.: Efficient retrieval of ontology fragments using an interval labeling
scheme. Inf. Sci. 179(24), 4151–4173 (2009)

18. Šváb, O., Svátek, V., Berka, P., Rak, D., Tomášek, P.: OntoFarm: towards an experimental
collection of parallel ontologies. In: Int’l Sem. Web Conf. (ISWC). Poster Session (2005)

19. Zhang, S., Mork, P., Bodenreider, O.: Lessons learned from aligning two representations of
anatomy. In: Conf. on Princliples of Knowledge Representation and Reasoning (KR) (2004)

Summary of the MaasMatch participation in the
OAEI-2013 campaign

Frederik C. Schadd, Nico Roos

Maastricht University, The Netherlands
{frederik.schadd, roos}@maastrichtuniversity.nl

Abstract. This paper summarizes the results of the third participation of the
MaasMatch system in the Ontology Alignment Evaluation Initiative (OAEI) com-
petition. Several additions were made to the MaasMatch system with the intent of
rectifying its limitations, as observed during the previous OAEI campaign. The
extent of the additions and their effect on the individual dataset will be elaborated.

1 Presentation of the system

MaasMatch is a ontology mapping system with the initial focus of fully utilizing the
information located in the concept names, labels and descriptions in order to produce a
mapping between two ontologies. This was achieved through the utilization of syntactic
similarities and virtual documents, which can also be used as a disambiguation method
for the improvement of lexical similarities [3,4]. The results of the benchmark track
in the OAEI 2012 competition [1] substantiated the evident conclusion that when the
naming and annotation features of an ontology are not present or distorted, the system
produces unsatisfactory mappings. Several additions have been made to rectify this
issue, the details of which are presented in the next subsection.

1.1 Specific techniques used

The current version of MaasMatch utilizes a wider spectrum of similarity techniques
than past versions. The overall setup in which these are used can be seen in Figure 1.

When given two input ontologies, these are parsed into an OWL format to allow
further processing. For each configured similarity measure the pairwise similarities be-
tween the ontology concepts are computed, which are then combined into a similarity
cube. The different similarity values are then aggregated, such that these can be used
as initial vertex weights for the similarity flooding procedure [2]. The vertex weights
are propagated until they converge, with a limit of 10 iteration configured to deal with
situation where the values do not converge. However, in our own preliminary evalua-
tions we found that on average only 4 iterations were needed until the values converged.
Using the resulting vertex weights the results alignment is extracted.

The previous version of MaasMatch utilized four similarity measures which rely on
the names, labels and comments of the concept definitions. One of which is a syntactical
similarity (Jaccard), two a type of structural similarity (Name-Path, Virtual Document

Parsing and
Processing

Ontology 1

Ontology 2

Similarity 1

Similarity 2

Similarity n

Aggregation Similarity Cube

Result
Alignment

Similarity
Flooding

Alignment
Extraction

Fig. 1. Visualization of the MaasMatch architecture.

Similarity) and one a lexical similarity. The details of these can be found in the report
paper of the previous year [4].

The aim of this year’s development was to increase the utilization of other ontology
feature, with the hope that the resulting system will be more robust to distortions and
produce alignments of better quality. To achieve this, the system now also utilizes a
internal structural similarity and a instance similarity, while also a similarity flooding
procedure after the aggregation step in order to discover additional mappings.

When comparing classes, the internal structural similarity gathers all properties
whose inferred domains correspond with the given classes. Then the a maximum corre-
spondence between these two sets of properties are computed according to the similari-
ties between the data-types of the properties. Comparing properties involves a combina-
tions of two similarities. First, the data-types of the properties themselves are compared.
Second, the other properties in the immediate neighbourhood are compared using the
maximum correspondence of the two property sets.

The instance similarity compares the asserted instances of concepts using informa-
tion retrieval techniques. For classes, all instances that are asserted to belong to their
corresponding class are gathered, where all values that are asserted in each of these
instances are collected in a document. For properties, all values that are asserted using
these properties are gathered in a document instead. The similarity between classes and
properties is then determined by the similarity of their instance documents.

It is important to note that with the attempt of making the system more robust by
adding more similarities and procedures, the runtime of the system will be negatively
impacted, especially since the full similarity cube is computed. Also, the similarity
flooding procedure entails the process of computing a pairwise connectivity graph of
the two input ontologies. This means that, given two large input ontologies, the resulting
graph will have many nodes and vertices, which will have to be stored in memory.
Hence, the memory requirements for large matching tasks will be quite high. Given
both of these issues, future endeavours will likely entail some methodologies to reduce
the memory requirements and the amount of comparisons between concepts.

140

1.2 Adaptations made for the evaluation

For this year’s evaluation we have re-introduced a alignment cut-off based on prelimi-
nary evaluations, since not all tracks perform a thresholding procedure during the evalu-
ation, yielding results that do not reflect the alignment quality. For the similarity flood-
ing procedure the vertex weights are updated using the increment method C [2]. We
also added secondary matcher, based on our anchor-profile approach [5], to the bridge
for the evaluation using partial input alignments. Unfortunately, this year’s competi-
tion did not run this specific sub-track, meaning that we were not able to observe its
performance in the field. The functionality however is still available.

1.3 Link to the system and parameters file

MaasMatch and its corresponding parameter file is available on the SEALS platform
and can be downloaded at http://www.seals-project.eu/tool-services/browse-tools.

2 Results

This section presents the evaluation of the OAEI2013 results achieved by MaasMatch.
Evaluations utilizing ontologies exceeding the supported complexity range, such as the
Library track, will be excluded from the discussion for the sake of brevity.

2.1 Benchmark

The benchmark track consists of synthetic datasets, where an ontology is procedurally
altered in various ways and to different extents, in order to see under what circumstances
a system can still produce good results. Table 1 displays the results on the two evaluated
datasets:

Test Set Precision F-Measure Recall
biblio2 0.6 0.6 0.6
biblioc 0.84 0.69 0.59

Table 1. Harmonic means of the benchmark test sets.

Overall, we can see an improvement over last year’s performance [4]. While in the
previous year the highest achieved f-measure was at 0.6 among the different sets, this
year this is actually the lowest achieved f-measure, with the system scoring significantly
higher on the biblioc set.

Unfortunately, according to the experimenter the system did not produce any output
for the tasks 254 and higher. Upon hearing about this issue, we evaluated the tool locally
using the SEALS client to replicate the issue, using both the client from last year and
the current ’v4i’ version. With both evaluation clients, MaasMatch ran normally and

produced output for all tasks of the test sets. Furthermore, we also observed that other
systems, namely LogMap, ServOMap and MapSSS, also had these issues, even though
these and also MaasMatch performed without error in last year’s competition. From this
we must conclude that this error stems from the SEALS platform, and given a proper
evaluation the MaasMatch system could have performed much higher.

In addition to this evaluation, another benchmark run was performed using the on-
lira ontology, with the intention of performing an evaluation for which the participants
do have access to the dataset in advance. While the results of this evaluation will likely
not be published, due to many participating systems not being able to cope with the
matching task, it is interesting to see how well MaasMatch performed with this base
ontology:

Test Set Precision F-Measure Recall
onlira 0.94 0.74 0.61

Table 2. Harmonic means of the benchmark test set using the onlira base ontology.

From Table 2 we can see that the performance of MaasMatch is consistent with the
performance of the standard benchmark set, with a higher emphasis on precision than
recall.

2.2 Anatomy

The anatomy dataset consists of a single matching task, which aligns a biomedical
ontology describing the anatomy of a human to an ontology describing the anatomy
of a mouse. Unique aspects about this ontology are their large sizes and the fact that
they contains specialized vocabulary which is not often found in non-domain specific
thesauri. Table 3 displays the results of this dataset.

Test Set Precision F-Measure Recall
mouse-human 0.359 0.409 0.476

Table 3. Results of the anatomy data set.

This year we can observe a drop in performance, specifically with regard to the re-
call of the alignment. The most likely reason behind this is that this dataset does not con-
tain the features that the newly added similarities use, namely instances and properties,
such that the distinction between the positive and negative correspondences becomes
smaller. The overall similarity values will be lower, since two similarities will not pro-
duce any positive values, such that it is more likely that correct correspondences will be
dismissed due to their similarity value being lower than the re-introduced threshold.

2.3 Conference

The confidence data set consists of numerous real-world ontologies describing the do-
main of organizing scientific conferences. The results of this track can be seen in Table
4.

Test Set Precision F-Measure Recall
ra1 0.29 0.38 0.54
ra2 0.29 0.37 0.53

Table 4. Results of the conference data set.

Similarly tot he anatomy dataset, we observe that the additions to the system had
a detrimental effect to the alignment quality, in this case with more pronounced ef-
fects on the precision. Similarly to the anatomy track, this dataset also does not contain
instances, yielding the instance similarity redundant. However, properties are present,
yielding the interesting observation that while the internal structural similarity showed
itself to be of positive influence on the benchmark dataset, its basic intuition which it
exploits is not applicable to the conference dataset.

2.4 Multifarm

The Multifarm data set is based on ontologies from the OntoFarm data set, that have
been translated into a set of different languages in order to test the multi lingual capa-
bilities of a specific system. The results of MaasMatch on this track can bee seen in
Table 5.

cn-cz cn-de cn-en cn-es cn-fr cn-nl cn-pt cn-ru cz-de cz-en cz-es cz-fr cz-nl cz-pt cz-ru de-en de-es de-fr
P .13 .11 .12 .13 .12 .11 .14 .13 .15 .16 .15 .15 .16 .16 .10 .20 .15 .16
F .12 .11 .12 .13 .12 .11 .13 .12 .14 .16 .15 .14 .15 .15 .10 .19 .14 .15
R .12 .10 .11 .12 .11 .10 .12 .12 .14 .15 .14 .13 .14 .14 .10 .18 .14 .14

de-nl de-pt de-ru en-es en-fr en-nl en-pt en-ru es-fr es-nl es-pt es-ru fr-nl fr-pt fr-ru nl-pt nl-ru pt-ru
P .20 .15 .12 .18 .20 .19 .18 .14 .19 .17 .22 .12 .17 .19 .12 .15 .12 .12
F .19 .14 .12 .17 .19 .18 .17 .14 .18 .16 .21 .12 .17 .18 .12 .14 .12 .11
R .18 .14 .11 .16 .18 .17 .17 .13 .17 .15 .20 .11 .16 .17 .11 .14 .11 .11

Table 5. Results of the multifarm dataset.

Compared to the results of the previous year [1], we can see an overall improve-
ment on nearly every task. While in the previous year a very large portion of the tasks
resulted in an f-measure of 0.1 or below, this year we can see that in all tasks Maas-
Match produced an alignment with an f-measure of .1 or greater. While we can observe

that the addition of language independent similarities did aid the performance of our
system, further development is still required in order to reliably produce alignments of
significant quality.

3 General comments

3.1 Comments on the results

This year we have observed mixed results for MaasMatch. While the performance of
some tracks has seen improvements thanks to our modifications (benchmark, multi-
farm), these came at a cost of performance in other tracks (conference, anatomy).

3.2 Discussions on the way to improve the proposed system

This year we added a wider range of similarities in order to make the system more
robust. Unfortunately, this caused a detriment in performance for mapping tracks which
did not contain the ontology features which the new similarities exploit. From this, we
can conclude that an important improvement to our system would be the automatic
detection of ontology features and automatic selection of appropriate similarities.

Furthermore, the runtime of MaasMatch is too high in order to realistically tackle
huge mapping tasks. This is mostly due to the computation of the full similarity cube.
To remedy this, another addition could be some kind of partitioning method, such that
larger mapping tasks also become feasible.

We did see improvements in the multifarm dataset. However, this was achieved
without any preprocessing step on the ontologies. An obvious improvement on this end
would be the addition of a preprocessing step which automatically detects the natural
language in which the ontology is written and translating it to a standard lingua-franca,
for instance English.

3.3 Comments on the OAEI 2013 procedure

This year’s run on the benchmark trajectory saw numerous systems, including Maas-
Match, consistently having troubles producing alignments. While the participants have
been notified before the results publication of this issue, they were left with only a lim-
ited amount of time to address the issue, while the organizers did not investigate the
issue themselves at all. This is especially troubling since our own local evaluations us-
ing the SEALS clients did not result in these errors, giving a strong indication that the
problem lies within the SEALS infrastructure, thus unfairly casting the affected sys-
tems in a negative light. We suggest to re-introduce a three week testing period to the
evaluation procedure, similar to the 2011 OAEI competition. That way participants can
be notified sufficiently early about potential technical issues and giving them enough
time to address these.

3.4 Comments on the OAEI 2013 measures

The evaluation of ontology mapping quality is commonly done using the standard mea-
sures of precision, recall and f-measure, these methods do not take into account the
confidence values associated with the individual correspondences. Recently, two tech-
niques have seen deployment to take the confidences into account, being thresholding
and confidence weighted measures. While these developments are appreciated, it is im-
portant to communicate which of these techniques have been applied in the evaluation
process in order to facilitate the accurate replication of evaluation results.

4 Conclusion

This paper describes the 2013 participation of MaasMatch in the OAEI campaign. We
briefly describes the overall setup of the system and the new techniques which were
added to it for this evaluation. Those techniques were mainly aimed at improving the
robustness of the system by utilizing a more varied range of ontological features. While
this main goal has been achieved, evidenced by higher performances in the benchmark
and multifarm evaluation, this surprisingly came to the detriment in performance in the
remaining tracks, where the newly exploited types of features are not present in the
test ontologies. We conclude that, now that MaasMatch possesses a varied spectrum of
similarities, there needs to be computation step before the similarity calculation, which
analyses the input ontologies with regards to its features. According to this analysis,
only appropriate similarities would then be selected for the mapping procedure.

References

1. J.L. Aguirre, B.C. Grau, K. Eckert, J. Euzenat, A. Ferrara, R.W. van Hague, L. Hollink,
E. Jimenez-Ruiz, C. Meilicke, A. Nikolov, D. Ritze, P. Shvaiko, O. Svab-Zamazal, C. Tro-
jahn, and B. Zapilko. Results of the ontology alignment evaluation initiative 2012. In Proc.
of the 7th ISWC workshop on ontology matching, pages 73–115, 2012.

2. Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flooding: A versatile
graph matching algorithm and its application to schema matching. In Data Engineering,
2002. Proceedings. 18th International Conference on, pages 117–128. IEEE, 2002.

3. F.C. Schadd and N. Roos. Coupling of wordnet entries for ontology mapping using virtual
documents. In Proceedings of The Seventh International Workshop on Ontology Matching
(OM-2012) collocated with the 11th International Semantic Web Conference (ISWC-2012),
pages 25–36, 2012.

4. F.C. Schadd and N. Roos. Maasmatch results for oaei 2012. In Proceedings of The Seventh
ISWC International Workshop on Ontology Matching, pages 160–167, 2012.

5. F.C. Schadd and N. Roos. Anchor-profiles for ontology mapping with partial alignments. In
Proceedings of the 12th Scandinavian AI conference (SCAI), 2013. Accepted paper.

StringsAuto and MapSSS Results for OAEI 2013

Michelle Cheatham and Pascal Hitzler

Kno.e.sis Center, Wright State University, Dayton, OH, USA
{cheatham.7, pascal.hitzler}@wright.edu

Abstract. StringsAuto and MapSSS are two closely related ontology alignment
systems. The StringsAuto matcher seeks to explore the limits of a syntactic-only
approach to alignment. The MapSSS system then expands on this work by em-
bedding the syntactic matching of StringsAuto within a more complete alignment
system that also makes use of semantic and structural information. In this paper
we describe the basic operation of the two systems and discuss their performance
in the OAEI 2013 evaluation.

1 Presentation of the system

1.1 State, purpose, general statement

The vast majority of ontology alignment systems use some form of string similarity
metric. Our overall goal with StringsAuto and MapSSS is to explore the importance
of the choice of a particular string metric. StringsAuto consists only of string metrics,
while MapSSS uses strategically chosen string metrics within the context of a more
fully-featured alignment system.

In [1] we analyzed the performance of eleven string similarity metrics (TF-IDF,
Soft TF-IDF, Jaccard, Soft Jaccard, Exact Match, Longest Common Substring, Jaro
Winkler, Levenstein, Monge Elkan, N-gram, and Stoilos) on different types of ontolo-
gies (standard, biomedical, and multi-lingual). In addition, we experimented with the
use of common string pre-processing methods (tokenization, normalization, stemming,
stop word removal, synonyms, and translations). StringsAuto grew out of this work. Its
purpose is to investigate string similarity metrics as applied to ontology alignment. In
particular, it is of interest to compare the performance of this system to that of the very
basic string-based matchers used as baselines for some of the OAEI tracks.

The MapSSS system was involved in previous OAEI evaluations. The three S’s
in MapSSS stand for syntactic, semantic, and structural, which are the three types of
metrics used by the system. This year MapSSS has been augmented with a different
semantic metric, based on Google queries, and modified to use the same syntactic metric
selection strategy as StringsAuto. We are interested in comparing the performance of
this version to that of previous years.

1.2 Specific techniques used

Based on the results of the string metric analysis in [1], we produced a set of guidelines
for choosing string metrics and preprocessing strategies based on the characteristics of

the ontologies to be aligned and whether precision or recall is of primary concern. More
information can be found in the referenced paper.

– Precision
• Less than two words per label: Jaro-Winkler 1, 1
• Two or more words per label

∗ Synonyms: Soft Jaccard .2, .5 with Levenstein .9 base metric
∗ No synonyms: Soft Jaccard 1, 1 with Levenstein .8 base metric

– Recall
• Less than two words per label: TF-IDF .8, .8
• Two or more words per label

∗ Synonyms: Soft TF-IDF .5, .8 with Jaro-Winkler .8 base metric
∗ Different Languages: Soft TF-IDF 0, .7 with Jaro-Winkler .9 base met-

ric
∗ Other: Soft TF-IDF .8, .8 with Jaro-Winkler .8 base metric

StringsAuto simply chooses two metrics based on these heuristics: one that priori-
tizes precision and another that focuses on recall. Each of these metrics is run (in series)
and the resulting alignment is used as-is. When a metric is run, every label in the first
ontology is compared to every label in the second ontology, and the results of the sim-
ilarity metric are stored in a matrix. The stable marriage algorithm is then run over the
matrix, and any matches greater than a threshold value are included in the alignment. If
either entity involved in a match has already been used in the alignment, that match is
ignored. This means that all alignments generated are 1:1 and the recall-centric metric
cannot override the precision-centric method.

MapSSS uses the same syntactic metric selection strategy as StringsAuto. In addi-
tion, it uses a semantic metric based on Google queries. When considering two labels,
A from the first ontology and B from the second, this metric queries Google for the
phrase A definition. It then searches the snippets on the first page of results for B. If
B is found, the metric returns true, otherwise it returns false. If this metric returns true
in both directions (i.e. googleMetric(A, B) and googleMetric(B, A) are both true) then
the mapping is added to the alignment. Finally, MapSSS also contains a structural met-
ric. If all of the entities in the direct neighborhood of two classes are mapped to one
another, then those classes are mapped. This approach is sometimes called “flooding.”
The structural metric is run repeatedly until no new mappings are created.

1.3 Adaptations made for the evaluation

No significant adaptations were made for the OAEI evaluation. In particular, the heuris-
tics used to select the string similarity metrics do not break cleanly along the different
OAEI tracks. Some possibly relevant details of these alignment systems include:

– Neither alignment system attempts to align properties or instances; only classes are
considered. Our previous work has shown that string similarity metrics perform
particularly poorly on property labels.

– The systems determine the language of an ontology by randomly selecting a sam-
ple of ten entity labels and sending them to Google Translate. This assumes each
ontology involves predominately one language.

– To determine if an ontology has embedded synonyms, the alignment systems look
for tags involving the word “synonym.” This is to some extent tailored to the
anatomy track of the OAEI.

– The semantic metric within MapSSS uses the Google API. There is a limit on
the number of queries that can be submitted using this API each day, as well as
a monthly cap. This causes problems for some of the larger ontology alignment
problems within the OAEI evaluation. We attempted to cache the query results to
alleviate this problem, but the SEALS server configuration made this unworkable
(we would need to be able to write to a file during execution and have this file
available during subsequent runs of the program).

1.4 Link to the system and parameters file

StringsAuto is available at http://pascal-hitzler.de/resources/Strings.zip and MapSSS is
available at http://pascal-hitzler.de/resources/MapSSS.zip.

2 Results

Development and testing of StringsAuto and MapSSS focused primarily on the confer-
ence, anatomy, and multiform test sets, but we present results for all tracks in which
alignments were produced.

2.1 anatomy

StringsAuto achieved an f-measure of 0.835 on this test set (see Table 1). This placed it
7th out of 21 participating systems. In particular, the results produced by StringsAuto
were significantly better than those of StringsEquiv, a basic string equality matcher.

Interestingly, the performance of MapSSS did not differ greatly from StringsAuto.
When compared to the performance of the 2012 version of MapSSS, we see that the pre-
cision has dropped while the recall has increased slightly. Notably, the recall+ measure
is significantly higher with the current version, which makes use of a string similar-
ity metric specifically chosen to enhance recall and semantic information gleaned from
Google queries.

2.2 conference

The (ra2) results of StringsAuto and MapSSS on the conference track are shown in Ta-
ble 2. StringsAuto outperformed both StringsEquiv and edna (an edit distance metric
with a threshold of .82). Overall, StringsAuto was 6th out of 27 alignment systems in
terms of f-measure, while edna was 11th and StringsEquiv was 22nd. The 2013 ver-
sion of MapSSS significantly outperformed its predecessor but fell slightly short of
StringsAuto.

Table 1. Anatomy Track Results

Alignment System F-measure Precision Recall Recall+
StringsEquiv .766 .997 .622 0
StringsAuto .835 .899 .779 .433
MapSSS 2013 .828 .898 .768 .443
MapSSS 2012 .831 .935 .747 .337

Table 2. Conference Track Results

Alignment System F-measure Precision Recall
StringsEquiv .52 .76 .39
edna .55 .73 .44
StringsAuto .60 .74 .50
MapSSS 2013 .58 .77 .46
MapSSS 2012 .46 .47 .46

2.3 multifarm

There was a problem running both StringsAuto and MapSSS on the multifarm test set.
While both systems were able to produce alignments, they had to fall back to their non-
translating versions due to a problem reaching the Google Translate service from the
OAEI test server. We attempted to fix this during the evaluation by caching the results
of the translation queries, but this did not work, possibly due to write restrictions on
the server itself (we need to be able to write to a file that will persist between differ-
ent executions of the program). Here we report both the results achieved during the
evaluation and the results we get when we run StringsAuto on a local computer. In ad-
dition, the code used to generate the StringsAuto results is available from http://pascal-
hitzler.de/resources/Strings.zip and the actual alignments produced on the multifarm
test cases are available http://pascal-hitzler.de/resources/Multifarm2013alignments.zip.

Table 3. Multifarm Track Results

Different Same
Alignment System F-measure Precision Recall F-measure Precision Recall
StringsAuto .14 .30 .09 .07 .51 .04
MapSSS .10 .27 .07 .06 .50 .03
StringsAuto (corrected) .30 .42 .23 .36 .92 .23

2.4 library

MapSSS did not produce alignments for this track, likely due to the size of the thesauri
causing the system to exceed the Google API query limit.

StringsAuto finished below the reference (string equality) matchers on this test.
StringsAuto could very probably be improved by recognizing all of the labels as syn-
onyms (as it does for the anatomy benchmark). Another potential issue is that StringsAuto
might have decided that either or both of the ontologies was entirely in German due to
its sampling technique, and then attempted to translate all of the labels in that ontology
(even the ones already in English).

Table 4. Library Track Results

Alignment System F-measure Precision Recall
StringsAuto .302 .774 .188

2.5 large biomedical ontologies

In this track StringsAuto was only able to complete one out of the six tasks (FMA-NCI),
and MapSSS was not able to complete any of them (again due to the Google API query
limit).

The results of StringsAuto on the FMA-NCI task were not very good. The system
achieved an f-measure of 0.667 (based on a precision of 0.838 and a recall of 0.554).
This placed the system 20th out of 23. It is odd that the performance here is so differ-
ent than on the anatomy track. Similar to the problem on the library track, it is likely
this is partially due to StringAuto’s inability to recognize multiple labels for a single
entity as synonyms. The synonym extraction method should be adapted to include this
information.

It might be surprising that StringsAuto was unable to complete more of the tasks in
this track. While in theory a matcher that only does string comparisons of labels should
scale very well, StringsAuto uses a global (m x n) matrix to store all of the pair-wise
similarity values and runs the stable marriage algorithm over this data. This obviously
runs into memory limitations for large ontologies. In the future it might make sense to
choose mappings based on a simple local maximum (with a threshold).

3 General comments

3.1 Comments on the results

Despite some technical problems, the performance of StringsAuto compared to that
of the base string matchers shows that a careful selection of string similarity metrics
leads to a significant performance increase in ontology alignment systems. In fact,
StringsAuto finished in the top third of all alignment systems in both the anatomy and
conference tracks. This shows that a significant amount of semantic information within
some ontologies is contained in the labels themselves, and string similarity metrics are
therefore an important component of ontology alignment systems.

The lackluster performance of MapSSS when compared with StringsAuto was some-
what surprising. Further research will be needed to improve the utility of the Google-
based semantic similarity metric. We have begun looking into leveraging other general
sources of information, including wikilinks1 and Wikipedia. It would be interesting to
perform an comprehensive analysis of these type of metrics similar to the one done for
string similarity metrics in [1].

3.2 Discussions on the way to improve the proposed system

While StringsAuto is basically a proof-of-concept alignment system, it could be ex-
tended in several ways that would improve its performance on the OAEI evaluation. In
particular, it could be adapted to treat multiple labels for a single entity as synonyms
and to avoid the use of a global data structure so that larger ontology pairs could be
aligned.

The main problem with MapSSS is due to the Google API query limit. This is also a
problem with Bing, according to their terms of service. To mitigate this issue, we need
to identify another general information source that does not have such a limit or only
invoke this metric in a more limited way.

3.3 Comments on the OAEI 2013 procedure

It would be convenient to provide a way to run all of the language pairs in the multifarm
test set with a single command and produce the same results published by the organizers
of that track (i.e. the precision, recall and f-measure separated into the “same” and
“different” ontology categories).

3.4 Proposed new measures

It might be interesting to see some details about the alignments produced by the various
tools. For instance, were there some mappings identified by all of the alignment sys-
tems? Were there some that were missed by all systems? This might provide insights
that improve the performance of ontology alignment systems in general. It might also
highlight any controversial mappings remaining in the reference alignments.

4 Conclusion

We have described two related ontology alignment systems, StringsAuto and MapSSS,
which explore the role that string similarity metrics play in ontology alignments. The
results of these matchers on the OAEI evaluation are significantly better than the base-
line string similarity matchers, and in some cases perform quite well when compared
to all other alignment systems. The disappointing performance of the Google-based se-
mantic similarity metric used in MapSSS indicates the need for further research in this
area.

1 http://www.iesl.cs.umass.edu/data/wiki-links

Acknowledgements

This work was supported by the National Science Foundation under award 1354778
“EAGER: Collaborative Research: EarthCube Building Blocks, Leveraging Semantics
and Linked Data for Geoscience Data Sharing and Discovery.” Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the National Science Foundation.

References

1. M. Cheatham and P. Hitzler. String similarity metrics for ontology alignment. In Proceedings
of the 12th International Semantic Web Conference (ISWC 2013), Sydney, NSW, Australia,
October 21-25, 2013, Heidelberg, 2013. Springer.

ODGOMS - Results for OAEI 2013**

I-Hong Kuo1,2, Tai-Ting Wu1,3

1 Industrial Technology Research Institute, Taiwan
2 yihonguo@itri.org.tw
3 taitingwu@itri.org.tw

Abstract. ODGOMS is a multi-strategy ontology matching system which
consists of elemental level, structural level, and optimization level strategies.
When it starts to match ontologies, it first exploits appropriate string-based and
token-based similarity computing strategies to find preliminary aligned results,
and then it filters these results and merges them by using the optimization
strategies. Despite ODGOMS uses simple matching logic, the results show that
it is competitive with other well known ontology matching tools.

1 Presentation of the system

1.1 State, purpose, general statement

ODGOMS (Open Data Group Ontology Matching System) is an ontology matching
system exploited by our looking forward research plan in the company. The target of
mentioned above research plan is to offer people an user-friendly integrated interface
to search and to browse linked open data on the internet.

The main idea of ODGOMS is to exploit simple but useful matching and merging
strategies to produce robust aligned results. All strategies used in the system can be
grouped into three groups that are elemental level strategies, structural level
strategies, and optimization level strategies.

We have submitted two versions of ODGOMS which are version 1.1 and version
1.2 to participate in OAEI 2013 campaign. Of the two the latter is better than the
former. This is because the latter has fixed some bugs existed in the former and has
added some new features. Since ODGOMS version 1.2 is the latest version of the
system, we only describe the contents of it in the following sections.

1.2 Specific techniques used

ODGOMS focuses on developing individual ontology matching modules for different
matching aspects and on finding an appropriate way to merge all matching modules.

* Supported by the looking-forward research plan in Industrial Technology Research Institute.
The mentioned above plan is named "Data Refining for LOD Using Linked Data Integration
Technology."

Each matching module of ODGOMS can be exploited individually by setting filter
threshold and the positions of input ontologies. The system architecture of ODGOMS
is shown in Fig. 1.

Fig. 1. System architecture of ODGOMS

The workflow of ODGOMS shown in Fig. 1 is described as follows. It first reads
input ontologies into the memory, then it runs all matching modules individually
which are LabelMatcher, IDMatcher, LCSMatcher, SMOAMatcher, PurityMatcher,
TFIDFMatcher, NETMatcher, PBCTMatcher, and PBCSMatcher. After that it uses a
filtering module named ThresholdFilter to filter all aligned results stored in each
matching module, and merges them in an special order by exploiting an optimizating
module named AlignmentMerger. At last, it outputs the integrated aligned results. All
modules are divided into three groups which are elemental level modules, structural
level modules, and optimization level modules. The detailed description of mentioned
above modules are described as follows.

1.2.1 Elemental Level Modules

LabelMatcher For each entity in the first input ontology, this module finds a best
matched entity in the second input ontology that has at least one common label (e.g.
rdfs:label), and stores them as aligned results. Please note that it deletes non-English
and non-Numeric characters from the labels of input entities and transforms the labels
into lowercase characters before it starts to match entities.

IDMatcher The matching procedure of this module is the same as that of
LabelMatcher, except that it finds a best matched entity in the second input ontology
for each entity in the first input ontology that has identical ID (e.g. rdf:ID).

LCSMatcher It finds a best matched entity with highest LCS [5] (Longest Common
Subsequence) similarity in the second ontology for each entity in the first input
ontology and stores them as aligned results. When it computes the LCS similarity of

two input entities, it first delete non-English and non-Numeric characters from all
labels (e.g. rdf:ID, rdfs:label, rdfs:comment) of the input entities. Then it computes
the LCS similarities of each pair of labels between the input entities and considers the
highest similarity as the final similarity of the input two entities. The LCS similarity
of two input labels can be computed using the following equation:

In above equation, A and B mean the input labels, function LCSlen(A,B) returns the
length of longest common subsequence between A and B, and functions Length(A)
and Length(B) returns the lengths of A and B respectively.

SMOAMatcher The matching procedure of this module is the same as that of
LCSMatcher, except that it replaces the LCS similarity computing scheme with the
SMOA [4] similarity computing scheme.

PurityMatcher The matching procedure of this module is similar to that of
LabelMatcher and IDMatcher, except that it deletes all useless English stopwords
(such as words “has”) of all labels within the classes and properties in the input
ontologies before it starts to match ontologies. It can find interesting aligned results
such as the mapping of labels “has_an_Email” versus “email”.

TFIDFMatcher This module matches only classes from different input ontologies
based on the TF-IDF [1] Cosine similarity [2] computing scheme. The idea of
exploiting text-mining techniques (such as TF-IDF representation) in the system is
inspired by YAM++ version 2012 [6]. The matching procedure of this module is
described as follows. For each class in the first input ontology, it computes the TF-
IDF Cosine similarities of the class and all classes in the second ontology. Then it
chooses the best matched class with highest similarity in the second ontology, and
stores them as aligned results. When it tries to compute the TF-IDF Cosine similarity
of two input classes, it first splits the all labels (e.g. rdf:ID and rdfs:label) of input
classes into two English token sets, and then it computes the TF-IDF values of each
token within the two token sets respectively. Please note that the TF value of a token
means the frequency of this token appears in the token set, and the IDF value of a
token means the inverted frequency of this token appears in all token sets that all
classes hold in the ontology. After that, it normalizes the TF-IDF values of two token
sets, considers them as two normalized TF-IDF vectors, and finally computes the
Cosine similarity of these two TF-IDF vectors.

NETMatcher It finds a best matched class with highest NET (named-entity
transformation) similarity in the second ontology for each class in the first input
ontology and stores them as aligned results. When it tries to compute the NET
similarity of two input classes, it first deletes non-English and non-Numeric
characters of all labels (e.g. rdf:ID and rdfs:label) of input classes and splits them into
tokens. Please note that if there are n tokens and n is no less than 2, then at least n-1
tokens leads by capital English character or numeric character. Then it computes the
input classes' NET similarity using the following equation:

In above equation, A and B mean the token sets belong to different input classes,
function commonTokens returns the total common tokens of input token sets,
function commonPrefix returns the average of total common prefix characters versus
total characters of all tokens within different input token sets. This module can find
interesting aligned results such as the mappings of tokens “OWL” versus “Web
Ontology Language” or “PCMembers” versus “Program Community Members”, etc.

1.2.2. Structural Level Modules

There are two structural level matching modules, PBCTMatcher and PBCSMatcher in
the system now. The former computes classes' integrated similarities using token-
based computing scheme and the latter computes them using string-based ones. The
ideas of the above matching modules are derived from the matcher
NameAndPropertyAlignment of Alignment API 4.5 [3].

PBCTMatcher The full name of it is Property-based Class Token Matcher. For each
class in the first input ontology, it finds a best matched class with highest integrated
similarity in the second input ontology. It computes input classes' integrated
similarities by combining the input classes' similarities and their properties'
similarities using the following equation:

In the above equation, CStfidf means the TF-IDF Cosine similarity between the input
classes, and PStfidf means the TF-IDF Cosine similarity between the belonged
properties of input classes. The computing procedure of TF-IDF Cosine similarity is
the same as that of TFIDFMatcher.

PBCSMatcher The full name of it is Property-based Class String Matcher. It's like
PBCTMatcher, except it computes input classes' integrated similarities using LCS
(Longest Common Subsequence) similarity computing scheme rather than using TF-
IDF similarity computing scheme in PBCTMatcher.

1.2.3. Optimization Level Modules

ThresholdFilter It filters the stored aligned results in each matching module
according to the default filter threshold, respectively. Each aligned result whose
similarity is lower than the specified filter threshold is deleted from the original
matching module.

AlignmentMerger It merges all stored aligned results of each matching module by a
special order. The merging type of AlignmentMerger is called Absorb. That means
when it merges the aligned results of two matching modules, it preserves all aligned
results of the former and filters any aligned results of the latter which is partly or

completely overlapped in the former. A merging example of AlignmentMerger is
given in Fig. 2.

Fig. 2. A merging example of AlignmentMerger.

In Fig. 2, AlignmentMerger is to merge the aligned results of the matching modules
A1 and A2. Let Ci,j be the jth object in ontology i. If the aligned results in A1 are
{ <C1,1,C2,1>, <C1,2,C2,4> } and the ones in A2 are { <C1,2,C2,5>, <C1,3,C2,8> }. Because
<C1,2,C2,5> in A2 is partly overlapped with <C1,2,C2,4> in A1, the merged aligned results
are thus { <C1,1,C2,1>, <C1,2,C2,4>, <C1,3,C2,8> }.

1.3 Adaptations made for the evaluation

ODGOMS uses the same parameters to run each experiment in all tracks of OAEI
2013. The parameters are divided into two groups as follows.

The first group of parameters includes the default filter thresholds used by module
ThresholdFilter in the system, which are set to be 1.0 for modules LabelMatcher,
IDMatcher, and SMOAMatcher, 0.87 for modules LCSMatcher, PurityMatcher, and
NETMatcher, 0.8 for module PBCSMatcher, 0.781 for module TFIDFMatcher, and
0.3 for module PBCTMatcher, respectively.

The second group of parameters includes the merging order used by module
AlignmentMerger in the system. The mentioned above merging order is :
LabelMatcher, IDMatcher, LCSMatcher, SMOAMatcher, PurityMatcher,
TFIDFMatcher, NETMatcher, PBCTMatcher, and PBCSMatcher.

1.4 Link to the system and parameters file

The readers can download execution files of all versions of ODGOMS from our
Google SkyDrive download position1��������	���
����	������������������������	�
��	�����������	�

2 Results

In this section, the OAEI 2013 official results of ODGOMS are listed in from Table 1
to Table 5, and they can be find on the OAEI 2013 website too.

Since some tasks in Largebio track are time-consuming and ODGOMS cannot
finish those tasks in 18 hours, we have run ODGOMS for three lightweight tasks of
Largebio track by SEALS client 4.1 at local side, and have listed the results in Table
6. The mentioned above experiments are executed on a PC with Intel Core i7-3770S
CPU (3.10GHz), 4GB RAM, and Ubuntu 12.04 LTS (64-bit version).

1ODGOMS download position: http://goo.gl/SKkhnU
2
����!!�����������"����
������!�#�$!	���	&�'���
���*�������

2.1 Benchmark

The official results of ODGOMS version 1.2 released from OAEI 2013 website are
listed in Table 1.

Table 1. The results for Benchmark track.

2.2 Anatomy

The official results of ODGOMS version 1.2 released from OAEI 2013 website are
listed in Table 2.

Table 2. The results for Anatomy track.

2.3 Conference

The official results of ODGOMS version 1.2 released from OAEI 2013 website are
listed in Table 3. In Table 3, the pre-test results (ra1) are listed in the first row, and the
blind-test results (ra2) are listed in the second row.

Table 3. The results for Conference track.

2.4 Multifarm

The official results of ODGOMS version 1.2 released from OAEI 2013 website are
listed in Table 4.

Table 4. The results for Multifarm track.

The results show that the F-Measures of the MultiFarm track are not good. We think
the reasons for these results are that ODGOMS is not designed to match ontologies
which are written in completely different languages yet.

2.5 Library

The official results of ODGOMS version 1.1 (not version 1.2 in this track) released
from OAEI 2013 website are listed in Table 5. In this track, ODGOMS got the highest
F-measures of all attended systems. By the way, in our local test the results of
ODGOMS version 1.2 is slightly better than it of version 1.1.

Table 5. The results for Library track.

2.6 Largebio

We run ODGOMS for three small tasks of Largebio track by SEALS client 4.1 at
local side. The results are listed in Table 6. In Table 6, the F-Measures are identical to
the official results released on OAEI 2013 website except the execution time of the
former are faster than the latter. The results of SNOMED-NCI (small) are not shown
in the official results on OAEI 2013 website since its execution time exceeded the
maximum limit of 18 hours.

Table 6. The results for Largebio track.

3 General Comments

3.1 Comments on the results

The official results of OAEI 2013 show that ODGOMS is competitive with other well
known ontology matching systems in all OAEI tracks, especially in Library track it
got the highest F-measures of all attended systems. The worst performance is
happened in Multifarm track. The reason is that ODGOMS is not designed to deal
with purely multilingual ontology matching problems yet.

3.2 Discussions on the way to improve the proposed system

ODGOMS exploits simple string-matching schemes and text-mining techniques to
match ontologies now. It suffers from the following two problems. The first one is
that it cannot optimize the results for each matching question automatically. The
second one is that it cannot perfectly deal with purely multilingual ontology matching
problems.

In order to solve the above two problems, we are extending the new abilities into
the system as follows. For the first problem, we will apply machine learning
technologies into the system so that it can find the best parameters that can be used in
the system automatically when it deals with different ontology matching questions.
And for the second problem, we will add the off-line translation ability between
foreign languages and English into the system so that it doesn't need the help of on-
line translation API (e.g. Microsoft On-Line Translation API).

4 Conclusion

It's the first time ODGOMS attended OAEI campaign. Although it got good results in
almost all OAEI 2013 tracks, but it still suffers from some problems such as time-
consuming and multilingual problems. The further research topics would be extend
the machine learning and multilingual abilities into the system. We hope the
performance of it can be improved when it attends the OAEI campaign next year.

References

1. Gerard Salton and Chris Buckley. Term Weighting Approaches in Automatic Text Retrieval.
Information Processing and Management, 24 (5): 513-523, 1988.

2. Amit Singhal. Modern Information Retrieval: A Brief Overview. Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering, 24 (4): 35-43, 2001.

3. Jerome David, Jerome Euzenat, Francois Scharffe, and Cassia Trojahn dos Santos. The
Alignment API 4.0. Semantic Web Journal, 2 (1): 3-10, 2011.

4. Giorgos Stoilos, Giorgos Stamou, and Stefanos Kollias. A String Metric for Ontology
Alignment. Lecture Notes in Computer Science (LNCS), 3729: 624-637, 2005.

5. L. Bergroth, H. Hakonen, and T. Raita. A Survey of Longest Common Subsequence
Algorithms. SPIRE (IEEE Computer Society) 00: 39-48, 2000.

6. DuyHoa Ngo and Zohra Bellahsene. YAM++ - Results for OAEI 2012. In Seventh
International Workshop on Ontology Matching (OM 2012): 226-233, 2012.

RiMOM2013 Results for OAEI 2013

Qian Zheng1, Chao Shao1, Juanzi Li1, Zhichun Wang2 and Linmei Hu1

1 Tsinghua University, China {zy,shaochao,ljz}keg.tsinghua.edu.cn
2 Beijing Normal University, Beijing, China zcwang@bnu.edu.cn

Abstract. This paper presents the results of RiMOM2013 in the Ontology Align-
ment Evaluation Initiative (OAEI) 2013. We participated in three tracks of the
tasks: Benchmark, IM@OAEI2013 , and Multifarm. We first describe the basic
framework of our matching System (RiMOM2013); then we describe the align-
ment process and alignment strategies of RiMOM2013, and then we present spe-
cific techniques used for different tracks. At last we give some comments on our
results and discuss some future work on RiMOM2013.

1 Presentation of the system

Recently, ontology is increasingly seen as an apocalyptic factor for enabling inter-
operability between heterogeneous systems and Semantic Web applications. Ontolo-
gy Aligning is required for combining distributed and motley ontologies. Developing
ontology alignment systems has become an essential issue of recent ontology research.

RiMOM2013 is named after RiMOM(Risk Minimization based Ontology Mapping)
which is a multi-strategy ontology alignment system and was firstly developed in 2007
[1][2]. RiMOM implements several different matching strategies that have been defined
based on different ontological information. For different ontology mapping tasks, Ri-
MOM can automatically select and combine multiple strategies to generate accurate
alignment results. RiMOM has evolved all the time since 2007, and RiMOM2013 is
developed based on RiMOM and has several new characteristics that will be described
in following subsections.

1.1 State, purpose, general statement

As shown in Fig. 1, the whole system is consists of three layers: User Interface layer,
Control layer and Component layer. In the User Interface layer, RiMOM2013 provides
an interface to allow customizing the matching procedure: including selecting preferred
components, setting the parameters for the system, choosing to use translator tool or
not. In semi-automatic ontology matching, the task layer stores parameters of the align-
ment tasks, and controls the execution process of components in the component layer.
In component layer, we define six groups of executable components, including prepro-
cessor, matcher, aggregator, evaluator, postprocessor and other utilities. In each group,
there are several instantiated components. For a certain alignment task, user can select
appropriate components and execute them in desired sequence.

User Interface

Method Choosing

Task Ontology O1
Ontology O2
Parameters
References

Task Collection

Preprocess Matcher PostprocessAggregator Evaluator Util

DefaultPreprocessor

JenaPreProcessor

LanguageOnto
PreProcessor

M
ultiFarm

PreProcessor

O
W

LAPI10
Preprocess

Sim
ilarityFlooding

PreProcessor

EditDistanceLabel
M

atcher

Sim
ilarityFlooding
M

atcher

VectorSpaceM
atcher

W
ordNetM

atcher

AverageW
eighted

Aggregator

ConsistenceW
eighted

Aggregator

Harm
onyW

eighted
Aggregator

PrincipalCom
ponent

Aggregator

Sigm
oidW

eighted
Aggregator

PrfEvaluator

GaussianFunction
PostProcessor

O
neToPneFilter

RelevanceInfo

ThresholdFilter

W
eka

W
ordnet

StopW
ordList

GoogleTranslator

Instance M
atcher

Fig. 1. Framework of RiMOM2013

1.2 Specific techniques used

This year we participate in three tracks of the campaign: Benchmark, Multifarm, and
Instance Matching. We will describe specific techniques used in different tracks as fol-
lows:

Benchmark
For benchmark track, we use five matching methods: Similarity preprocessor, Simi-

larity matcher, Similarity Flooding preprocessor, Similarity Flooding matcher, and Sim-
ilarity Aggregator.

We use Edit Distance method and WordNet 2.0 to calculate the similarity between
labels of entities, then for each entity pair we combine these two similarities to an
aggregated similarity.

Experiments are did on five different flooding methods based on similarity flood-
ing[3]: Property Only Method(POM), Hierarchy Method(HM), Common Relation Me
thod(CRM), RDFGraphOfSchema Method(RGSM) and Nothing Method(NM). These
five methods are used to generate the initial graph only for the next step. In POM we
add entity pairs which have superclass relationship; And in HM, we add entity pairs
which have subclass and super property; In CRM, first we check the relationship be-
tween each two entities, then we add entity pairs which have domain relationship or
range relationship. In RGSM, we add these pairs either contented in HM and CRM.
And for NM, we add all entity pairs into initialize graph.

In the next two steps we use the similarity flooding method to flood the similarities
in the graph, and because the map is usually gargantuan, we use a threshold filter to
prune the pairs whose similarity smaller than threshold when after the flooding process.

Next we use Aggregator to combine these similarities: EditDistance similarity, Word-
Net 2.0 similarity, similarity Flooding result similarity. The experiment reflects that the

only single task list without aggregator and other similarities(EditDistance and Word-
Net 2.0) gains the best result.

Multifarm
The multifarm track is designed to test the aligning systems’ ability on multi-lingual

dataset[4]. The multifarm data is composed of a set of ontologies translated in seven
different languages and the corresponding alignments between these ontologies. Each
entity in one ontology requested to be matched with related entity in different language
ontology.

The nodus makes this task difficult is that there is restricted information in each
entity, which usually only has label information like ”writes contribution”, and the label
of its range property of this entity is ”contribution”, the label of its domain property of
this entity is ”author”, which when translated into same language usually got same or
almost same result like ”autor” in Spanish.

In the first preprocess step in multifarm task, we use google translate tool to make
two different language into same language, such as when we do the ”en-cn” alignment
task, we translate the Chinese label to English, and when we do the ”cn-es” alignment
task, we translate Spanish label into Chinese. Particularly, when either the source on-
tology or target ontology’s language is Russian, we translate them both into English.

In the second preprocess step, we use google translate tool to make two different
entities’s label all in English for the purpose of use wordnet 2.0 in order to calculate the
sentence similarity.

Next we use Aggregator to combine these two similarities for each label pair, the
experiment reflects that the edit-distance contributes more in the combined-similarity.

Instance Matching

m

1 m-1
Unique Subject Matching One-left Object Matching

Score Matching Threshold
δ>δmin?

Found no matching pairs

Yes

No

Found new matching pairs

End

m
1

m-1

m

1 m-1

m
1 m-1

Link Flooding Algorithm

Aligned instances

Source Ontology

Target Ontology

Subject matching by unique <Predicate,Object> Object matching by aligned instances

Data
Preprocess

Fig. 2. Framework of instance matching system

For instance matching task, we propose an algorithm called Link Flooding Algorith-
m inspired by [5] , which includes four main modules, namely Data Preprocess, Unique

Subject Matching, One-left Object Matching and Score Matching. Before going into the
details, we first define ontology Ont as a set of RDF triples < s, p, o > (Subject, Pred-
icate, Object), and instance Ins as a set of many RDF triples having the same Subject.
Since an instance’s subject could be another’s object, we consider instance matching in
three situations: subject and subject alignment, subject and object alignment and object
and object alignment.

In the first module called data preprocess, we purify the data including transfer-
ring the data sets which are multilingual to be uniform in English. Additionally, we
unify the format of data, for example, the date expressed as ”august, 01, 2013” or ”Au-
gust, 01, 2013” is transformed to ”08, 01, 2013”. We also do a lot of other operations
like removing special characters to clean the data. The second module achieves in-
stance matching through one unique < p, o > for the two instances to be aligned.
For example, if in source ontology, only one instance, INSX has < p, o > as <
birthday, ”01, 08, 2013” >, then in target ontology, instances containing <birthday,”01,
08, 2013”> are concluded to be aligned with INSX . Consequently, one instance in
source ontology can be matched with arbitrary number of instances in target ontology.
In the third module, we obtain object and object alignment via all of the aligned sub-
jects. In detail, if two aligned instances have a same predicate both having m objects, of
which m−1 are aligned, then the ”one-left” object is aligned. The last module is named
Score Matching where we consider two instances aligned if the weighted average score
of their comments, mottos, birthDates ,and almaMaters is above a certain threshold.
In this task, we take the edit distance as score measure of similarity. We illustrate the
algorithm in Fig. 2.

We first input source ontology and target ontology into the algorithm, as shown in
the picture, the black circles represent the subjects of the RDF triples, the gray circles
represent the objects of the RDF triples, and the white triangles represent the predi-
cate[6]. We then clean the data set with the module Data Preprocess. Next, we generate
some initial instance matching pairs as seeds through Unique Subject Matching. As we
mentioned previously, one instance’s subject could be another’s object, we can input the
seeds to One-left Object Matching to get more matching pairs. With those new detect-
ed matching pairs, we reapply Unique Subject Matching to acquire more new matching
pairs. So, we can iteratively run these two modules until we can not find any new match-
ing pairs. After that, we need to run the Score Matching module with a high threshold
to get new pairs with high confidence, thus we can repeat previous operation namely it-
eratively running Unique Subject Matching and One-left Object Matching module with
little error. Later, we reduce the threshold step by step, where in each step newfound
pairs are input into the repeated previous operation to control error propagation. Lastly,
we output all of the matching pairs if the threshold is below the minimum threshold or
all the instances in target ontology are aligned.

1.3 Adaptations made for the evaluation

Deploying the system on seals platform by a network bears three main challenges.
Firstly, the input source can not download as a file, we can hardly see the information
and structure inherently. Secondly, without the input string path, we can not determine
which task and which size of the dataset are now using. Lastly, with the calling the

interface we provide by seals platform, some XML reader problems occur and make
the process interrupt, then we have no choice but to discard the XML read and load
component to make the system executable, but in multifarm task, we found that there
is some difference between the result generated by our local pc and by seals platfor-
m, there may have some undiscoverable problems when we turn RiMOM2013 as a
unvarying-purpose system.

1.4 Link to the system and parameters file

The RiMOM2013 system can be found at
http://keg.cs.tsinghua.edu.cn/project/RiMOM/

2 Results

As introduced before, RiMOM2013 participates in three tracks in OAEI 2013. In the
following section, we present the results and related analysis for the individual OAEI
2013 tracks below.

2.1 benchmark

There are two test set this year, biblio and finance, and for each dataset there are 94
align tasks. We divide these tasks into four groups, 101, 20x, 221-247 and 248-266.
We got good result on 221-247 and the result turns bad on 248-266, compared with
the 2010’s result, the evaluate fashion is changed this year, and there is some error
during the system docking mission, when we try to use a XML loader to implement
circuit-customize, the incompatible problem occurred and because of we do not know
the exactly version of the tool seals platform called, we have to write the program
imitation separately and make them inflexible. As RiMOM2013 is an dynamic system,
these problem more or less affected our implementation.

DataSet Precision Recall F1-measure
101 0.84 1.00 0.91
20x 0.57 0.52 0.53

221-247 0.71 1.00 0.82
248-266 0.46 0.48 0.45

Table 1. Benchmark Result of biblio-dataset

2.2 multifarm

There are 36 language pairs in multifarm data set, these pairs is combined with 8
languages: Chinese(cn), Czech(cz), Dutch(nl), French(fr), German(de), Portuguese(pt),
Russian(ru), Spanish(es). And permutate depend on lexicographical order. Results are
show in Table. 1.

Result is shown in Table 2 and this result is from OAEI2013 result page. It is notable
that our system got the minimum runtime among the multilingual matchers, which is
not put in this table. Although we got the third rank in multifarm task, we still have to
mention that our system basically is a translation based system and the connection with
the translator’s supplier is not that good. Otherwise, we could have made it much better.
We have proven it locally with no edas and ekaw ontologies, getting F1 as 0.49.

Language Pair F1-measure Language Pair F1-measure Language Pair F1-measure
cn-cz 0.120 cz-nl 0.320 en-pt 0.360
cn-de 0.180 cz-pt 0.240 en-ru NaN
cn-en 0.250 cz-ru NaN es-fr 0.360
cn-es 0.170 de-en 0.390 es-nl 0.290
cn-fr 0.170 de-es 0.310 es-pt 0.400
cn-nl 0.160 de-fr 0.290 es-ru NaN
cn-pt 0.100 de-nl 0.300 fr-nl 0.300
cn-ru NaN de-pt 0.270 fr-pt 0.260
cz-de 0.240 de-ru NaN fr-ru NaN
cz-en 0.250 en-es 0.420 nl-pt 0.150
cz-es 0.240 en-fr 0.320 nl-ru NaN
cz-fr 0.170 en-nl 0.350 pt-ru NaN

Table 2. Multifarm Result by Seals

The table shows that the worst results all happened in Chinese tasks, because the
basic tool we use in all multifarm fashion is translate tool, we use both google trans-
lator and bing’s translator to initialize the label set before we calculate the WordNet
similarity, edit-distance similarity and vector space similarity.

Because of the fact that information in each multifarm’s tasks is qualified, involun-
tarily, we got the limit on result, the highest F1 we got is 0.605 which is Czech ontology
and English ontology ’s alignment on local machine.

2.3 instance matching

The result for Instance Matching 2013 is shown in Table 3.
As we can see from the table, we achieve high values for all measures in all five

testcases, especially in testcase1 and 3. Furthermore, the official result shows that we
win first prize in IM@OAEI2013. We confidently believe our algorithm, Link Propaga-
tion Algorithm is effective for instance matching. We owe our results to each module
of the algorithm and further explain the results more specifically.

For testcase1, the Score Matching module exploits weighted average score, there-
fore avoiding emphasizing some particular information of instances. The reasons why
we attain best performance in testcase1 also include little change in target ontology.
In testcase2, with almost only link information, we needn’t employ last module Score
Matching. Nevertheless, it achieves comparative performance, reflecting the power of

link information, in other words, the power of Link Flooding Algorithm. Though test-
case 3, 4 and 5 have few initial links, we can find new matching pairs through Score
Matching. Although only a few matching pairs are found, we can detect lots of new
pairs by iteratively running Unique Subject Matching and One-left Object Matching.

TestCase Precision Recall F1-measure
testcase01 1.00 1.00 1.00
testcase02 0.95 0.99 0.97
testcase03 0.96 0.99 0.98
testcase04 0.94 0.98 0.96
testcase05 0.93 0.99 0.96

Table 3. Instance Matching Result

3 General comments

3.1 Discussions on the way to improve the proposed system

We have got no split new method implemented during the benchmark task, and there
also have much information in these tasks that we need to make them outcrop. And
we have not run the RiMOM2013 on anatomy, conference, Library, etc. For anatomy,
since many technical terms emerge as labels in ontologies, we should add some manu-
ally labelling step to generate the reference alignment result but the problem is how to
determine a result pair is matched or not if we have not any biological knowledge. For
multifarm, because the multifarm dateset is translated from conference collection, if we
do the experiment on conference before multifarm, there may be a credible auxiliary
information between each entity pair during the multifarm experiment.

3.2 Comments on the OAEI 2013 measures

The results show that in schema level matching, using description information gain the
better matching result, by contrast, in instance level’s matching, using linking informa-
tion got the better result, because in instance level, the types of relationship between
each entity is diverse, and in schema level is drab.

4 Conclusion

In this paper, we present the result of RiMOM2013 in OAEI 2013 Campaign. We partic-
ipate in three tracks this year, including Benchmark, Multifarm and Instance Matching.
We presented the architecture of RiMOM2013 framework and described specific tech-
niques we used during this campaign. In our project, we design a new framework to do
the ontology alignment task. We focus on the instance matching task and propose three
new method in instance matching tasks. The results show that our project can both deal
with multi-lingual ontology on schema level and do well on instance level, and this will
be paid attention in the community.

5 Acknowledgement

The work is supported by NSFC (No. 61035004), NSFC-ANR(No. 61261130588), 863
High Technology Program (2011AA01A207), FP7-288342, and THU-NUS NExT Co-
Lab.

References

1. Li, J., Tang, J., Li, Y., Luo, Q.: RiMOM: a dynamic multistrategy ontology alignment frame-
work. IEEE Trans. Knowl. Data Eng. (2009) 1218–1232

2. Wang, Z., Zhang, X., Hou, L., Zhao, Y., Li, J., Qi, Y., Tang, J.: RiMOM results for oaei 2010.
In: OM’10. (2010)

3. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A versatile graph matching
algorithm and its application to schema matching. In: ICDE’02. (2002) 117–128

4. Meilicke, C., Garcia-Castro, R., Freitas, F., van Hage, W.R., Montiel-Ponsoda, E., de Azevedo,
R.R., Stuckenschmidt, H., Svb-Zamazal, O., Svtek, V., Tamilin, A., dos Santos, C.T., Wang,
S.: Multifarm: A benchmark for multilingual ontology matching. J. Web Sem. (2012) 62–68

5. Wang, Z., Li, J., Wang, Z., Tang, J.: Cross-lingual knowledge linking across wiki knowledge
bases. In: WWW’12. (2012) 459–468

6. Nguyen, K., Ichise, R., Le, B.: SLINT: a schema-independent linked data interlinking system.
In: OM’12. (2012)

ServOMap Results for OAEI 2013

Amal Kammoun1 and Gayo Diallo1

ERIAS, INSERM U897, University of Bordeaux, France
first.last@isped.u-bordeaux2.fr

Abstract. We briefly present in this paper ServOMap, a large scale ontology
matching system, and the performance it achieved during the OAEI 2013 cam-
paign. This is the second participation in the OAEI campaign.

1 Presentation of the system

ServOMap [1] is a large scale ontology matching system designed on top of the ServO
Ontology Server system [2], an idea originally developed in [3]. It is able to handle
ontologies which contain several hundred of thousands entities. To deal with large on-
tologies, ServOMap relies on an indexing strategy for reducing the search space and
computes an initial set of candidates based on the terminological description of entities
of the input ontologies.

New components have been introduced since the 2012 version of the system. Among
them:

– The use of a set of string distance metrics to complement the vectorial based simi-
larity of the IR library we use1,

– An improved contextual similarity computation thanks to the introduction of a Ma-
chine Learning strategy,

– The introduction of a general purpose background knowledge, WordNet [4], to deal
with synonymy issues within entities’ annotation,

– The use of a logical consistency check component.

In 2013, ServOMap participated in the entities matching track and does not imple-
mented a specific adaptation for the Interactive Matching and Multifarm tracks.

1.1 State, purpose, general statement

ServOMap is designed with the purpose of facilitating interoperability between differ-
ent applications which are based on heterogeneous knowledge organization systems
(KOS). The heterogeneity of these KOS may have several causes including their lan-
guage format and their level of formalism. Our system relies on Information Retrieval
(IR) techniques and a dynamic description of entities of different KOS for computing
the similarity between them. It is mainly designed for meeting the need of matching
large scale ontologies. It has proven to be efficient for tackling such an issue during the
2012 OAEI campaign.

1 http://lucene.apache.org/

1.2 Specific techniques used

ServOMap has a set of components highly configurable. The overall workflow is de-
picted on figure 1. It includes three steps briefly described in the following. Typically,
the input of the process is two ontologies which can be described in OWL, RDF(S),
SKOS or OBO. ServOMap provides a set of weighted correspondences [5] between the
entities of these input ontologies.

Fig. 1. ServOMap matching process.

Initialization Step. During the initialization step, the Ontology Loading component
has in charge of processing the input ontologies. For each entity (concept, property,
individual), a virtual document from the set of annotations is generated for indexing
purpose. These annotations include the ID, labels, comments and, if the entity is a con-
cept, information about it properties. For an individual, the values of domain and range
are considered as well.

Metadata Generation. A set of metrics are computed. They include the size of
input ontologies in term of concepts, properties and individuals, the list of languages
denoting the annotations of entities (labels, comments), etc. Determining the size helps
adapting latter the matching strategy. Indeed, besides detecting an instances matching
case, we distinguish this year small (less than 500 concepts) from large ontologies.
Detecting the set of languages allows using latter the appropriate list of stopwords.

Ontology Indexing. With ServOMap we consider an ontology as a corpus of se-
mantic document to process. Therefore, the purpose of the indexing module is to build
an inverted index for each input ontology from the virtual documents generated previ-
ously. The content of each virtual document is passed through a set of filters: stopwords
removal, non alphanumeric characters removal, lowercasing and stemming labels, con-
verting numbers to characters. In addition, labels denoting concepts are enriched by
their permutation. This operation is applied to the first 4 words of each label. For in-
stance, after enriching the term ’Bone Marrow Donation’ we obtain the set {Bone Mar-
row Donation, Marrow Bone Donation, Marrow Donation Bone, Donation Marrow
Bone, Donation Bone Marrow}.

Further, two strategies are used for indexing, exact and relaxed indexing. Exact
indexing allows high precise retrieving. In this case, before the indexing process, all
words for each label are concatained by removing spaces between them. In addition,

for optimization purpose, the possibility is offered to index each entity with information
about its siblings, descendants and ancestors.

Candidates Retrieving. The objective is to compute a set of candidates mappings M
=

⋃
(Mexact, Mrelaxed, Mcontext, Mprop) .

Lexical Similarity Computing. Let’s assume that after the initializing step we have
two indexes I1 and I2 corresponding respectively to the input ontologies O1 and O2. The
first step for candidates retrieving is to compute the initial set of candidates mappings
constituted by only couple of concepts and denoted by Mexact. This set is obtained by
performing an exact search, respectively over I1 using O2 as search component and
over I2 using O1. To do so, a query which takes the form of a virtual document is
generated for each concept and sent to the target index. The search is performed through
the IR library which use the usual tf.idf score. We select the best K results having a
score greater than a given threshold θ. The obtained couples are filtered out in order to
keep only those satisfying the lexical similarity condition. This condition is checked as
follows.

For each filtered couple (c1, c2), two lexical descriptions are generated. They are
constituted respectively by ID and labels of c1 and its direct ancestors (Γ 1), ID and
labels of c2 and its direct ancestors (Γ 2).

We compute a similarity Simlex=f(α× ISub(Γ 1, Γ 2), β ×QGram(Γ 1, Γ 2), γ ×
Lev(Γ 1, Γ 2)), where I-Sub, QGram and Lev denote respectively the ISUB similarity
measure [6], the QGram and Levenshtein distance. Coefficients α, β and γ are cho-
sen empirically for OAEI 2013. All couples with Simlex greater than a threshold are
selected. Finally, Mexact is the intersection of the two set of selected couples obtained
after the search performed on the two indexes.

The same process is repeated in order to compute the set Mrelaxed from the con-
cepts not yet selected with the exact search. A similar strategy for computing Mexact is
used for computing the similarity between the properties of the input ontologies. This
generates the Mprop set. Here, the description of a property includes its domain and
range.

Extended Similarity Computing. In order to deal with synonym issue, from the
set of concepts not selected after the previous phase, we use the WordNet dictionary for
retrieving alternative labels for concepts to be mapped. The idea is to check whether
a concept in the first ontology is denoted by synonym terms in the second one. All
couples in this case are retrieved as possible candidates.

Contextual Similarity Computing. The idea is to acquire new candidates map-
pings, Mcontext, among those couples which have not been selected in the previous
steps. To do so, we rely on the structure of the ontology by considering that the sim-
ilarity of two entities depends on the similarity of the entities that surround them. In
2013, we have introduced a Machine Learning strategy which uses Mexact as basis for
training set using the WEKA tool [7]. Indeed, according to our tests, candidates map-
pings from Mexact use to be highly accurate. Therefore, retrieving candidates using
contextual similarity is transformed as a classification problem. Each new couple is to
be classified as correct or incorrect according to candidates already in Mexact.

We use 5 similarity measures (Levenshtein, Monge-Elkan, QGram, Jackard and
BlockDistance) to compute the features of the training set. For each couple (c1, c2)
∈ Mexact, we compute the 5 scores using the ID and labels associated to c1 and c2 and
denote this entry as correct. We complete Mexact by randomly generating new couples
assumed to be incorrect. To do so, for each couple (c1, c2) in Mexact, we compute the
5 scores for (c1, ancestor(c2)), (ancestor(c1), c2), (descendant(c1), c2) and (c1, descen-
dant(c2)) and denote them as incorrect. The ancestor and descendant functions retrieve
the super-concepts and sub-concepts of a given concept. We use the J48 decision tree
algorithm of Weka for generating the classifier.

Fig. 2. Strategy for contextual based candidates generation. For each couple of Mexact, the simi-
larity of the surrounding concepts are looked up.

We build the dataset to classify as follows. The exact set is used to learn new can-
didates couples according to the strategy depicted on figure 2 by assuming here for
instance that (a6, b6) ∈ Mexact. For each couple of Mexact, the idea is to retrieve pos-
sible couples not already in Mexact among the sub-concepts ((a7, b7), (a7, b8), (a8, b8),
(a8, b7) in figure 2), the super-concepts and the siblings. For each candidate couple (c1,
c2), if the score

s = f(getScoreDesc(), getScoreAsc(), getScoreSib())

is greater than a fixed threshold, then we compute the 5 similarity scores for (c1, c2). The
functions getScoreDesc(), getScoreAsc(), getScoreSib() compute respectively a score
for (c1, c2) from its descendants, ancestors and siblings concepts. The obtained dataset
is classified using the previously built classifier.

Post-Processing Step . This step involves enriching the set of candidates mapping
(mainly incorporating those couples having all their sub-concepts mapped), the selec-
tion of the final candidates from the set M and performing inconsistency check. We
have implemented a new filtering algorithm for selecting the best candidates based on
their scores and we perform consistency check as already implemented in the 2012 ver-
sion (disjoints concepts, criss-cross). Further, we use the repair facility of the LogMap
system [8] to perform logical inconsistency check. Finally, we have implemented an
evaluator for computing the usual Precision/Recall/F-measure for the generated final
mappings if a reference alignment is provided.

1.3 Adaptations made for the evaluation

ServOMap is configured to adapt its strategy to the size of the input ontologies. There-
fore, as mentioned earlier, two categories are considered: input ontology with size less
than 500 concepts and ontology with size greater than 500 concepts. For large ontolo-
gies, our tests showed that exact search is sufficient for generating concepts mappings
of OAEI test cases, while for small one relaxed and extended search is needed.

Further, according to the performance achieved by our system in OAEI 2012 [9],
the focus of this year was more to improve the recall than optimizing the computation
time. From technical point of view, the previous version of ServOMap was based on
the following third party components: the JENA framework for processing ontologies
and the Apache Luncene API as IR library. We have moved from JENA framework to
the OWLAPI library for ontology processing, in particular for handling in an efficient
manner complex domain and range axioms and taking into account wider formats of in-
put ontologies. In addition, a more recent version of the IR library is used for the actual
version. However, in order to have a compatible SEALS client, we have downgraded
the version of the Apache Lucene API used for the evaluation. This leaded to a less
robust system for the 2013 campaign as some components have not been fully adapted.

1.4 Link to the system and parameters file

The wrapped SEALS client for ServOMap version used for the OAEI 2013 edition
is available at http://lesim.isped.u-bordeaux2.fr/ServOMap. The instructions for testing
the tool is described in the tutorial dedicated to the SEALS client2.

1.5 Link to the set of provided alignments

The results obtained by ServOMap during OAEI 2013 are available at http://lesim.isped.u-
bordeaux2.fr/ServOMap/oaei2013.zip/.

2 Results

We present in this section the results obtained by running the ServOMap system with the
SEALS client. As the uploaded version does not implement multilingual and interactive
matching features, the results of the corresponding tracks are not described here.

2.1 Benchmark

In the OAEI 2013 campaign, the Benchmark track includes only the bibliography test
case in a blind mode. The experiments are performed on a Debian Linux virtual machine
configured with four processors and 8GB of RAM. ServOMap finished the task in about
7mn. Because of some issues in processing tests set from #261-4 to #266, the results of
ServOMap has been affected and decreased compared to 2012.

2 http://oaei.ontologymatching.org/2013/seals-eval.html

Test set H-Precision H-Recall H-F-score
biblioc 0.63 0.22 0.33

Table 1. ServOMap results on the Benchmark track

2.2 Anatomy

The Anatomy track consists of finding an alignment between the Adult Mouse Anatomy
(2,744 classes) and a part of the NCI Thesaurus (3,304 classes). The evaluation is per-
formed on a server with 3.46 GHz (6 cores) and 8GB RAM. Table 2 shows the results
and runtime of ServOMap.

Test set Precision Recall F-score Runtime (s)
Anatomy 0.961 0.618 0.752 43

Table 2. ServoMap results on the Anatomy track

2.3 Conference

The conference track contains 16 ontologies from the same domain (conference orga-
nization). These ontologies are in English and each ontology must be matched against
each other. The match quality was evaluated against an original (ra1) as well as entailed
reference alignment (ra2). ServoMap increased its performance in term of F-measure
by 0.07. The table 3 shows the results obtained on this track.

Test set Precision Recall F-score
Conference (ra1) 0.73 0.55 0.63
Conference (ra2) 0.69 0.5 0.58

Table 3. ServOMap results on the Conference track

2.4 Library

The library track is about matching two thesauri, the STW and the TheSoz thesaurus.
They provide a vocabulary for economic respectively social science subjects and are
used by libraries for indexation and retrieval. Thanks to the use of a new API for pro-
cessing ontologies, ServOMap was able to handle directly the two thesauri of the library
track without any adaptation. ServOMap performed the task in a longer time (4 com-
pared to 2012 edition of OAEI, however by increasing the F-measure.

Test set Precision Recall F-score Runtime (s)
Library 0.699 0.783 0.739 648

Table 4. ServoMap results on the Library track

2.5 Large biomedical ontologies

The Large BioMed track consists of finding alignments between the Foundational Model
of Anatomy (FMA), SNOMED CT, and the National Cancer Institute Thesaurus (NCI).
There are 6 sub tasks corresponding to different sizes of input ontologies (small frag-
ment and whole ontology for FMA and NCI and small and large fragments for SNOMED
CT). The results obtained by ServOMap are depicted on Table 5.

Test set Precision Recall F-score Runtime (s)
Small FMA-NCI 0.951 0.815 0.877 141
Whole FMA-NCI 0.727 0.803 0.763 2,690
Small FMA-SNOMED 0.955 0.622 0.753 391
Whole FMA- Large SNOMED 0.861 0.620 0.721 4,059
Small SNOMED-NCI 0.933 0.642 0.761 1,699
Whole NCI- Large SNOMED 0.822 0.637 0.718 6,320

Table 5. ServOMap results on Large BioMed Track

3 General comments

This is the second time that we participate in the OAEI campaign. While we participated
with two configurations of our system to the 2012 edition of the campaign, respectively
with ServOMap-lt and ServOMap, this year a unique version has been submitted. Sev-
eral changes have been introduced. We moved from JENA to OWLAPI for processing
ontologies and a more recent version of the Apache Lucene API that is used as IR tool.
This last change introduced some issues on having a wrapped tool compatible with the
Seals client. Therefore, the uploaded version of ServOMap uses a downgraded version
of Lucene to be able to run correctly with the client. This resulted of a degraded perfor-
mance and less robust system compared to that obtained with the actual version of our
tool. Further, the uploaded version has not been optimized in term of computation time.
This affected particularly the runtime for the Large BioMed Track.

3.1 Comments on the results

The evaluated ServOMap version for OAEI 2013 shows a significant improvement for
the conference and library track. We have increased our recall in several tasks with-
out loosing enough in term of precision. Overall, We notice that, the introduction of
string similarity measures and inconsistency repair facility affected the computation

time. However, ServOMap confirmed its ability to cope with very large dataset but also
shows that it relies heavily on the terminological richness of the input ontologies.

4 Conclusion

We have briefly described the ServOMap ontology matching system and presented the
results achieved during the 2013 edition of the OAEI campaign. Several components,
including Machine Learning based contextual similarity computing, have been added to
the previous version. In the vein of the last year participation, the performance achieved
by ServOMap are still very interesting and places it among the best system for large
scale Ontology matching. Future work will include improving the strategy of contextual
similarity computing and focusing on a more efficient semantic filtering component of
candidate mappings. Further, we will investigate interactive and multilingual matching
issues.

5 Acknowledgments

This work has been partly supported by the EU FP7 ARITMO project. We also thank
the organizers of OAEI with providing test dataset and the evaluation infrastructure.

References

1. M. Ba and G. Diallo. Large-scale biomedical ontology matching with servomap. IRBM,
34(1):56 – 59, 2013. Digital Technologies for Healthcare.

2. Gayo Diallo. Efficient building of local repository of distributed ontologies. In IEEE Pro-
ceedings of the SITIS’2011 International Conference., pages 159–166, November 2011.

3. Gayo Diallo. An ontology-based architecture for structured and unstructured data manage-
ment. PhD thesis, Université Joseph Fourier - Grenoble 1, December 2006. Original Title:
Une Architecture á base d’Ontologies pour la Gestion Unifiées des Données Structurées et
non Structurées.

4. George A. Miller. Wordnet: A lexical database for english. COMMUNICATIONS OF THE
ACM, 38:39–41, 1995.

5. Pavel Shvaiko and Jérôme Euzenat. Ontology matching: State of the art and future challenges.
IEEE Trans. Knowl. Data Eng., 25(1):158–176, 2013.

6. Giorgos Stoilos, Giorgos Stamou, and Stefanos Kollias. A string metric for ontology align-
ment. In Y. Gil, editor, Proceedings of the International Semantic Web Conference (ISWC 05),
volume 3729 of LNCS, pages 624–637. Springer-Verlag, 2005.

7. Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H.
Witten. The weka data mining software: An update. SIGKDD Explor. Newsl., 11(1):10–18,
November 2009.

8. Ernesto Jimenez Ruiz, Bernardo Cuenca Grau, Yujiao Zhou, and Ian Horrocks. Large-scale
interactive ontology matching: Algorithms and implementation. In Proceedings of the 20th
European Conference on Artificial Intelligence (ECAI), pages 444–449. IOS Press, 2012.

9. José-Luis Aguirre, Kai Eckert, Jérôme Euzenat, Alfio Ferrara, Willem Robert van Hage, Laura
Hollink, Christian Meilicke, Andriy Nikolov, Dominique Ritze, and François Scharffe et al.
Results of the ontology alignment evaluation initiative 2012. In Pavel Shvaiko, Jérôme Eu-
zenat, Anastasios Kementsietsidis, Ming Mao, Natasha Fridman Noy, and Heiner Stucken-
schmidt, editors, OM, volume 946 of CEUR Workshop Proceedings. CEUR-WS.org, 2012.

SLINT+ Results for OAEI 2013 Instance Matching

Khai Nguyen1 and Ryutaro Ichise2

1 The Graduate University for Advanced Studies, Japan
nhkhai@nii.ac.jp

2 National Institute of Informatics, Japan
ichise@nii.ac.jp

Abstract. The goal of instance matching is to detect identity resources, which
refer to the same real-world object. In this paper, we introduce SLINT+, a novel
interlinking system. SLINT+ detects all identity linked data resources between
two given repositories. SLINT+ does not require the specifications of RDF pred-
icates and labeled matching resources. SLINT+ performs competitively at OAEI
instance matching campaign this year.

1 Presentation of the system

The problem of detecting instances co-referring to the same real-world object is pos-
itively important in data integration. It is useful for reducing the heterogeneity and
warranting the consistency of data. The asynchronous development of linked data in-
creasingly requires the specific linked data instance matching algorithms to connect
existing instances and newly added instances.

In linked data, the differences of data representation appear not only in object val-
ues, but also in RDF predicates, which specify the meaning of objects properties. This
issue is popularly found in different data repositories or even the same repository but
different domains. Also, it separates the current solutions into two groups: schema-
dependent and schema-independent. The first approach uses the descriptions of RDF
predicate as the guide for matching while the second approach does not. In addition,
the schema-independent approach consists of two minor branches: supervised learning
and unsupervised learning, which involve with using or not using the labeled data of
identity instances.

We develop SLINT [3] and its extension SLINT+ [2]. These systems are schema-
independent and training-free. SLINT+ is used for instance matching track of OAEI
2013.

1.1 State, purpose, general statement

SLINT+ is a flexible schema-independent linked data interlinking system. SLINT+ can
interlink various data sources, and is independent on the schema of data sources. By
detecting appropriate predicate alignments without supervised learning, SLINT+ does
not require expensive curation on data examples.

The principle of SLINT+ is similar to previous data interlinking systems. There
are two main phases in the interlinking process of SLINT+: candidate generation and

Fig. 1. The interlinking process of SLINT+

instance matching. The first phase separates similar instances into different groups in
order to reduce the number of the pending pairs. The second phase will determine which
candidate is really identity. With the schema-independent goal, we add two steps into
SLINT+: predicate selection and predicate alignment. The mission of these new steps
is to find the predicate alignments specifying the same properties of instances.

1.2 Specific techniques used

The architecture of SLINT+ is depicted in Fig.1. DS and DT are the source and target
data. The predicate selection step finds the important predicate by some statistical mea-
sures based on RDF objects involving with each predicate. The predicate alignment step
matches important predicates and selects the reasonable alignments. This step can be
recognized as an instance-based ontology matching task. The candidate generation step
picks up similar instances, which are predicted to be identity. The final step, instance
matching, compares suggested candidates and produces the interlinking result. In the
following sections, we describe the details of each step in order of the process.

1.2.1 Predicate selection
This is the first step of the interlinking process. It collects the important predicates

of each input data sources. Important predicates are expected to be used by a large
portion of instances and stored specific information of each instance. Thus, an important
predicate should have high frequency and diver RDF objects.

We use coverage and discriminability as the metrics to evaluate the importance level
of each predicate. These metrics are the extensions from [4]. Equation (1) and (2) in turn

are the formulas of coverage Cov(pk) of predicate pk and its discriminability Dis(pk).
The notation < s, p, o > stands for subject, predicate, and object of a RDF triple. x, D,
and f are the instance, data source, and frequency of RDF object, respectively.

Cov(pk) =
|{x|x ∈ D, ∃t =< s, pk, o >∈ x}|

|D| (1)

Dis(pk) =
V ar(pk)×H(pk)

V ar(pk) +H(pk)

V ar(pk) =
|Opk

|
|{t|∃x ∈ D, t =< s, pk, o >∈ x}|

H(pk) =−
∑

oi∈Opk

f(oi)∑
oj∈Opk

f(oj)
× log

f(oi)∑
oj∈Opk

f(oj)

Opk
= {o|∃x ∈ D, t =< s, pk, o >∈ x}

(2)

A predicate is important if its coverage, discriminability, and the harmonic means
of them are greater than given thresholds α, β, and γ, respectively. We select two sets
of important predicates, from two input data sources. In the next step, we align these
sets and find the useful predicate alignments.

1.2.2 Predicate alignment
In this step, we firstly group the predicates by their type. The type of a predicate is de-

termined by the dominant type of its RDF objects. There are five predicate types used in
SLINT+: string, URI, double, integer, and date. Secondly, we combine the type-similar
predicates of source and target data to get raw predicate alignments. Confidence is the
evidence for evaluating the usefulness of raw alignments. The confidence is estimated
using the intersection of all RDF objects described by the predicates of each alignment.
Equation (3) describes the confidence of the alignment between predicates pi and pj .

conf(pi, pj) =
|R(Opi

) ∩R(Opj
)|

|R(Opi
) ∪R(Opj

)|
Opi = {o|∃x ∈ DS , < s, pi, o >∈ x}
Opj = {o|∃x ∈ DT , < s, pj , o >∈ x}

(3)

By using function R, the string, URI, and double are compared indirectly. For string
and URI, R collects lexical words from given texts and links. For double, R rounds the
values into two decimal points precision. For the remaining types, R uses the original
values without transformation.

Only useful alignments whose confidence is greater than a threshold will be kept
for the next steps. This threshold is computed by averaging the confidence of non-
trivial alignments. An alignment is considered as non-trivial if its confidence is higher
than threshold ε, a small value. In the next steps, useful alignments will be used as the
specification for comparing instances.

1.2.3 Candidate generation
The goal of candidate generation is to limit the number of instances to be compared.

SLINT+ performs a very fast comparison for each pair of instances. The result of this
comparison is a rough similarity between instances. It is consolidated from their shared
RDF objects, without any consideration for each predicate alignment. That is, two com-
pared RDF objects can associate with two predicates having no alignments selected.
Equation (4) is the rough similarity of instances xS and xT . In this equation, A is the
set of filtered predicate alignments; R is the preprocessing procedure, as used in pred-
icate alignment step; w(O,S) and w(O, T) are the weight of shared value O in each
data source DS and DT , respectively. The weight of string and URI values is estimated
by the TF-IDF score while that of remaining types is fixed to 1.0.

rough(xS , xT) =
∑

O∈R(OS)∩R(OT)

w(O,DS)× w(O,DT)× sum(pS)× sum(pT)

Ok = {o|∃x ∈ Dk, < s, pk, o >∈ x}
sum(pS) =

∑
(pS ,p)∈A

conf(pS , p)

sum(pT)
∑

(p,pT)∈A

conf(p, pT)

(4)

Although the rough similarity is computed for each pair of instances, in technical
aspect, it can easily be accumulated by passing through each repository only one time
in combination with matrix representation for all rough similarities.

Candidates are the pairs whose similarity satisfies two conditions. First, it must
be higher than the average similarity of all others λ, because not every instance in
source data has the identities in target data. Second, it must be relatively higher than
the similarity of the others, in which each instance of the current pair participating. In
addition, we multiply the maximum similarity with a damping factor ζ to avoid the
single pairing assumption.

1.2.4 Instance matching
For each candidate, we re-compute the similarity and then select identity pairs based

on this measure. The similarity of two instances is calculated from the shared values
in RDF objects, which are described by each pair of useful predicate alignments. The
confidence of each alignment is used as the weight for the similarity. Concretely, the
similarity function is given in equation (5). In this equation, R is similar with the pre-
vious steps; and corr is the similarity function for RDF objects declared by pS and pT .
corr function works variously for different type of data. For string and URI, it computes
the TF-IDF cosine similarity. For double and integer, it returns the inverted disparity.
For date, it simply performs the exact matching.

sim(xS , xT) =
1

W
×

∑
<pS ,pT>∈A

conf(pS , pT)× corr(R(OS), R(OT)),

Ok = {o|∃x ∈ Dk, < s, pk, o >∈ x}
W =

∑
<pS ,pT>∈A

conf(pS , pT)

(5)

Similar to selecting candidate in the previous step, we use η and θ as the same
functions and estimations with λ and ζ in the candidate generation step.

The instance matching step closes the standard interlinking process of SLINT+.
Next, we describe the configuration for participating OAEI 2013 instance matching.

1.3 Adaptations made for the evaluation

The instance matching track this year requests participant to connect instances between
DBpedia and an anonymous synthesis repository. There are five test cases with different
difficulty levels. To simplify the experiment, our aim is not using different parameters
for each test case. Therefore, we select the configuration that conciliate the results and
use it for all test cases. We installed the parameters of SLINT+ by testing the system on
training data. We set α, β, γ to 0.01, ε = 0.01, ζ = 0.20 and θ = 0.75. We slightly modify
the use of η and θ. Instead of using average value of similarities, we permanently set η
and λ to 0.

We use BM25 weighting scheme as an alternative for TF-IDF modified cosine in
computing the string similarity in instance matching step. To improve the quality of
string matching, we remove the words whose frequency is under 0.25.

In addition, we use some unsupervised transformation on the data before inputting
to the system. For test case #2, we leverage the information stored in linked instances.
In order to obtain adequate properties for matching, we recover the hidden data by
dereferencing the linked instances provided in RDF objects. For test case #3, #4, and
#5, we use machine translation to get the English version of French strings stored in
the target data. SLINT+ currently does not support multilingual matching. Translation
from other languages into English is a prerequisite.

1.4 Link to the system, parameters file, and provided alignments

SLINT+ is available to be downloaded at http://ri-www.nii.ac.jp/SLINT/oaei2013.html.
We also provide the parameters and the set of alignments for OAEI 2013 instance
matching on this page.

2 Results

In this section, we report the experiment result of SLINT+. The results of candidate
generation and instance matching are separately reported. To evaluate the final result

Table 1. Candidate generation result

Test case Number of candidates Pair completeness Reduction ratio
#1 2675 0.995 0.986
#2 3602 1.000 0.994
#3 5000 0.995 0.971
#4 5438 0.987 0.968
#5 7177 0.991 0.967

Table 2. Instance matching result

Test case Recall Precision F1
#1 0.979 0.979 0.979
#2 0.998 1.000 0.999
#3 0.913 0.935 0.924
#4 0.909 0.912 0.910
#5 0.880 0.875 0.878

Table 3. Total runtime

Test case Runtime (in millisecond)
#1 409
#2 421
#3 342
#4 283
#5 353

of data interlinking process, we use the conventional measures: Recall, Precision, and
F1 score. To evaluate candidate generation, we use Pair completeness and Reduction
ratio [4]. Pair completeness expresses how many actual identity pairs are selected to
the candidate set. Reduction ratio is the compression level of instance matching pool
comparing with all possible instances pairs between given data sources. We also report
the runtime of SLINT+. The experiment was conducted on a computer running with
core 2 quad 2.66 GHz CPU, 4 GB of RAM, and Windows 7 64 bit version.

The result of candidate generation, instance matching, and time consumption are
given in Table 1, Table 2, and Table 3, respectively.

The results of candidate generation are very good when reserving at least 98.7% of
correct alignments and nearly 100% on test case #2. In addition, the largest number of
candidate is only 7177, which reduces 96.7% of total instance pairs.

The final results of SLINT+ are generally good. Comparing Recall and Pair com-
pleteness on each test, they are similar on test case #1 and #2 and about 7% different
on remaining test cases. In addition, SLINT+ performs a stable interlinking since the
precision and recall are equivalent for all test cases.

The main reason for the lower result on test case #3, #4, and #5 comes from the
transformation of string values. We temporarily used machine translation to convert
strings from French to English before conducting the matching process. A better trans-
lation strategy may boost the Recall of SLINT+ on these test cases.

The runtime of SLINT+ is very short. It takes about 350 milliseconds for SLINT+
to finish each test case. This is a promising indication for designing a scalable system
based on SLINT+ in the future.

3 General comments

3.1 Comments on the OAEI 2013 test cases

Comparing with recent years, the test cases of this time are more interesting and chal-
lenging. It is very reasonable when OAEI organizers publish the offline data for keeping
the same input for all participants. In addition, it is effective that the test cases can in-
spect the advantages of each system.

The test cases for this year assume that every instance in source data has an identical
one in target data. In our opinion, it could be more efficient if there is a test case that
does not imply this assumption. Besides that, the various sizes of data can help evaluate
the performance of participants.

3.2 Comments on the OAEI 2013 measures

Since most interlinking systems generate potentially identity instances before match-
ing, we suggest to evaluate this step in separation with instance matching, as also was
recommended in [1]. There are many recognized measures in assessing the quality of
this step, such as recall, and reduction ratio as we reported in this paper.

4 Conclusion

We introduced SLINT+, a schema-independent and training-free linked data interlink-
ing system. SLINT+ performs four steps interlinking including predicate selection,
predicate alignment, candidate generation, and instance matching. SLINT+ gives a
promising result at the campaign this year.

Implementing a graph matching algorithm is our objective in improving SLINT+.
Since linked data is basically a graph, leveraging linking characteristics between in-
stances will result more confident matching quality. Improving SLINT+ to a scalable
system is also our current goal.

References

1. Euzenat J (2012). A modest proposal for data interlinking evaluation. In: ISWC’12 7th Work-
shop on Ontology Matching, pp. 234.

2. Nguyen K, Ichise R, Le B (2012). Interlinking linked data sources using a domain-independent
system. In: 2nd Joint International Semantic Technology, pp.113-128, LNCS 7774.

3. Nguyen K, Ichise R, Le B (2012). SLINT: A schema-independent linked data instance match-
ing system. In: ISWC’12 7th Workshop on Ontology Matching, pp. 1-12.

4. Song D, Heffin J (2011). Automatically generating data linkages using a domain-independent
candidate selection approach. In: ISWC’ 11, pp. 649-664.

System for Parallel Heterogeneity Resolution (SPHeRe)
results for OAEI 2013

Wajahat Ali Khan, Muhammad Bilal Amin, Asad Masood Khattak, Maqbool Hussain,
and Sungyoung Lee

Department of Computer Engineering
Kyung Hee University

Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea, 446-701
{wajahat.alikhan, mbilalamin, asad.masood, maqbool.hussain, sylee}@oslab.khu.ac.kr

Abstract. SPHeRe is an ontology matching system that utilizes cloud infrastruc-
ture for matching large scale ontologies and focus on alignment representation
to be stored in the Mediation Bridge Ontology (MBO). MBO is the mediation
ontology that stores all the alignments generated between the matched ontolo-
gies and represents it in a manner that provides maximum metadata information.
SPHeRe is a new initiative therefore it only participates in the large biomedical
ontologies track of the OAEI 2013 campaign. The objectives of SPHeRe system
participation in OAEI is to shift focus of ontology matching community towards
areas such as cloud utilization, effective mapping representation, and flexible and
extendable design of the matching system.

1 Presentation of the system

Ontology mappings enables accessibility of information by aligning the resources in
ontologies belonging to diverse organizations [3]. These also resolves semantic het-
erogeneities among data sources. Mainly two steps are required to overcome seman-
tic heterogeneity: Matching resources to determine alignments and interpreting those
alignments according to application requirements [5].

We have started developing SPHeRe system in 2013 and its an ongoing project. The
objectives of SPHeRe system are performance [2], accuracy, mapping representation,
and flexible and extendible design of the system.

1.1 State, purpose, general statement

SPHeRe system target a complete package of a system with main objectives as accu-
racy, mapping representation, and flexible and extendible system. Its precision is on the
higher side in large biomedical ontologies track, that shows its potential of improving
the accuracy. It is based on different algorithms such as String Matching Bridge, Syn-
onym Bridge, Child Based Structural Bridge (CBSB), Property Based Structural Bridge
(PBSB), and Label Bridge. We plan to include further bridge algorithms in next version
of the proposed system by incorporating new matching techniques.

Parallelism has been overlooked by ontology matching systems. SPHeRe avails this
opportunity and provides a solution by: (i) creating and caching serialized subsets of

candidate ontologies with single-step parallel loading; (ii) lightweight matcher-based
and redundancy-free subsets result in smaller memory footprints and faster load time;
and (iii) implementing data parallelism based distribution over subsets of candidate on-
tologies by exploiting the multicore distributed hardware of cloud platform for parallel
ontology matching and execution [2].

Mapping representation is another aspect of SPHeRe system which is not covered
in this paper. We have followed OAEI alignment representation format, but we consider
mapping representation as an important dimension to be worked by ontology matching
research community. The more expressive the alignments should be, the easy its expert
verification and the more will be confidence level in transformation process.

1.2 Specific techniques used

SPHeRe system is based on bridge algorithms run in the parallel execution environment
to generate alignments to be stored in the MBO as shown in Fig. 1. Matcher Library
components stores all the bridge algorithms to be run on the parallel execution envi-
ronment represented by Parallel Matching Framework. Communication between these
two components is regulated by SPHeRe Execution Control module that behaves as a
controller. The alignments are stored in the MBO; generated by the bridge algorithms
stored in Matcher Library that are run by the Parallel Matching Framework.

SPHeRe Execution Control

Mediation Bridge Ontology
(MBO)

Matcher Library

Parallel Matching Framework

Distributor Aggregator

Parallel Hardware Interface

String
Matching

Bridge

Synonym
Bridge Label Bridge

PBSBCBSB

Fig. 1. SPHeRe System Working Model

String Matching Bridge provides matching results by finding similar concepts based
on string matching techniques in the matching ontologies. Mainly the algorithm is based
on applying edit distance technique [4] of string matching. For any two concepts Ci and

Cj of the ontologies Oi and Oj respectively, edit distance is applied to find matching
value, SimScore ←− Ci. EditDistance (Cj). A threshold Threshold value of n is
set for matching in String Matching Bridge algorithm to limit the number of impure
mappings.

Label Bridge uses the labels of the source and target concepts for matching. Ini-
tially, concept labels are normalized e.g. using stop word elimination, then list of the
source concept labels are matched with list of the target concept labels. The source and
target concepts label list LabelListi and LabelListj are matched using ((LabelListi
∩ LabelListj) �= φ). If any label in the lists matches, the source and target concepts are
stored in the MBO as mappings.

Synonym Bridge is based on finding the similarity between concepts using word-
net [1]. The relationship is identified based on matching the synonyms of the concepts
accessed using wordnet. Initially synonyms of source Listl := Ci.GetSynonymWordnetList()
and target Listm := Cj .GetSynonymWordnetList() concepts are extracted using word-
net; where Ci and Cj are the source and target concepts respectively. The number
of common synonyms MatchedItems is found for calculating the matching value
SimScore. If its value is less than the threshold then this alignment is discarded, oth-
erwise stored in the MBO.

Child Based Structural Bridge (CBSB) bridge generates mappings between source
and target ontologies based on matching children of the concepts. Initially, children of
source Ci and target Cj concepts are accessed as lists ChildListi and ChildListj re-
spectively. The number of common children in the lists is identified as MatchChildren.
Finally the matching value SimScore is calculated and compared with the threshold
Threshold that is assigned value n. The matching value is calculated using SimScore
←− MatchedChildren / Average(ChildListi, ChildListj). Property Based Struc-
tural Bridge (PBSB) uses String Matching Bridge techniques to match properties of
source and target concepts for finding similar properties. This information is utilized as
in CBSB for matching the source and target ontologies concepts based on their prop-
erties. These bridge algorithms are run on a parallel execution environment for better
performance of the system.

Multiphase design of SPHeRe system is represented in Fig. 2(taken from [2])
that describes the parallelism inclusion in ontology matching process for better per-
formance. The first phase of the system is ontology loading and management, in which
the source and target ontologies are loaded in parallel by multithreaded ontology load
interface (OLI). The main tasks of OLI includes; parallel loading of source and target
ontologies, parsing for object model creation, and finally ontology model serialization
and de-serialization. This is an important phase for data parallelism over multi-threaded
execution into the second phase of distribution and matching [2].

Serialized subsets of source and target ontologies are loaded in parallel by multi-
threaded ontology distribution interface (ODI). ODI is responsible for task distribution
of ontology matching over parallel threads (Matcher Threads). ODI currently imple-
ments size-based distribution scheme to assign partitions of candidate ontologies to be
matched by matcher threads. In a single node, matcher threads correspond to the num-
ber of available cores for the running instance. In multi-nodes, each node performs its
own parallel loading and internode control messages which are used to communicate

Fig. 2. Performance of SPHeRe System [2]

regarding the ontology distribution and matching algorithms. Matched results provided
by matcher threads are submitted to accumulation and delivery phase for the MBO
creation and delivery [2].

Ontology Aggregation Interface (OAI) accumulates matched results provided by
matcher threads. OAI is responsible for MBO creation by combining matched results as
mappings and delivering MBO via cloud storage platform. OAI provides a thread-safe
mechanism for all matcher threads to submit their matched results. After the completion
of all matched threads, OAI invokes MBO creation process which accumulates all the
matched results in a single MBO instance [2]. In case of multi-node distribution, OAI
also accumulates results from remote nodes after completion of their local matcher
threads. This is a summary version of the performance oriented ontology matching
process of SPHeRe system, extracted from [2], that provides a detailed version of the
overall process.

1.3 Link to the system and parameters file

https://sites.google.com/a/bilalamin.com/sphere/results

1.4 Link to the set of provided alignments (in align format)

https://sites.google.com/a/bilalamin.com/sphere/results

2 Results

SPHeRe is deployed in multi-node configuration on virtual instances (VMs) over a tri-
node private cloud equipped with commodity hardware. Each node is equipped with
Intel(R) Core i7(R) CPU, 8GB memory with Xen Hypervisor. Jena API is utilized for
its inferencing capabilities. As SPHeRe is using cloud infrastructure therefore initially
we have only targeted large biomedical ontologies track. The results are as follows:

2.1 Large biomedical ontologies

SPHeRe is a cloud based ontology matching system that provides the facility to user for
matching large scale ontologies without changing their hardware specifications. Fig-
ure 3 shows the results of our proposed system in large biomedical ontologies track. It
has shown better precision values in almost all the tracks except task 4, while the recall
of the system needs to be improved.

Tasks Time
(s)

#Mappings Scores Incoherence Analysis

Precision Recall F-Measure Unsat. Degree

Task 1 16 2359 0.960 0.772 0.856 367 3.6%

Task 2 8136 2610 0.846 0.753 0.797 1054 0.7%

Task 3 154 1577 0.916 0.162 0.275 805 3.4%

Task 4 20664 2338 0.614 0.160 0.254 6523 3.2%

Task 5 2486 9389 0.924 0.469 0.623

Task 6 10584 9776 0.881 0.466 0.610

Fig. 3. SPHeRe Large Biomedical Ontologies Track Results

3 General comments

3.1 Comments on the results

Performance and precision are the strengths of our system. The design of proposed
system also adds to its strength as it is a extendible and reusbale system. Recall is
the main weakness of our system, but with the addition of new matching techniques
as bridge algorithms can improve this aspect and therefore accuracy can be improved.
Extendibility allows adoption of new bridge algorithms easily into the proposed system.

3.2 Discussions on the way to improve the proposed system

New bridge algorithms incorporating new matching techniques is the next line of plan
for the proposed system. Object oriented and ontology alignment design patterns are
to be implemented for matching different tracks of OAEI campaign. We also tend to
include instance based matching, and incorporate change management techniques in
the system.

4 Conclusion

SPHeRe system is a new initiative that relies on parallel execution of matcher bridge al-
gorithms for achieving better performance and accuracy. The system is still working on
improving the accuracy by incorporating more matcher bridge algorithms to increase
the recall value of the system. Performance of the proposed system is better as com-
pare to other system due to running large biomedical ontologies on a single system in
appropriate time.

References

1. Wordnet a lexical database for english. http://wordnet.princeton.edu/, last visited in October
2013

2. Amin, M.B., Batool, R., Khan, W.A., Huh, E.N., Lee, S.: Sphere: A performance initiative
towards ontology matching by implementing parallelism over cloud platform. In: Journal of
Supercomputing. Springer, in Press

3. Li, L., Yang, Y.: Agent-based ontology mapping and integration towards interoperability. Ex-
pert Systems 25(3), 197–220 (2008)

4. Navarro, G.: A guided tour to approximate string matching. ACM computing surveys (CSUR)
33(1), 31–88 (2001)

5. Pavel, S., Euzenat, J.: Ontology matching: state of the art and future challenges. Knowledge
and Data Engineering, IEEE Transactions on (25), 158–176 (2013)

SYNTHESIS: Results for the Ontology Alignment
Evaluation Initiative (OAEI) 2013

Antonis Koukourikos1, 2, George Vouros2, Vangelis Karkaletsis1

1Institute
2Department of Digital Systems, University of Piraeus, Greece

Abstract. The paper presents the SYNTHESIS platform, a system for automatic
ontology alignment. The system supports the model-based synthesis of different
individual matching methods under a co-operational framework. The configura-
tion that has been tested over the datasets provided by the OAEI 2013 tracks
incorporates four matching methods. The paper provides a brief description of
the system, presents the results acquired over the various OAEI 2013 Campaign
tracks and discusse
work that will target the observed issues.

1 Presentation of the System

1.1 State, Purpose, General Statement

Given the plethora of the different proposed approaches to ontology alignment, as
well as, the variations between them in terms of the types and different facets of infor-
mation they exploit, the usage (or not) of various external resources and services [1], it
is evident that we need effective methods for synthesizing different matching methods.

The present paper describes a specific configuration of the SYNTHESIS platform, a
system for ontology matching that combines different methods under a model-based
synthesis framework [2]. The objective of SYNTHESIS is to compute coherent align-
ments, taking advantage of the distinct and complementary advantages of various
matching methods. Subsequently we present the generic synthesis process, as well as,
the individual methods integrated in the current version of the system. We proceed to
present the results of SYNTHESIS over the different test sets of the OAEI 2013 cam-
paign, and the conclusions regarding its performance, its strengths and weaknesses, and
the focal points that should be taken into account for the improvement of the system.

1.2 Specific Matching Techniques Used

This section describes briefly the method for synthesizing different matching meth-
ods that is employed by SYNTHESIS. Furthermore, it describes the individual match-
ing methods incorporated in the configuration of the system that participated in the
OAEI 2013 campaign.

Synthesis. The design and initial implementation of the described matching method
is described in [2]. In this work, the synthesis of different matching methods is treated
as a coordination problem, aiming to maximize the welfare of the interacting entities
(agents). In this setting, each agent corresponds to a specific ontology element and to
an individual matching method. Each agent is responsible to decide on a correspond-
ence for its element to a target ontology, also in coordination with the other agents, so
as to preserve the semantics of specifications. An agent is characterized by: (a) its state
and (b) its utility function. The state ranges in the set of those elements in the target
ontology that the matching method of the agent assesses
element. A specific assignment to the state variable represents a decision on a
specific correspondence. Nevertheless the utility of an agent for a specific correspond-
ence depends on the states of neighboring agents. Specifically, the utility of an agent is
specified to take into account structural constraints derived from subsumption relations
among classes in the source ontology. These constraints represent dependencies be-

ed in order for the computed correspond-
ences to preserve the semantics of ontological specifications and ensure the coherence
of the correspondences.

Actually, neighbor agents of an agent A are those agents that correspond to the same
ontology element but to different alignment methods, as well as those agents that cor-
respond to ontology elements that are subsumed by the ontology element of A.

Agents are organized in graphs where they run the max-sum algorithm [3] to com-
pute a joined set of correspondences (i.e. an alignment) so as to maximize the sum of
their utilities.

SYNTHESIS is actually a generic platform that can be configured to incorporate any
number of individual matching methods.

Methods incorporated in the current version of the system. The configuration of
SYNTHESIS that was used for the OAEI 2013 campaign incorporates four, most of
them fairly standard, matching methods. These are described in the following subsec-
tions.

COCLU. This is a string matching technique. It is realized by a partition-based cluster-
ing algorithm, which divides the examined data (strings in our cases) into clusters and
searches over the created clusters using a greedy heuristic [4]. The clusters are repre-
sented as Huffman trees, incrementally constructed as the algorithm generates and up-
dates the clusters by processing one string at a time. The decision for adding a newly
encountered string in a given cluster is based on a score function, defined as the differ-
ence of the summed length of the coded string tokens that are members of the cluster
and the corresponding length of the tokens in the cluster when the examined string is
added to the cluster. The implementation incorporated into SYNTHESIS exploits and
compares the local names, labels and comments of the examined classes.

VSM. This is a Vector Space Models-based method [5], computing the similarity be-
tween two documents. In the case of mapping tasks, the pseudo-documents to be com-
pared are constructed as follows: Each document corresponds to a class or property and

comprises words in the vicinity of that element, i.e. all words found in (a) local name,
label and comments of the class; (b) the local name, label and comments for each of the

on for its related classes, as defined in [5]. The
produced documents are represented as vectors of weighted index words. Each weight
is the number in the document. We apply cosine similarity to
measure the similarity between two vectors.

CSR. The CSR method [6] computes subsumption relationships between pairs of clas-
ses belonging in two distinct ontologies. The method treats the mapping problem as a
classification task, exploiting class properties and lexical information derived from la-
bels, comments, properties and instantiations of the compared classes. Each pair of
classes is represented as a feature vector, which has a length equal to the number of
distinct features of the ontologies. The classifier is trained using information of both
ontologies, considering each ontology in isolation.

LDM Alignment. This new method is conceived as part of a Linked Data management
system, which uses unstructured textual information from the Web, in the form of ex-
tracted relation triples, in order to perform various processes related to the whole spec-
trum of managing and maintaining Linked Data repositories, such as Ontology Align-
ment and Enrichment, Repository Population, Linkage to external repositories, and
Content and Link Validation [7]. The method performs web searches, using lexical in-
formation from the local names, labels and instances of the compared classes. The web
documents returned from the web searches are pre-processed in order to derive their
textual information, and relation tuples are extracted from each document. The sets of
relation tuples associated with each class are compared, and similarity is as-
sessed.

1.3 Adaptations Made for the Evaluation

After some preliminary runs of the system with the datasets provided by the OAEI
campaign, it became evident that the main flaws of the system had to do with its ina-
bility to handle ontologies of large size (in terms of the number of elements in the on-
tology). This is due to the current implementation of the generic synthesis process and
to the complexity of the methods incorporated in SYNTHESIS.

In order to produce a system of acceptable efficiency, we introduced a dynamic
method allocation component in SYNTHESIS. The component performs a shallow
analysis of the input ontologies, in terms of their size and their structure. After several
runs with different method combinations for the campaign datasets, the following allo-
cation strategy was adopted: the CSR and LDM methods were excluded when the
source ontology included more than 300 classes and properties. Furthermore, CSR was
excluded if the examined ontologies were relatively flat, that is if the hierarchy of clas-
ses was not deeper that three subsumption levels.

While the motivation for the introduction of this component was to obtain meaning-
ful results for as many OAEI tracks possible, we aim to expand on the idea of dynami-
cally invoking different sets of mapping methods, depending on the specific alignment

task at hand. To this end, the method allocation component can become more intricate
and analytic, and be able to select a specific configuration of mapping methods from a
much larger pool, ensuring that the system has reasonable execution times while also
preserving its performance in terms of precision and recall.

1.4 Link to the System and Parameters File

http://users.iit.demokritos.gr/~kukurik/SYNTHESIS.zip

1.5 Link to the set of provided alignments

http://users.iit.demokritos.gr/~kukurik/results.zip

2 Results

The subsections that follow provide an overview and a brief analysis of the results
achieved by SYNTHESIS in the various tracks included in the OAEI 2013 Campaign.
SYNTHESIS was packaged and executed following the setup defined by the SEALS
platform and using the provided SEALS client executable JAR.

2.1 Benchmark

The following table summarizes the results obtained for the benchmark track, and
specifically the bibliography test set.

Bibliographic Dataset
Average Runtime H-mean Precision H-mean Recall

5217 msec 0.576 0.603

We furthermore obtained results for the finance test set, as it was provided via the
SEALS platform. These results are summarized below:

Finance Dataset
Average Runtime H-mean Precision H-mean Recall

974454 msec 0.504 0.605

2.2 Anatomy

SYNTHESIS was not able to finish its execution within a reasonable timeframe for
this dataset.

2.3 Conference

The following table summarizes the results obtained for the conference dataset of
the 2013 campaign, as they were obtained via the SEALS client. The accumulative
results are as follows:

Conference Dataset
Average Runtime H-mean Precision H-mean Recall

5245 msec 0.799 0.484

2.4 Multifarm

The current version of SYNTHESIS does not directly address the mapping of ontol-
ogies expressed in different languages. However, due to the fact that the synthesis ap-
proach somehow matches ontologies by respecting their hierarchical structure, the re-
sults obtained show a fairly acceptable precision. The following table summarizes the
results reported for this track.

Precision Recall F-measure
Different Ontologies

0.30 0.03 0.05
Same Ontologies

0.25 0.03 0.04

2.5 Library

SYNTHESIS was not able to finish its execution within a reasonable timeframe for
this dataset.

2.6 Large biomedical ontologies

SYNTHESIS was not able to finish its execution within a reasonable timeframe for
this dataset.

3 General Comments

3.1 Comments on the results

As evidenced by the obtained results, the main advantages of SYNTHESIS can be
summarized to the following:

 SYNTHESIS manages to balance the precision and recall throughout different da-
tasets, even with the fairly simple matching methods running for many pairs of on-
tologies.

 When adequate lexical information is available, i.e. when names and com-
ments were not suppressed, SYNTHESIS is able to exploit it and produce very good
results.

 The constraints taken into account by agents, enables SYNTHESIS to compute co-
herent alignments.

In contrast, the main drawbacks of SYNTHESIS are:

 The generic synthetic approach implemented in SYNTHESIS, does not scale well
with respect to ontology size. While its runtime for small and medium size ontolo-
gies is quite satisfactory, when dealing with large or very large ontologies, the sys-
tem requires a significantly bigger execution time.

 Scalability is significantly affected also by the performance of the individual match-
ing methods incorporated in the OAEI 2013 system configuration.

 The current configuration of SYNTHESIS is sensitive to the lack of adequate lexical
information for the ontology elements. In the test cases where information like local
class names and labels were suppressed, the results were significantly worse. This is
due to the inclusion of mainly lexical-based matching methods in the current config-
uration of the method.

3.2 Discussions on the ways to improve the current system

The drawbacks of the current configuration of SYNTHESIS directly lead to the main
points that can be improved in the future. More specifically, the main problem in vari-
ous tracks of the campaign was the fact that SYNTHESIS was not able to complete its
execution within an acceptable timeframe. This motivates us to examine different scala-
bility techniques and incorporate them in the system. The actions to improve scalability
can refer to the performance of the individual methods used, as well as, the actual pro-
cess of synthesizing the different methods under Synthesis.

Another important step towards improving SYNTHESIS is to design and incorporate
a more intricate method for choosing individual mapping methods. This is an improve-
ment step on itself, but it is a prerequisite for being able to introduce additional methods
in Synthesis and use the ones more appropriate for a specific alignment task.

The ultimate goal is to incorporate methods that exploit different types of infor-
mation available (lexical, semantic, structural) at various settings (e.g. ontologies in
different languages), by performing a pre-processing step to detect the characteristics
of an alignment tasks, and use the most appropriate methods for constructing the agents
that will be part of the synthesis process.

4 Conclusion

The participation in the OAEI 2013 has provided significant input for the evaluation
and evolution of our system.
ontologies of large size, which will be the focus during the immediate next steps of our
research. The more detailed feedback provided by the organizers of each track was also

of particular importance, as it provided further insights for the functionality and the
requirements of an alignment system.

5 References

1. Ontology Matching: State o
IEEE Transactions on Knowledge and Data Engineering 2013, pp. 158-176.

2. V. Spiliopoulos and George A. Vouros, "Synthesizing Ontology Alignment Methods Using
the Max-Sum Algorithm", IEEE Transactions on Knowledge and Data Engineering, vol.
24(5), pp. 940-951, May, 2012.

3. -
power embedded devices using the max- in Proc. Of the 7th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008), Estoril, Por-
tugal, 2008

4.
through Proceedings of the OAEI (Ontology Alignment Evalua-
tion Initiative) 2006 contest, Ontology Matching International Workshop, Athens, Georgia,
USA, 2006

5. for the

2006 contest, Ontology Matching International Workshop, Busan, Korea, 2007
6. la-

World Wide Web, Volume 8(1), pp. 69-88, March 2010
7. A. Koukourikos, V. Karkaletsis, and G.A. Vo Exploiting unstructured web infor-

mation for managing linked data spaces in Proceedings of the 17th Panhellenic Conference
on Informatics (PCI '13), Thessaloniki, Greece, September 2013

WeSeE-Match Results for OAEI 2013

Heiko Paulheim1 and Sven Hertling2

1 University of Mannheim
Data and Web Science Group

heiko@informatik.uni-mannheim.de
2 Technische Universitt Darmstadt

Knowledge Engineering Group
hertling@ke.tu-darmstadt.de

Abstract. WeSeE-Match is a simple, element-based ontology matching tool. Its
basic technique is invoking a web search engine request for each concept and
determining element similarity based on the similarity of the search results ob-
tained. Multi-lingual ontologies are translated using a standard web based transla-
tion service. Furthermore, it implements a simple strategy for selecting candidate
mappings interactively.

1 Presentation of the system

1.1 State, purpose, general statement

The idea of WeSeE-Match is to use information on the web for matching ontologies.
When developing the algorithm, we were guided by the way a human would possibly
solve a matching task. Consider the following example from the OAEI anatomy track1:
one element in the reference alignment are the two classes with labels eyelid tarsus and
tarsal plate, respectively. As a person not trained in anatomy, one might assume that
they have something in common, but one could not tell without doubt.

For a human, the most straight forward strategy in the internet age would be to
search for both terms with a search engine, look at the results, and try to figure out
whether the websites returned by both searches talk about the same thing. Implicitly,
what a human does is identifying relevant sources of information on the web, and an-
alyzing their contents for similarity with respect to the search term given. This naive
algorithm is implemented in WeSeE-Match.

Furthermore, WeSeE-Match uses a basic method for interactive matching, which
tries to adaptively set the threshold for selecting the final alignment from the set of
candidates.

1.2 Specific techniques used

The core idea of our approach is to use a web search engine for retrieving web docu-
ments that a relevant for concepts in the ontologies to match. For getting search terms

1 http://oaei.ontologymatching.org/2013/anatomy/

from ontology concepts (i.e., classes and properties), we use the labels, comments, and
URI fragments of those concepts as search terms. The search results of all concepts are
then compared to each other. The more similar the search results are, the higher the
concepts’ similarity score.

To search for websites, we use URI fragments, labels, and comments of each con-
cept as search strings, and perform some pre-processing, i.e., splitting camel case and
underscore separated words into single words, and omitting stop words. For every
search result, all the titles and summaries of web pages provided by the search en-
gine are put together into one describing document. This approach allows us to parse
only the search engine’s answer, while avoiding the computational burden of retrieving
and parsing all websites in the result sets. The answer provided by the search engine
contains titles and excerpts from the website (i.e., some sentences surrounding the oc-
curance of the search term in the website). Therefore, we do not use whole websites,
but ideally only relevant parts of those web sites, i.e., we exploit the search engine both
for information retrieval and for information extraction.

For each concept c, we perform a single search each for the fragment, the label,
and the comment (if present), thus, we generate up to three documents docfragment(c),
doclabel(c), and doccomment(c). The similarity score for each pair of concepts is then
computed as the maximum similarity over all of the documents generated for those
concepts:

sim(c1, c2) := maxi,j∈{fragment,label,comment}sim∗(doci(c1), docj(c2)) (1)

For computing the similarity sim∗ of two documents, we compute a TF-IDF score,
based on the complete set of documents retrieved for all concepts in both ontologies.

Using the TF-IDF measure for computing the similarity of the documents has sev-
eral advantages. First, stop words like and, or, and so on are inherently filtered, because
they occur in the majority of documents. Second, terms that are common in the domain
and thus have little value for disambiguating mappings are also weighted lower. For
example, the word anatomy will occur quite frequently in the anatomy track, thus, it
has only little value for determining mappings there. On the other hand, in the library
track, it will be a useful topic identifier and thus be helpful to identify mappings. The
TF-IDF measure guarantees that the word anatomy gets weighted accordingly in each
track.

The result is a score matrix with elements between 0 and 1 for each pair of concepts
from both ontologies. For each row and each column where there is a score exceeding
τ , we return that pair of concepts with the highest score as a mapping. Furthermore, the
filter chain explained in [2] is used, which removes mappings for datatype properties
with different ranges, as well as mappings that refer to any imported ontologies.

For multi-lingual ontologies, we first translate the fragments, labels, and comments
to English as a pivot language [4]. The translated concepts are then processed as de-
scribed above.

While the threshold is set to fixed values for the standard tracks in the evaluation,
we use an interactive method of selecting the threshold in the interactive track. We
use a binary search for selecting the threshold, as discussed in [6], using the following
algorithm:

1. Set τ to the average threshold of all candidates. Set τmin = 0, τmax = 1.
2. Present a candidate that has a confidence of τ (or the candidate whose confidence

is closest to τ) to the oracle.
3. If the candidate is correct, set τ to τmin + (τmax − τmin/2), τmin to the previous

value of τ , Otherwise set set τ to τmax − (τmax − τmin/2), τmax to the previous
value of τ

4. If τmax > τmin, go to 2.
5. Select the final candidates: all candidates with a threshold above τ plus all candi-

dates that are rated positive by the oracle minus all candidates that are rated negative
by the oracle.

Given that the ordering of candidates is optimal, i.e., all wrong candidates have a
lower confidence score than all correct candidates, that algorithm will yield a threshold
τ that separates correct from incorrect candidates.

1.3 Adaptations made for the evaluation

The 2012 version of WeSeE-Match [5] used Microsoft Bing as a search engine, as well
as the Microsoft Translator API. In order to create a matching system that does not use
any services which require payment, we decided to make the following changes for the
2013 evaluation campaign:

– The Bing web search was replaced by JFreeWebSearch2, which encapsulates the
free FAROO web search API3.

– The Microsoft Translator API was replaced by the Web Translator API4.

The other new feature for this year’s evaluation was the inclusion of the interactive
post-processing method. The same code for handling interactive matching was also used
in the Hertuda matching system [3] for the OAEI 2013 evaluation campaign.

The parameter τ was set to 0.42 for multi-lingual and to 0.51 for mono-lingual
matching problems in the non-interactive tracks.

1.4 Link to the system and parameters file

The system is available from http://www.ke.tu-darmstadt.de/resources/
ontology-matching/wesee-match/.

2 Results

2.1 benchmark

The results from the benchmark track are not surprising. For those problems where
labels, URI fragments and/or comments are present and contain actual terms, i.e., they

2 http://www.ke.tu-darmstadt.de/resources/jfreewebsearch
3 http://www.faroo.com/
4 http://sourceforge.net/projects/webtranslator/

are not replaced by random strings, WeSeE-Match provides reasonable results. As soon
as those strings are removed, the F-measure of WeSeE-Match drops, since no other
evaluation (e.g., ontology structure) is used by WeSeE-Match.

The evaluation of runtime also reveals that WeSeE-Match is one of the slowest
matching systems participating in the campaign. This is due to the fact that the search
engine used restricts the usage to one request per second. Thus, WeSeE-Match spends a
lot of idle time to fulfill that requirement.

2.2 anatomy and conference

On anatomy, WeSeE-Match is one of the worst performing matchers, suffering both in
precision in recall. It is in particular interesting to see the drop from last year’s perfor-
mance (F-measure 0.829) to this year’s (F-measure 0.47), where the only significant
change was the use of a different search engine. This shows that the choice of the web
search engine in search-engine based matching can make a huge difference in the re-
sults.

In the conference track, the differences to last year are not that significant, ending
at a comparable F-measure of 0.55, which makes WeSeE-Match an average matcher in
the conference track.

2.3 multifarm

For multifarm, the F-measure has dropped from 0.41 in OAEI 2012 to 0.15 in OAEI
2013. As discussed above, the performance on the English-only conference track, which
underlies multifarm, has remained stable, so this is mainly an effect of the use of a
different translation engine. Again, it becomes obvious that the choice of a different
translation engine clearly influences the results.

In detail, the 2012 version of WeSeE-Match was capable of matching Chinese and
Russian ontologies, because these languages were supported by the Microsoft Transla-
tor API, but not the Web Translator API. Furthermore, the results for Czech are signif-
icantly below the 2012 results, which shows a suboptimal support for that language in
the Web Translator API. For the other languages, the results have remained on a similar
level.

2.4 library and large biomedical ontologies

Since WeSeE-Match is not optimized for scalability (in particular, necessary waiting
times to avoid blocking from search engine providers slow down the matcher), it could
not be run on those larger tracks due to time limits. However, the approach does in
principle scale up to larger ontologies as well. In the OAEI 2012 campaign, for example,
WeSeE-Match was capable of completing the library track, when the time limit was set
to one week instead of one day [1].

Table 1. Thresholds and results in the interactive track. The table depicts the best possible thresh-
old and the F-measure that is achieved with that threshold, as well as the threshold chosen and
the F-measure achieved by WeSeE-Match. In cases where an interval of thresholds leads to the
same result, we report the average of that interval.

best possible selection actual selection
Test case Threshold Precision Recall F-measure Threshold Precision Recall F-Measure
cmt-conference 0.14 0.438 0.467 0.452 0.03 0.304 0.467 0.368
cmt-confOf 0.15 0.385 0.313 0.345 0.26 0.714 0.313 0.435
cmt-edas 0.94 0.889 0.615 0.727 1.00 0.778 0.538 0.636
cmt-ekaw 0.90 0.625 0.455 0.526 0.19 0.500 0.455 0.476
cmt-iasted 0.66 0.800 1.000 0.889 1.00 0.800 1.000 0.889
cmt-sigkdd 0.14 0.786 0.917 0.846 0.23 0.769 0.833 0.800
conf-confOf 0.97 0.583 0.467 0.519 1.00 0.714 0.333 0.455
conf-edas 0.95 0.583 0.412 0.483 1.00 1.000 0.118 0.211
conf-ekaw 0.12 0.333 0.480 0.393 0.18 0.538 0.280 0.368
conf-iasted 0.15 0.500 0.357 0.417 0.79 1.000 0.214 0.353
conf-sigkdd 0.28 0.818 0.600 0.692 0.78 0.750 0.600 0.667
confOf-edas 1.00 0.643 0.474 0.545 1.00 0.778 0.368 0.500
confOf-ekaw 0.11 0.619 0.650 0.634 1.00 0.667 0.600 0.632
confOf-iasted 0.90 0.571 0.444 0.500 1.00 1.000 0.333 0.500
confOf-sigkdd 0.69 0.667 0.571 0.615 0.19 0.500 0.429 0.462
edas-ekaw 0.60 0.526 0.435 0.476 1.00 1.000 0.130 0.231
edas-iasted 0.28 0.500 0.421 0.457 0.19 0.500 0.105 0.174
edas-sigkdd 0.95 0.875 0.467 0.609 1.00 0.875 0.467 0.609
ekaw-iasted 0.57 0.429 0.600 0.500 1.00 0.556 0.500 0.526
ekaw-sigkdd 0.81 0.875 0.636 0.737 1.00 1.000 0.273 0.429
iasted-sigkdd 0.94 0.647 0.733 0.688 1.00 0.667 0.133 0.222

2.5 interactive

The interactive matching component in WeSeE-Match – which is the same as in Hertuda
– tries to find an optimal threshold via binary search for selecting the final mapping, as
discussed above. Table 1 depicts the results. For comparison, we also show the optimal
threshold that could have been selected in theory.5

It can be observed that the thresholds chosen by our algorithm are most often far
from the optimum, which is also reflected in the F-measure achieved. In most cases, the
selected threshold is higher than the optimal, i.e., the selection is biased towards preci-
sion. In fact, 1.0 is often chosen as a threshold. The reason is that that mapping elements
such as conference#Conference = eads#Conference, which naturally re-

5 There are cases where the F-measure achieved by the actual selection is higher. This is due
to the fact that in a post-processing step, all information obtained from the oracle is exploited
by removing the wrong mappings and including the correct ones, even if they do not fall into
the interval defined by the final threshold selection. Furthermore, in some cases, the precision
is lower despite a higher threshold. This is due to the fact that the interactive track uses a
slightly different reference alignment than the original conference track, on which the optimal
thresholds have been determined.

ceive a confidence score of 1.0, are rated wrong by the oracle, so that our binary search
approach sets the threshold τ to the maximum possible, i.e., 1.0.

In general, while our interactive approach would work well for ideally sorted candi-
dates, its performance with real confidence scores provided by WeSeE-Match (and also
Hertuda) are not satisfying. Thus, using a greedy algorithm here is maybe not the best
choice, and other means to determine an optimal threshold, such as estimating the F-
measure based on user interaction, as discussed in [6], may be a better option for future
versions.

3 Conclusion

In this paper, we have discussed the results of the 2013 version of WeSeE-Match. It can
be observed that the choice for free services instead of commercial ones has changed
the performance of WeSeE-Match for the worse. The trade-off between the use of com-
mercial services and high-quality results is not easy to address.

Furthermore, it can be seen that a naive greedy approach for selecting a threshold
parameter interactively does not provide satisfying results, which calls for more sophis-
ticated methods.

References

1. Jos Luis Aguirre, Kai Eckert, Jrme Euzenat, Alfio Ferrara, Willem Robert van Hage, Laura
Hollink, Christian Meilicke, Andriy Nikolov, Dominique Ritze, Francois Scharffe, Pavel
Shvaiko, Ondrej Svab-Zamazal, Cssia Trojahn, Ernesto Jimnez-Ruiz, Bernardo Cuenca Grau,
and Benjamin Zapilko. Results of the ontology alignment evaluation initiative 2012. In Sev-
enth International Workshop on Ontology Matching (OM 2012), 2012.

2. Thanh Tung Dang, Alexander Gabriel, Sven Hertling, Philipp Roskosch, Marcel Wlotzka,
Jan Ruben Zilke, Frederik Janssen, and Heiko Paulheim. Hotmatch results for oeai 2012. In
Seventh International Workshop on Ontology Matching (OM 2012), 2012.

3. Sven Hertling. Hertuda results for oeai 2012. In Seventh International Workshop on Ontology
Matching (OM 2012), 2012.

4. Michael Paul, Hirofumi Yamamoto, Eiichiro Sumita, and Satoshi Nakamura. On the impor-
tance of pivot language selection for statistical machine translation. In 2009 Annual Con-
ference of the North American Chapter of the Association for Computational Linguistics,
Companion Volume: Short Papers, pages 221–224, 2009.

5. Heiko Paulheim. Wesee-match results for oeai 2012. In Seventh International Workshop on
Ontology Matching (OM 2012), 2012.

6. Heiko Paulheim, Sven Hertling, and Dominique Ritze. Towards evaluating interactive ontol-
ogy matching tools. In Lecture Notes in Computer Science, 2013.

XMapGen and XMapSiG Results for OAEI 2013

Warith Eddine Djeddi and Mohamed Tarek Khadir

LabGED, Computer Science Department, University Badji Mokhtar, Annaba, Algeria
{djeddi, khadir}@labged.net

Abstract. The XMapGen and XMapSig systems are flexible and self-configuring
matching tools using different strategies for combining multiple similarity mea-
sures into a single aggregated metric with the final aim of improving the ontol-
ogy alignment quality of large scale ontologies. XMapGen and XMapSig are two
variants of XMap++. The results obtained by the two ontology matching tools
within the 9th edition of the Ontology Alignment Evaluation Initiative (OAEI
2013) campaign are therefore presented.

1 Presentation of the system

We present a fully automatic general purpose ontology alignment tools called XMap-
Gen (eXtensible Mapping using Genetic) and XMapSig (eXtensible Mapping using
Sigmoid), a new and lighter implementations of their ancestor XMap++ [1]. XMapGen
and XMapSig include several matchers. These matchers calculate similarities between
the terms from the different source ontologies. The matchers implement strategies based
on linguistic matching, structure-based strategies and strategies that use auxiliary infor-
mation in the thesaurus WordNet to enhance the alignment process. XMapGen uses
Genetic Algorithm (GA) as a machine learning-based method to ascertain how to com-
bine multiple similarity measures into a single aggregated metric with the final aim
of improving the ontology alignment quality. XMapSig uses sigmoid function [4] for
combining the corresponding weights for different semantic aspects, reflecting their
different importance. This year, XMapGen and XMapSig participate in five tracks in-
cluding Benchmark, Conference, Library, Anatomy and Large Biomedical Ontologies
tracks.

1.1 State, purpose, general statement

XMapGen and XMapSig are a scalable ontology alignment tools capable of matching
English language ontologies described in different OWL languages (i.e., OWL Lite,
OWL DL, and OWL Full). The major principle of the matching strategy in XMapGen
and XMapSig approaches is combining multiple similarity measures into a single sim-
ilarity metric using weights determined by intelligent strategies in order to skip over
the burden of manual selection. Despite the impressive strategy in adding GA, aligning
medium-sized and large-scale ontologies is still very time consuming and computation-
ally expensive. This inspires us to consider the use of a particular parallel matching on
multiple cores or machines for dealing with the scalability issue on ontology matching.

1.2 Specific techniques used

In this section, the workflow of XMap++ and its main components is briefly described
and shown in Fig.1. Both systems XMapGen and XMapSig calculate three different
basic measures to create three similarity matrixes. String-based, semantic and structural
methods are the three different categories of measuring similarities.

Fig. 1. Sketch of Architecture for XMAP++.

In XMap++ approach, a generic workflow for a given ontology matching scenario
is as follows:

1. Matching inputs are two ontologies, source O and target O
′

parsed by an Ontology
Parser component;

2. The String Matcher based on linguistic matching compares the textual descriptions
of the concepts associated with the nodes (labels, names) of each ontology;

3. The Linguistic matcher jointly aims at identifying words in the input strings, relay-
ing on WordNet [5] which provide additional information towards unveiling map-
pings in cases where features such as labels are missing or in cases where names
are replaced by random strings. These matching techniques may provide incor-
rect match candidates, structural matching is used to correct such match candidates
based on their structural context. In order to deal with lexical ambiguity, we in-
troduce the notion of scope belonging to a concept which represents the context
where it is placed. In our approach, the similarity between two entities of differ-
ent ontologies is evaluated not only by investigating the semantics of the entities

names, but also taking into account the local context, through which the effective
meaning is described. In particular, the neighborhood of a term (immediate parent
and children in the is-a hierarchy). Increasing the radius means enlarging the scope
(i.e. this area) and, consequently, the set of neighbour concepts that intervene in the
description of the context. The value of linguistic methods is added to the linguistic
matcher or the structure matcher in order to enhance the semantic ambiguity during
the comparison process of entity names;

4. The structural matcher aligns nodes based on their adjacency relationships. The
relationships (e.g., subClassOf and is-a) that are frequently used in the ontology
serve, at one hand, as the foundation of the structural matching. On the other hand,
the structural rules are used to extract the ontological context of each node, up to
a certain depth (radius). This context includes some of its neighbours, where each
of them is associated a weight representing the importance it has when evaluating
the contextual node. The XMap++ algorithm values the semantic relation between
two concepts while taking in consideration the types of cardinality constraints (e.g.
OWLAllValuesFrom, OWLSomeValuesFrom, OWLMinCardinality, OWL-Cardinality,
OWLMaxCardinality, Same as or Kind of) and values between their properties
(e.g. OWLMaxCardinality >=1). Alignment suggestions are then determined by
combining and filtering the results generated by one or more matchers;

5. The three matchers perform similarity computation in which each entity of the
source ontology is compared with all the entities of the target ontology, thus pro-
ducing three similarity matrices, which contain a value for each pair of entities.
After that, an aggregation operator is used to combine multiple similarity matri-
ces computed by different matchers to a single aggregated n ∗m similarity matrix,
where n is the number of element in the source ontology and m is the number of
elements in the target ontology. We refer to [1] for more detail about the pruning
and splitting techniques on data matrices for two couple of entities;

6. XMap++ uses three types of aggregation operator; these strategies are aggregation,
selection and combination. The aggregation reduces the similarity cube to a matrix,
by aggregating all matcher’s results matrices into one. This aggregation is defined
by five strategies: Max, Min, Average, sigmoid function and Weighted. The Max
strategy is an optimistic one, selecting the highest similarity value calculated by
any matcher. Contrary, the Min strategy selects the lowest value. Average evens
out the matcher results, calculating the average. The sigmoid method combines
multiple results using a sigmoid methods, which is essentially a smoothed threshold
function [4]. In order to satisfy a different importance of matcher results, Weighted
computes the weighted sum of the results, according to user defined weights or
automatic defined weights using a dynamic strategy [3], using an Artificial Neural
Network (ANN) (Djeddi and Khadir, 2013) or using Genetic Algorithm (GA);

7. Finally, these values are filtered using a selection according to a defined threshold
and the desired cardinality. In our algorithm, we adopt the 1-1 cardinality to find
the optimal solution in polynomial time.

1.3 Adaptations made for the evaluation

Several technical adaptations were required for integrating the system into the Seals
platform, such as:

– Updating some libraries (e.g., Alignment API) or changing the way some parame-
ters are communicated.

– To deal with large ontologies, XMapGen and XMapSig conducted specific experi-
ments to see whether a matching system can exploit a multi-core architecture [6] to
speed up the matching process. We adapted parallel matching to the use of thread-
ing to distribute the jobs of two matchers (Classes matcher and Properties matcher)
on all available CPU cores on only one machine.

– There are two factors that directly impact to the systems’ performance. The first
ones relates to matching by machine learning model. The training data and selected
similarity metrics as learning attributes are important. A simple solution for this
issue is proposed by selecting the most appropriate similarity metrics and training
data according to their correlation with expert’s assessment. The second issue re-
lates to the threshold used as a filter in the selection module. Different tests require
different thresholds.

– In XMap++, the aim of the Structural Matcher is to correct such match candi-
dates based on their structural context. The structural approach matches the nodes
based on their adjacency relationships. XMapGen and XMapSig exploit only the
superclass-subclass relationships (subsumption relationships) that are frequently
used in ontologies when the total number of entities is bigger than 1500 entities
in each ontology. We restrict the contextual similarity computing; only the value
of the semantic relation between two concepts without taking in consideration the
types of cardinality constraints and values between their properties, because if the
ontologies became larger, the efficiency of the automatic alignment methods de-
creases considerably, in term of execution time, and memory size.

2 Results

Evaluation results of XMapGen and XMapSig in the OAEI 2013 campaign are here
evaluated and discussed. We participated in five tracks: Benchmarks, Conference, Li-
brary, Anatomy and Large Biomedical Ontologies. Detailed results and descriptions
about the used computation environments are provided on the OAEI 2013 result page.

2.1 Benchmark

In this track, there are multiple match tasks per sub-track where one source ontology
is compared with a number of systematically modified target ontologies. According to
Table 1, it is shown that approximately 4% is the percentage improvement of XMapSig
versus XMapGen. The recall low values are explained by the fact that ontological en-
tities with scrambled labels, lexical similarity becomes ineffective. For two algorithms,
structural similarity stems from lexical similarity hence scrambling the labels makes the
alignment more challenging. This trend of reduction in precision, recall and f-measure
which can be observed throughout the test cases from 248 till 266.

Table 1. Results for Benchmark track.

System biblioc
P R F

XMapSig 0.70 0.50 0.58
XMapGen 0.66 0.46 0.54

2.2 Anatomy

The Anatomy track consists of finding an alignment between the Adult Mouse Anatomy
(2744 classes) and a part of the NCI Thesaurus (3304 classes) describing the human
anatomy. XMapSig achieves a good F-Measure value of ≈75% in an acceptable amount
of time (393 sec.) (see Table 2). In a separate configuration using genetic algorithm
(XMapGen) we could increase the recall to ≈2% but the precision is decreased of
≈5%, due to running the structural matcher in a lightweight version (restriction of the
contextual similarity). XMapGen needs around 403 minutes to compute the alignment.
We plan to use bio medical lexical databases like Unified Medical Language System
(UMLS) for improving the recall.

Table 2. Results for Anatomy track.

System Precision F-Measure Recall Time(s)

XMapSig 0.856 0.753 0.673 393
XMapGen 0.808 0.747 0.695 403

2.3 Conference

The Conference track uses a collection of 16 ontologies from the domain of academic
conferences. Most ontologies were equipped with OWL DL axioms of various kinds;
this opens a useful way to test our semantic matchers. The match quality was evaluated
against an original (ra1) as well as entailed reference alignment (ra2). As the Table 3
shows, for both evaluations we achieved F-Measure values better than the Baseline1 re-
sults (57% for ra1 and 53% for ra2) when using XMapGen1 4. Also with XMapSig1 3
we achieved F-Measure values better than the Baseline1 results (58% for ra1 and 53%
for ra2).

Table 3. Results for Conference track.

System RA1 Reference RA2 Reference
P R F P R F

XMapSig1 3 0.72 0.48 0.58 0.68 0.44 0.53
XMapGen1 4 0.68 0.49 0.57 0.64 0.45 0.53

2.4 Library

The library track involves the matching of the STW thesaurus (6,575 classes) and the
Soz thesaurus (8,376 classes). Both of these thesauri provide vocabulary for economic
and social sciences. Table 4 summarizes the results obtained by XMapGen and XMap-
Sig. The mapping quality achieved by XMapSig on the library track is not as positive
as on the other tracks. XMapSig attains a precision of 0.79 and a recall of 0.31. Possible
reasons may be the absence of domain and range definitions (in fact, of properties in
general), as for anatomy, and the presence of multi-lingual labels. As XMapSig does
not respect languages, this may lead to false positives. XMapSig requires ≈ 48 min and
34 sec. It is mainly due to the fact that our approach uses the notion of context with
a value of radius not fixed as an input parameter at the starting of the matching task.
So the algorithm looks at all the depth for the compared ontologies which involve the
creation of a matrix with M > 1.3 billion pairs.

XMapGen could perform worse in terms of precision (0.031) and obtained higher
for recall than XMapSig (0.37). The low of precision is due to a problem in the training
of the genetic algorithm. We fixed this problem with an improved version delivered
after deadline (precision and recall performance was different). In this paper we decided
to present (see Table 4), only the results generated with the official version of our tool
(before the deadline of the contest), and not the one generated with an improved version
(fixing the training problem of GA) submitted after the deadline.

Table 4. Results for Library track.

System Precision Recall F-Measure Time(s)

XMapSig 0.799 0.318 0.455 2914
XMapGen 0.031 0.371 0.057 3008

2.5 Large biomedical ontologies

This data set consists of several large scale ontologies, containing up to tens of thou-
sands of concepts. Our two systems were only capable to match the small task for
FMA-NCI and FMA-SNOMED. The large ones are not finished in time due to the high
computational complexity. We found the NCI thesaurus very time consuming for con-
text based mapping as its concepts have many siblings. Among the varying evaluation
methods, XMapGen and XMapSig produced fairly consistent alignments when match-
ing the FMA and NCI ontologies, all resulting in f-measures of approximately 0.60
(See Table 5). However, the results of the completed tasks indicate that our system is
already capable of producing alignments of high quality in this domain, thus improving
its efficiency, for instance by applying the complete functionalities of XMap++ , should
result in an overall satisfying performance during the next evaluation. As not expected
from our two systems, they could perform the alignment in less than 3 hours 25 min of
Small FMA-SNOMED fragments with high precision and low recall (See Table 6).

Table 5. Results for the Large BioMed track: FMA-NCI tasks

Task 1: Small FMA and NCI fragments
System Size Precision Recall F-Measure Time(s)

XMapSig 1564 0.864 0.461 0.602 1477
XMapGen 1687 0.833 0.479 0.608 1504

Table 6. Results for the Large BioMed track: FMA-SNOMED tasks

Task 3: Small FMA and SNOMED fragments
System Size Precision Recall F-Measure Time(s)

XMapSig 1581 0.760 0.134 0.228 11720
XMapGen 1827 0.694 0.142 0.236 12127

3 General comments

3.1 Comments on the results and future improvements

As previously stated, the aim of this development experience was not to deliver a tool to
compete with others in terms of precision and recall. Instead, we aimed at the develop-
ment of a new and stable version of XMap++ using new and state-of-the-art technolo-
gies and alignment methods. Additionally, to tackle the large ontology matching prob-
lem we improved the runtime of the algorithm using a divide-and-conquer approach
that can partition the execution of the matchers into small threads was improved and
joins their results after each similarity calculation. A direct comparison between the
XMapGen and XMapSig shows that the addition of GA does not has a negative effect
on the algorithm but, on the contrary, leads to slightly better results, especially in terms
of recall. In most track, XMapSig supplies high precision than XMapGen. Whereas
using Genetic Algorithm (XMapGen) performs quite high in terms of recall than us-
ing sigmoid function (XMapSig). The reason is behind the using of the sigmoid func-
tion and the weight for linguistic matcher. Therefore, for a high value of the linguistic
weight, some important properties of classes founded by XMapSig may be omitted, as
the weight of linguistic matcher is high and the algorithm focuses more on the linguis-
tic level (names of classes) than the structural level (properties and their restrictions).
This problem can be resolved by using a sigmoidal function, which increases propor-
tionally the important similarity of the structural matcher, to be considered in the final
calculation of two classes similarities. Finally we participated in the OAEI 2013 with
two variants with the aim to analyze the strength and the weakness of each strategy
(Sigmoid and Genetic) at the goal for combing them in one ontology alignment task.

3.2 Discussions on the way to improve the proposed system

Some probable approaches to improving our tools are listed as follows:

1. Adopt more flexible strategies in defining the way for automatic threshold rather
than manually tuning. Developing dynamic strategies for setting the correct thresh-
old value for each compared ontologies and not one for all;

2. Take comments and Instance information of ontology into account, especially when
the name of concept is meaningless;

3. Matching larger ontologies still takes significantly longer time when parsing on-
tologies with Alignment API. We plan to solve this problem using an ontology
parser which permits to load multiple ontologies in parallel via threading;

4. Usage of background knowledge based on the UMLS Meta-thesaurus to have high
recall when aligning ontologies from the biomedical science domain.

3.3 Comments on the OAEI 2013 procedure

As a first participation, we found the OAEI procedure very convenient and the orga-
nizers very supportive. The use of Seals allows objective assessments. The OAEI test
cases are various and this leads to comparison on different levels of difficulty, which is
very interesting. We found that SEALS platform is a very valuable tool to compare the
performance of our system with the others.

4 Conclusion

Our system participated to the campaign with two versions (XMapGen and XMapSig)
of our approach, corresponding to different strategies of weights aggregation. Gen-
erally, according to our results in OAEI 2013, our two systems delivered fair results
comparatively to other participants. The preliminary results were quite good to encour-
age us to continue seeking better solutions. It seems that both systems XMapGen and
XMapSig can efficiently match semantically rich ontologies containing tens (and even
hundreds) of thousands of classes. We confirm that the addition of Genetic Algorithm
(GA) keeps the performance and, furthermore, eliminates the necessity of tuning the
weights manually. Moreover, the learning framework is very flexible: many combina-
tions of matchers and parameters may be used in the future, various types of training
models (Resilient propagation, Levenberg marquardt, Backpropagation, Anneal, Radial
or Manhatan method, etc.) and new metrics.

References

1. Djeddi, W., Khadir, M.T.: Ontology alignment using artificial neural network for large-scale
ontologies. In the International Journal of Metadata, Semantics and Ontologies (IJMSO), Vol.8,
No.1, pp.75-92 (2013)

2. Djeddi, W., Khadir, M.T.: Introducing artificial neural network in ontologies alignment pro-
cess. In the Journal Control and Cybernetics, Vol. 41, No. 4, pp.743-759 (2012)

3. Djeddi, W., Khadir, M.T. : A dynamic multistrategy ontology alignment framework based
on semantic relationships using WordNet. In Proc of the 3rd International Conference on Com-
puter Science and its Applications (CIIA11), 1315 December, Saida, Algeria, pp.149154 (2012)

4. Djeddi, W., Khadir, M.T.: XMAP: a novel structural approach for alignment of OWL-full on-
tologies. In Proc. of the International Conference on Machine and Web Intelligence (ICMWI),
pp.347-352 (2010)

5. Fellbaum, C. : WordNet: An Electronic Lexical Database, MIT Press, Cambridge, MA (1998)
6. Gross, A., Hartung, M., Kirsten, T. and Rahm, E. : On matching large life science ontologies

in parallel. In , in Lambrix, P. and Kemp, G.J.L. (Eds), DILS, Springer, pp.35-49 (2010)

YAM++ – Results for OAEI 2013

DuyHoa Ngo, Zohra Bellahsene

University Montpellier 2, LIRMM
{duyhoa.ngo, bella}@lirmm.fr

Abstract. In this paper, we briefly present the new YAM++ 2013 version and
its results on OAEI 2013 campaign. The most interesting aspect of the new ver-
sion of YAM++ is that it produces high matching quality results for large scale
ontology matching tasks with good runtime performance on normal hardware
configuration like PC or laptop without using any powerful server.

1 Presentation of the system

YAM++ - (not) Yet Another Matcher is a flexible and self-configuring ontology match-
ing system for discovering semantic correspondences between entities (i.e., classes, ob-
ject properties and data properties) of ontologies. This new version YAM++ 2013 has a
significant improvement from the previous versions [6, 5] in terms of both effectiveness
and efficiency, especially for very large scale tasks. The YAM++’s general architecture
is not changed much. However, most of its algorithms have been updated/added by the
new effective ones. For example, we have implemented a disk-based method for storing
the temporary information of the input ontology during the indexing process in order
to save main memor space. Consequently, the new version YAM++ 2013 has improved
both the matching quality and time performance in large scale ontology matching tasks.
This year, YAM++ participates in six tracks including Benchmark, Conference, Mul-
tifarm, Library, Anatomy and Large Biomedical Ontologies tracks. However, due to
limitation of time and person, we have not upgrade YAM++ to participate to Interactive
matching evaluation and Instance Matching tasks.

1.1 State, purpose, general statement

In YAM++ approach all useful information of entities such as terminological, structural
or contextual, semantic and extensional are exploited. For each type of extracted infor-
mation, a corresponding matching module has been implemented in order to discover
as many as possible candidate mappings.

The major drawback of the previous version YAM++ 2012 [5], despite the fact that
it achieved good results and high ranking at almost tracks, is very low time performance,
especially for the Large Biomedical Ontologies tracks. After carefully studying this is-
sue, we realize that our algorithms for pre-processing and indexing the input ontologies
lead to a high complexity of O(n2), where n is the size of the ontology. Additionally,
the semantic verification component did not work well for the very large scale ontology
matching task.

In the current version YAM++ 2013, the flaws mentioned above have been signifi-
cantly fixed. Firstly, we have revised our algorithms for pre-processing and indexing the
input ontologies and now they are with O(‖n‖+‖v‖) complexity, where n and v are the
number of nodes and edges of a Directed Acyclic Graph transformed from the ontology.
Moreover, we have implemented a disk-based method for storing the temporary infor-
mation of the input ontologes during the indexing process. This method allows us save
a significant space of main memory. this makes possible run YAM++ with very large
scale ontology matching in a personal computer with ordinary configuration (using 1G
JVM only).

Secondly, we have introduced different inconsistent alignment patterns in order to
detect as much as possible conflict set. Then, a new and fast approximate algorithm has
been implemented to find the nearly optimization solution, which corresponds to the
final consistent alignment.

1.2 Specific techniques used

In this section, we will briefly describe the workflow of YAM++ and its main compo-
nents, which are shown in Fig.1.

C
an

di
da

te
 P

re
-

Fi
lte

rin
g Similarity

Computation

Similarity
Propagation

Annotation

Indexing

S
em

an
tic

 V
er

ifi
ca

tio
n

Structure
Indexing

O
nt

ol
og

y
Lo

ad
er

Candidate
Post-Filtering

Context
Indexing

Fig. 1: Main components of YAM++ system

In YAM++ approach, a generic workflow for a given ontology matching scenario is
as follows.
1. Input ontologies are loaded and parsed by a Ontology Loader component;
2. Information of entities in ontologies are indexed by the Annotation Indexing, the

Structure Indexing and Context Indexing components;
3. Candidates Pre-Filtering component filters out all possible pairs of entities from

the input ontologies, whose descriptions are highly similar;
4. The candidate mappings are then passed into Similarity Computation compo-

nent, which includes: (i) the Terminological Matcher component that produces a
set of mappings by comparing the annotations of entities; (ii) the Instance-based
Matcher component that supplements new mappings through shared instances be-
tween ontologies and (iii) the Contextual Matcher, which is used to compute the
similarity value of a pair of entities by comparing their context profiles. In YAM++,

the matching results of the Terminological Matcher, the Contextual Matcher and
the Instance-based Matcher are combined to have a unique set of mappings. We
call them element level matching result.

5. The Similarity Propagation component then enhances element level matching re-
sult by exploiting structural information of entities; We call the result of this phase
structure level matching result.

6. The Candidate Post-Filtering component is used to combine and select the poten-
tial candidate mappings from element and structure level results.

7. Finally, the Semantic Verification component refines those mappings in order to
eliminate the inconsistent ones.
Let us now to present the specific features of each component.

Ontology Loader To read and parse input ontologies, YAM++ uses OWLAPI open
source library. In addition, YAM++ makes use of (i) Pellet1 - an OWL 2 Reasoner in
order to discover hidden relations between entities in small ontology and (ii) ELK2

reasoner for large ontology. In this phase, the whole ontology is loaded in the main
memory.

Annotation Indexing In this component, all annotations information of entities such as
ID, labels and comments are extracted. The languages used for representing annotations
are considered. In the case where input ontology use different languages to describe the
annotations of entities, a multilingual translator (Microsoft Bing) is used to translate
those annotations to English. Those annotations are then normalized by tokenizing into
set of tokens, removing stop words, and stemming. Next, the resulting tokens are in-
dexed in a table for future use.

Structure Indexing In this component, the main structure information such as IS-A and
PAR-OF hierarchies of ontology are stored. In particular, YAM++ assigns a compressed
bitset values for every entity of the ontology. Through the bitset values of each entity,
YAM++ can fast and easily gets its ancestors, descendants, etc. A benefit of this method
is to easily access to the structure information of ontology and minimize memory for
storing it. After this step, the loaded ontology can be released to save main memory.

Context Indexing In this component, we define a context profile of an entity as a set
of three text corpora: (i) Entity Description includes annotation of the entity itself; (ii)
Ancestor Description comprises the descriptions of its ancestor and (iii) Descendant
Description comprises the descriptions of its descendant. Indexing those corpora is We
performed by Lucene indexing engine.

Candidates Pre-Filtering The aim of this component is to reduce the computational
space for a given scenario, especially for the large scale ontology matching tasks. In
YAM++, two filters have been designed for the purpose of performing matching process
efficiently.

1 http://clarkparsia.com/pellet/
2 http://www.cs.ox.ac.uk/isg/tools/ELK/

– A Description Filter is a search-based filter, which filters out the candidate map-
pings before computing the real similarity values between the description of enti-
ties. Firstly, the descriptions of all entities in the bigger size ontology are indexed
by Lucene search engine. For each entity in the smaller size ontology, three multi-
ple terms queries corresponding to three description included in its context profile
will be performed. The top-K algorithm based on ranking score of those queries is
used to select the most similar entities.

– A Label Filter is used to fast detect candidate mappings, where the labels of enti-
ties in each candidate mapping are similar or differ in maximum two tokens. The
intuition is that if two labels of two entities differ by more than three tokens, any
string-based method will produce a low similarity score value. Then, these entities
are highly unmatched.

Similarity Computation The three matcher described in this component are the same as
in the YAM++ 2012 version. For more detail, we refer readers to our papers: Termino-
logical Matcher [7], Instance-based Matcher [6]. A slight modification at the Con-
textual Matcher is that we use algorithm described in [8] for small ontology matching,
whereas we use the Lucene ranking score for large scale ontology matching.

Similarity Propagation This component is similar to the Structural Matcher compo-
nent described in YAM++ 2012 version. It contains two similarity propagation methods
namely Similarity Propagation and Confidence Propagation.

– The Similarity Propagation method is a graph matching method, which inher-
its the main features of the well-known Similarity Flooding algorithm [2]. The
only difference is about transforming an ontology to a directed labeled graph. This
matcher is not changed from the first YAM++ version to the current version. There-
fore, for saving space, we refer to section Similarity Flooding of [6] for more
details.

– The Confidence Propagation method principle is as follows. Assume 〈a1, b1,≡, c1〉
and 〈a2, b2,≡, c2〉 are two initial mappings, which are maybe discovered by the el-
ement level matcher (i.e., the terminological matcher or instance-based matcher).
If a1 and b1 are ancestors of a2 and b2 respectively, then after running confidence
propagation, we have 〈a1, b1,≡, c1 + c2〉 and 〈a2, b2,≡, c2 + c1〉. Note that, con-
fidence values are propagated only among collection of initial mappings.
In YAM++, the aim of the Similarity Propagation method is discovering new map-

pings by exploiting as much as possible the structural information of entities. This
method is used for a small scale ontology matching task, where the total number of
entities in each ontology is smaller than 1000. In contrary, the Confidence Propa-
gation method supports a Semantic Verification component to eliminate inconsistent
mappings. This method is mainly used in a large scale ontology matching scenario.
Candidates Post-Filtering The aim of the Mappings Combination and Selection com-
ponent is to produce a unique set of mappings from the matching results obtained by
the terminological matcher, instance-based matcher and structural matcher. In this com-
ponent, a Dynamic Weighted Aggregation method have been implemented. Given an
ontology matching scenario, it automatically computes a weight value for each matcher
and establishes a threshold value for selecting the best candidate mappings. The main
idea of this method can be seen in [6] for more details.

Semantic Verification After running the similarity or confidence propagation on overall
candidate mappings, the final achieved similarity values reach a certain stability. Based
on those values, YAM++ is able to remove inconsistent mappings with more certainty.
There are two main steps in the Semantic Verification component such as (i) identify-
ing inconsistent mappings, and (ii) eliminating inconsistent mappings.

In order to identify inconsistencies, several semantic conflict patterns have been
designed in YAM++ as follows (see [4] for more detail):

– Two mappings 〈a1, b1〉 and 〈a2, b2〉 are crisscross conflict if a1 is an ancestor of a2
in ontology O1 and b2 is an ancestor of b1 in ontology O2.

– Two mappings 〈a1, b1〉 and 〈a2, b2〉 are disjointness subsumption conflict if a1 is
an ancestor of a2 in ontology O1 and b2 disjoints with b1 in ontology O2 and vice
versa.

– A property-property mapping 〈p1, p2〉 is inconsistent with respect to alignment A
if {Doms(p1)×Doms(p2)} ∩ A = ∅ and {Rans(p1)×Rans(p2)} ∩ A = ∅
then (p1, p2), where Doms(p) and Rans(p) return a set of domains and ranges of
property p.

– Two mappings 〈a, b1〉 and 〈a, b2〉 are duplicated conflict if the cardinality matching
is 1:1 (for a small scale ontology matching scenario) or the semantic similarity
SemSim(b1, b2) is less than a threshold value θ (for a large scale matching with
cardinality 1:m).
Two methods, i.e., complete and approximate diagnosis are used in order to elim-

inate inconsistent mappings. We use complete version Alcomo [3] for small scale. In
term of approximate version for large scale, we transform this task into a Maximum
Weighted Vertex Cover problem. A modification of Clarkson algorithm [1], which is
a Greedy approach. The idea of this method is that it iteratively removes the mapping
with the smallest cost, which is computed by a ratio of its current confidence value to
number of its conflicts.

1.3 Adaptations made for the evaluation

Before running the matching process, YAM++ analyzes the input ontologies and adapts
itself to the matching task. In particular, if the annotations of entities in input ontologies
are described by different languages, YAM++ automatically translates them in English.
If the number of entities in input ontologies is smaller than 1000, YAM++ is switched
to small scale matching regime, otherwise, it runs with large scale matching regime.
The main difference between the two regimes lies in the Similarity Propagation and
Semantic Verification components as we discussed above.

1.4 Link to the system and parameters file

A SEALS client wrapper for YAM++ system and the parameter files can be download
at: http://www2.lirmm.fr/d̃ngo/YAMplusplus2013.zip. See the instructions in tutorial
from SEALS platform3 to test our system.

3 http://oaei.ontologymatching.org/2013/seals-eval.html

1.5 Link to the set of provided alignments (in align format)

The results of all tracks can be downloaded at: http://www2.lirmm.fr/d̃ngo/ YAMplus-
plus2013Results.zip.

2 Results

In this section, we present the evaluation results obtained by running YAM++ with
SEALS client with Benchmark, Conference, Multifarm, Library, Anatomy and
Large Biomedical Ontologies tracks. All experiments are executed by YAM++ with
SEALS client version 4.1 beta and JDK 1.6 on PC Intel 3.0 Pentium, 3Gb RAM, Win-
dow XP SP3.

2.1 Benchmark

In OAEI 2013, Benchmark includes 5 blind tests for both organizers and participants.
Those tests are regeneration of the bibliography test set. Table 1 shows the avergae
results of YAM++ running on the Benchmark dataset.

Test set H-mean Precision H-mean Recall H-mean Fmeasure
Biblio 0.97 0.82 0.89

Table 1: YAM++ results on pre-test Benchmark track

2.2 Conference

Conference track now contains 16 ontologies from the same domain (conference orga-
nization) and each ontology must be matched against every other ontology. This track
is an open+blind, so in the Table 2, we can only report our results with respect to the
available reference alignments

Test set H-mean Precision H-mean Recall H-mean Fmeasure
Conference ra1 0.80 0.69 0.74
Conference ra2 0.78 0.65 0.71

Table 2: YAM++ results on Conference track

2.3 MultiFarm

The goal of the MultiFarm track is to evaluate the ability of matcher systems to deal
with multilingual ontologies. It is based on the OntoFarm dataset, where annotations
of entities are represented in different languages such as: English (en), Chinese (cn),
Czech (cz), Dutch (nl), French (fr), German (de), Portuguese (pt), Russian (ru) and
Spanish (es). YAM++’s results are showed in the Fig. 2

2.4 Anatomy

The Anatomy track consists of finding an alignment between the Adult Mouse Anatomy
(2744 classes) and a part of the NCI Thesaurus (3304 classes) describing the human
anatomy. Table 3 shows the evaluation result and runtime of YAM++ on this track.

Fig. 2: YAM++ results on MultiFarm track

Test set Precision Recall Fmeasure Run times
Anatomy 0.944 0.869 0.905 62 (s)

Table 3: YAM++ results on Anatomy track

2.5 Library

The library track is a real-word task to match the STW (6575 classes) and the TheSoz
(8376 classes) thesaurus. Table 4 shows the evaluation result and runtime of YAM++
against an existing reference alignment on this track.

Test set Precision Recall Fmeasure Run times
Library 0.692 0.808 0.745 411 (s)

Table 4: YAM++ results on Library track

2.6 Large Biomedical Ontologies

This track consists of finding alignments between the Foundational Model of Anatomy
(FMA), SNOMED CT, and the National Cancer Institute Thesaurus (NCI). There are 9
sub tasks with different size of input ontologies, i.e., small fragment, large fragment and
the whole ontologies. Table 5 shows the evaluation results and run times of YAM++ on
those sub tasks.

3 General comments

This is the third time YAM++ participates to the OAEI campaign. We found that SEALS
platform is a very valuable tool to compare the performance of our system with the
others. Besides, we also found that OAEI tracks covers a wide range of heterogeneity in
ontology matching task. They are very useful to help developers/researchers to develop
their semantic matching system.

3.1 Comments on the results

The current version of YAM++ has shown a significant improvement both in terms of
matching quality and runtime with respect to the previous version. In particular, the

Test set Precision Recall Fmeasure Run times
Small FMA - NCI 0.976 0.853 0.910 94 (s)
Whole FMA - NCI 0.899 0.846 0.872 366 (s)

Small FMA - SNOMED 0.982 0.729 0.836 100 (s)
Whole FMA - SNOMED 0.947 0.725 0.821 402 (s)
Small SNOMED - NCI 0.967 0.611 0.749 391 (s)
Whole SNOMED - NCI 0.881 0.601 0.714 713 (s)

Table 5: YAM++ results on Large Biomedical Ontologies track

H-mean Fmeasure value of all the very large scale dataset (i.e., Library, Biomedical
ontologies) has been improved.

4 Conclusion

In this paper, we have presented our ontology matching system called YAM++ and
its evaluation results on different tracks on OAEI 2013 campaign. The experimental
results are promising and show that YAM++ is able to work effectively and efficiently
with real-world ontology matching tasks. In near future, we continue improving the
matching quality and efficiency of YAM++. Furthermore, we plan to deal with instance
matching track also.

References

[1] Kenneth L. Clarkson. A modification of the greedy algorithm for vertex cover. Information
Processing Letters, pages 23 – 25, 1983.

[2] Sergey Melnik el at. Similarity flooding: A versatile graph matching algorithm and its appli-
cation to schema matching. In ICDE, pages 117–128, 2002.

[3] Christian Meilicke. Alignment incoherence in ontology matching. In PhD.Thesis, University
of Mannheim, Chair of Artificial Intelligence, 2011.

[4] DuyHoa Ngo. Enhancing ontology matching by using machine learning, graph matching and
information retrieval techniques. In PhD.Thesis, University Montpellier II, 2012.

[5] DuyHoa Ngo and Zohra Bellahsene. Yam++ results for oaei 2012. In OM, 2012.
[6] DuyHoa Ngo, Zohra Bellahsene, and Remi Coletta. Yam++ results for oaei 2011. In OM,

2011.
[7] DuyHoa Ngo, Zohra Bellahsene, and Konstantin Todorov. Opening the black box of ontology

matching. In ESWC, pages 16–30, 2013.
[8] DuyHoa Ngo, Zohra Bellasene, and Remi Coletta. A generic approach for combining lin-

guistic and context profile metrics in ontology matching. In ODBASE Conference, 2011.

Collective Ontology Alignment

Jason B. Ellis, Oktie Hassanzadeh, Kavitha Srinivas, and Michael J. Ward

IBM T.J. Watson Research,
P.O. Box 704, Yorktown Heights, NY 10598

{jasone,hassanzadeh,ksrinivs,MichaelJWard}@us.ibm.com

1 Introduction

Enterprises are captivated by the promise of using big data to develop new prod-
ucts and services that provide new insights into their customers and businesses.
However, there are significant challenges leveraging data across heterogeneous
data stores, including making those data accessible and usable by non-experts.
We designed a novel system called Helix which employs a combination of user-
driven and automated techniques to bootstrap the building of a unified seman-
tic model over virtualized data. Such a uniform semantic model allows users to
query across data stores transparently, without needing to navigate a maze of
data silos, data formats, and query languages.

In this poster, we discuss a specific aspect of Helix: the method by which
it facilitates ontology alignment. Such alignments are very noisy and manually
fixing the issues is a laborious process, especially when all the work must be
done prior to putting the system into use. Instead, Helix proposes to engage
users progressively in the process of ontology alignment through the course of
their everyday use of the system. We do this by framing ontology alignment as
a guided data exploration and integration task.

2 Guided Exploration, Linking, and Sharing

Helix provides a uniform user interface for heterogeneous data exploration and
linking. This interface abstracts the underlying differences among data stores and
data representations, with the goal of allowing the user to focus on their task
rather than the technology. This interface engages users in the data alignment
process through three key features:

1. Guided navigation - search and navigate to locate results of interest, assisted
by suggestions based on semantic and schematic links

2. Saving results - save results of interest and share those results with others
3. Guided linking - users select two saved results and Helix guides them through

ontology alignment. The resulting linked data can be saved, shared, and used
in future links. (see Figure 1)

Through this process, users are creating ontology alignments by finding data
of interest, aligning it, and saving/sharing what they find useful. In this way,

2 Ellis et al.

Fig. 1. Helix Front Page with two results selected for linking.

everyone who uses Helix is contributing to the alignment of the underlying data
sources and can leverage the work of others.

Currently, sharing happens by one user explicitly sending saved results to
another. However, we are building a recommender system that will automatically
show relevant results to users through the course of their work, allowing them
to more readily reuse ontology alignments.

Previous work has proposed systems that perform analysis and “pay-as-you-
go” integration in specific domains using semantic technologies [2]. However,
such systems typically leave the user out of the ontology mapping process. Helix
explicitly engages users in linking the data they are interested in.

This work is also related to research on making it easier for non-expert users
to query standard database management systems, particularly those that take
an exploratory search approach [3]. Explorator offers a somewhat similar user
experience, allowing users to explore RDF data through a process involving
search, faceted navigation, and set operations [1]. By contrast, Helix allows users
to navigate heterogeneous data and build complex queries through a process
of progressively linking saved results. It also assists users through semantic &
schematic guidance, linkage discovery, and (ultimately) recommendations.

References

1. de Araújo, S., Schwabe, D.: Explorator: a tool for exploring RDF data through
direct manipulation. In: Linked Data on the Web WWW Workshop (2009)

2. Lopez, V., Kotoulas, S., Sbodio, M.L., Stephenson, M., Gkoulalas-Divanis, A.,
Mac Aonghusa, P.: QuerioCity: a linked data platform for urban information man-
agement. In: ISWC’12: Proceedings of the 11th international conference on The
Semantic Web. Springer-Verlag (Nov 2012)

3. White, R.W., Drucker, S.M., Marchionini, G., Hearst, M., schraefel, m.c.: Ex-
ploratory search and HCI. In: CHI ’07 extended abstracts. pp. 2877–2880. ACM
Press, New York, New York, USA (2007)

IT486
Rectangle

Uncertainty in crowdsourcing ontology matching

Jérôme Euzenat

INRIA & LIG, France

Matching crowdsourcing There may be several motivations for crowdsourc-
ing ontology matching, i.e., relying on a crowd of workers for establishing align-
ments [2]. It may be for matching itself or for establishing a reference alignment
against which matchers are evaluated. It may also be possible to use crowdsourc-
ing as complement to a matcher, either to filter the finally provided alignment
or to punctually provide hints to the matcher during its processing.

The ideal way of crowdsourcing ontology matching is to design microtasks
(t) around alignment correspondences and to ask workers (w) if they are valid
or not.

cw(t) =� ≡
House � Building

Uncertainty Most of the crowdsourcing philosophy relies on the idea that
microtasks have one single solution that workers are good at finding (even if this
requires more skilled workers).

The experience acquired in ontology matching shows that, because concepts
are underdefined, there may not be one unique answer to a matching microtask.
Moreover, we know that “experts” do not necessary have coinciding opinions [3].

One way to deal with this problem is to take into account uncertainty from
the beginning and to know how to deal with uncertainty instead of trying to
cast it into certainty.

We base our approach on the principle that workers may not know for certain
what the answer is, but they may know for certain that it is among a set of
alternatives. Representing this set is a way to deal with uncertainty.

Disjunctive crowdsourcing One first idea is, instead of asking people what
the answer is (is this correspondence correct), asking them what could be an
answer. For that purpose it is necessary to ask them choosing between several
alternative relations.

Using jointly exhaustive and pairwise disjoint (JEPD) relations (R) is a
proper way to ask such questions. Moreover, uncertainty may be represented
within alignments through algebras of relations [1].

dcw(t) = {�, �} ≡
House � Building

∨ House � Building

This will require slightly more work from workers, but they will not require
them to choose between alternatives when they do not see any clear correct one.

Complement crowdsourcing One further possibility, instead of asking people
what could be an answer is to ask them what is definitely not an answer. In this
second setting, it may be easier for people to provide meaningful information
without needing to commit to one particular answer.

ccw(t) = {�, �} ≡
¬(House � Building)

∧¬(House � Building)

Complement crowdsourcing is logically the complement of disjunctive crowd-
sourcing. However, we conjecture that this will make workers adopt a cautious
attitude, discarding only relations that they really think are wrong.

Summary This is related to the consensus between experts [3]. In the initial
case, if they do not choose the same relation, they disagree. In the two latter
schemes, as long as the intersection between their choices are not disjoint, they
do not disagree, but express disjunctive opinions.

With a population W of workers, classical crowdsourcing asks if one relation
is true or what is the relation between two entities. So, the result of the task cw
is a single relation. Disjunctive crowdsourcing asks which relations could hold,
hence, dcw ⊆ R. Similarly, complement crowdsourcing asks which relations do
not hold, hence ccw ⊆ R. We conjecture that:

∀w ∈ W, ccw(t) ⊇ dcw(t) ⊇ {cw(t)}
This would have the good feature to provide better opportunity for consensus
because:

∩w∈W ccw(t) ⊇ ∩w∈W dcw(t) ⊇ ∩w∈W {cw}(t)
It would be an interesting experiment to check if these modalities allow for

less conflicts and more accurate alignments. We could test the hypothesis that if
it is better to ask users to choose one relation between two entities or to discard
nonapplyable relations among all the possible ones.

References

1. Jérôme Euzenat. Algebras of ontology alignment relations. In Proc. 7th international
semantic web conference (ISWC), Karlsruhe (DE), pages 387–402, 2008.

2. Cristina Sarasua, Elena Simperl, and Natalya Noy. CrowdMAP: crowdsourcing
ontology alignment with microtasks. In Proc. 11th ISWC, volume 7649 of Lecture
notes in computer science, pages 525–541, 2012.

3. Anna Tordai, Jacco van Ossenbruggen, and Bob Wielinga. Let’s agree to disagree:
on the evaluation of vocabulary alignment. In Proc. 6th International Conference
on Knowledge Capture (K-CAP), pages 65–72, Banff (CA), 2011.

Mix’n’Match: Iteratively Combining Ontology
Matchers in an Anytime Fashion

Simon Steyskal1,2 and Axel Polleres3,1

1 Siemens AG, Siemensstrasse 90, 1210 Vienna, Austria
2 Vienna University of Technology, 1040 Vienna, Austria

3 Vienna University of Economics & Business, 1020 Vienna, Austria

1 The Mix’n’Match Framework

Mix’n’Match is a framework to combine different ontology matchers in an
iterative fashion for improved combined results: starting from an empty set of
alignments, we aim at iteratively supporting in each round, matchers with the
combined results of other matchers found in previous rounds, aggregating the
results of a heterogeneous set of ontology matchers, cf. Fig.1.

Fig. 1. Framework of Mix’n’Match

Alignment Combination: The combination of the alignments, especially
the choice of those which are used for the enrichment step is based on majority
votes. By only accepting alignments which were found by a majority of heteroge-
neous matching tools we aim to ensure a high precision of the found alignments
and therefore try to emulate reference alignments as e.g. provided by iterative
approval through a human domain expert. Although Mix’n’Match would support
the definition of an alignment confidence threshold as additional parameter (i.e,
only allowing alignments over a specific threshold to pass) we set this threshold
per default to 0 in our experiments: since the calculation of confidence values
is not standardized across matchers and some matchers only produce boolean
confidence values, e.g. [3]). Other result aggregation methods may be conceivable
here, like taking the individual performance of off-the-shelf matchers on specific
matching tasks into account [2, 4], but since this approach would lead to a more
inflexible alignment process this issue needs more detailed investigations in future
versions of Mix’n’Match.

Ontology Enrichment: After mixing of the alignments, enrichment of the
ontologies takes place; since most ontology matchers do not support refernce
alignments (as specified by the OAEI alignment format4), we implement enrich-
ment by simple URI replacement to emulate such reference alignments found in
each matching round: for every pair of matched entities in the set of aggregated
alignments, a merged entity URI is created and will replace every occurrence
of the matched entities in both ontologies. This approach is motivated by the
assumption that if two entities were stated as equal by the majority of ontology
matchers, their URI can be replaced by an unified URI, stating them as equal
in the sense of URIs as global identifiers. Note that, despite the fact that most
matchers seem to ignore URIs as unique identifiers of entities, our experiments
showed that URI replacement was effective in boosting the confidence value of
such asserted alignments in almost all considered matchers.

Intermediate Results and Anytime Behavior: We collect the interme-
diate results of every finished off-the-shelf matcher in every iteration. Furthermore
we keep track of every alignment found so far together with the number of in-
dividual matchers which have found this alignment in any previous matching
round. This offers the possibility to interrupt the matching process at any time,
retrieving only those alignments which have been found by the majority of the
ontology matchers at the time the interruption has taken place. In contrast to
other ontology matchers which offer this anytime behavior like MapPSO [1], we
are not only restricted to gather alignment results of the last finished matching
iteration, but also use the alignment results of already finished off-the-shelf
matchers in the current matching round.

Evaluation Results To test our approach, we based our evaluations on
OAEI evaluation tracks (Benchmark, Conference, Anatomy) and retrieved very
promising results, typically outperforming the single matchers combined within
the Mix’n’Match framework in terms of F-measure. For detailed evaluation results
we refer our readers to an extended report accompanying this poster, available
at http://www.steyskal.info/om2013/extendedversion.pdf.

References

1. J. Bock, J. Hettenhausen. Discrete particle swarm optimisation for ontology
alignment. Information Sciences, 192:152–173, 2012.

2. I.F. Cruz, F. Palandri Antonelli, C. Stroe. Efficient selection of mappings and
automatic quality-driven combination of matching methods. In Int’l Workshop on
Ontology Matching (OM), CEUR volume 551, pages 49–60. Citeseer, 2009.

3. M. Seddiqui Hanif, M. Aono. An efficient and scalable algorithm for segmented
alignment of ontologies of arbitrary size. J. Web Sem., 7(4):344–356, 2009.

4. A. Nikolov, M. d’Aquin, E. Motta. Unsupervised learning of link discovery configu-
ration. In ESWC2012, pages 119–133. Springer, 2012.

4 http://alignapi.gforge.inria.fr/format.html

An Ontology Mapping Method Based on Support Vector
Machine

 Jie Liu,Linlin Qin, Hanshi Wang

College of Information and Engineering, Capital Normal University, Beijing 100048,
P.R.China

Correspondence should be addressed to Jie Liu, liujxxxy@126.com

Abstract. Ontology mapping has been applied widely in the field of semantic
web. In this paper a new algorithm of ontology mapping were achieved. First,
the new algorithms of calculating four individual similarities (concept name,
property, instance and structure) between two concepts were mentioned. Se-
condly, the similarity vectors consisting of four weighted individual similarities
were built, and the weights are the linear function of harmony and reliability,
and the linear function can measure the importance of individual similarities.
Here, each of ontology concept pairs was represented by a similarity vector.
Lastly, Support Vector Machine (SVM) was used to accomplish mapping dis-
covery by training the similarity vectors. Experimental results showed that, in
our method, precision, recall and f-measure of ontology mapping discovery
reached 95%, 93.5% and 94.24%, respectively. Our method outperformed other
existing methods.

Introduction: In this paper, our study mainly is to discover the mapping[1] between
concepts belonging to the different ontologies respectively. The proposed algorithm
about ontology mapping in this paper mainly focuses on the following two points:
1. Using new methods of calculating individual similarities (concept name, property,
instance and structure).
2. Proposing the methods of similarity aggregation using SVM to classify the similari-
ty vectors which reflect the similarities of concept pairs. Here, the elements of a simi-
larity vector consist of the weighted individual similarities, and the weight of an indi-
vidual similarity is the linear function of harmony[2] and reliability[3].
 To evaluate the method proposed in this paper, we used the benchmark tests in
OAEI ontology matching campaign 2012 as data sets, and got precision, recall and f-
measure of the different ontology mapping algorithms by experiment.
The algorithms of ontology mapping: The process from calculating similarities to
discovering ontology mapping is shown as Fig.1. In Fig.1, O1, O2 are two ontologies.
Firstly, four individual similarities were computed; secondly, the similarity vectors
consisting of four weighted individual similarities were built, and the weights were
decided by both of harmony and reliability. Here, each of concept pairs between two
ontologies was represented by a similarity vector; lastly, SVM was used to accom-
plish mapping discovery by classifying the similarity vectors.

Instance similarity
based on harmony&

reliability

Property similarity
based on harmony&

reliability

Structure similarity
based on harmony&

reliability

Class name similarity
based on harmony &

reliability

Similarity vectors

Mapping discovery based on SVM

O1 O2

O1 O2

Instance similarityProperty similarity Structure similarityClass name similarity

Fig.1. Process of ontology mapping

Experiment Design: Ontology mapping methods related to similarity calculation
have been discussed in many studies, and precision, recall and f-measure are usually
used to evaluate mapping results. Experimental steps are as follows:
 (1) For all ontological concept pairs, the four individual similarities would be calcu-
lated; (2)These similarities would be aggregated and mappings between ontologies
would be extracted by using 11 methods such as Neural network , Sigmoid , Harmo-
ny , Reliability and so on;(3) For our approach, after four individual similarities and
their respective harmony and reliability were worked out, similarity vectors consisting
of our weighted individual similarities would be built, and the weights are the linear
function of harmony and reliability, and ontology mappings would be extracted by
SVM;(4)For all ontology pairs, precision, recall and f-measure of ontology mapping
discovery would be calculated in every methods.
Result: Precision, recall and f-measure in our approach reach 0.95,0.935 and 0.9424,
respectively, and are the highest, which can validate that the results of mapping dis-
covery are more accurate after harmony and reliability is joined into SVM, and also
can show that our approach outperforms than others dramatically.
Conclusions: This study is an effective approach to resolve the problem about ontol-
ogy mapping in the Semantic Web. Future work will focus on studying the mapping
algorithms between uncertain ontologies.

ACKNOWLEDGMENTS

This paper is supported by the National Nature Science Foundation (No.61371194,
61303105).

REFERENCES

1. P.Shvaiko, and J.Euzenat. Ontology Matching: State of the Art and Future Challenges.
Knowledge and Data Engineering, IEEE Transactions on, 2013, 25(1): 158-176.

2. Ming Mao, Yefei Peng, and Michael Spring. An Adaptive Ontology Mapping Approach
with Neural Network based Constraint Satisfaction , Journal of Web Semantics, Volume 8,
Issue 1 (2010), page 14-25

3. Mahboobeh Houshmand, Mahmoud Naghibzadeh, Saeed Araban. Reliability-based Simi-
larity Aggregation in Ontology Matching[C]. 2010 IEEE International Conference on In-
telligent Computing and Intelligent Systems, Xiamen, China: IEEE, 2010: 744-749.

PLATAL - A Tool for Web Hierarchies
Extraction and Alignment

Bernardo Severo1, Cassia Trojahn2, and Renata Vieira1

1 Pontif́ıcia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
2 Université Toulouse 2 & IRIT, Toulouse, France

Abstract. This paper presents PLATAL, a modular and extensible tool
for extraction of hierarchical structures from web pages which can be
automatically aligned and also manually edited via a graphical interface.
Evaluation of alignments can be carried out using standard measures.

1 Introduction

Web sites are rich sources of information for a range of applications. Tools for
automatically extracting structured content from these sources and for compar-
ing content across web sites are valuable resources. For helping in these tasks, we
propose PLATAL (Platform of Alignment), a modular and extensible tool that
provides an integrated environment for extraction of web hierarchies and align-
ment creation, edition and evaluation. The main motivation behind PLATAL
is to assist users in the complete alignment cycle of two web hierarchies. Dif-
ferently from other matching tools offering a visual environment, like OLA [1],
Prompt [3], Homer [5], Yam++ [2] and SOA-based tool [4], PLATAL offers novel
functionalities: the possibility of automatically extracting hierarchical structures
from the web together with a centralised visual tool for alignment manipulation.

2 PLATAL modules

PLATAL is a standalone tool composed of four modules: (1) hierarchy extrac-
tion module, which extracts fragments from HTML pages using XPath expres-
sions; (2) automatic alignment module, which implements a set of terminological
(prefix, suffix, edit-distance) and structural matching techniques (similarity of
parents and children entities) for generating equivalence correspondences; (3)
manual alignment module, which allows users to edit or create alignments; and
(4) evaluation module, which takes two alignments and computes precision, re-
call and F-measure measures. These modules operate independently of each other
and alternative implementations can be added instead. Figure 1 shows a screen-
shot of automatic alignment creation. After loading two hierarchies, each hierar-
chy will be displayed in the respective section. Then, users can select one or more
alignment processes and start them (‘Start Alignment Process’). If at least one
method founds one correspondence between two entities, the user can see it by

2 Bernardo Severo, Cassia Trojahn, and Renata Vieira

selecting the source or target entity in the hierarchies (field ‘Correspondences’).
Alignments can be exported in the Alignment format3 (‘Save’).

Fig. 1. Automatic Alignment Module screenshot.

3 Conclusions and future work

We have presented a visual tool for extraction, alignment and evaluation of
web hierarchies. To the best of our knowledge, there is no publicly available
environment integrating all these features together. As future work, we plan
to improve the visualisation of alignments, develop a web-based version, allow
parametrisation and customisation of alignment techniques through the user
interface, and add a multilingual ontology matching module.

References

1. J. Euzenat, D. Loup, M. Touzani, and P. Valtchev. Ontology Alignment with OLA.
In 3rd EON Workshop, pages 59–68, 2004.

2. D. H. Ngo and Z. Bellahsene. YAM++ : (not) Yet Another Matcher for Ontology
Matching Task. In BDA, France, 2012.

3. N. F. Noy and M. A. Musen. PROMPT: Algorithm and Tool for Automated On-
tology Merging and Alignment. In 17h AAAI, pages 450–455, 2000.

4. K. W. Onn, V. Sabol, M. Granitzer, W. Kienreich, and D. Lukose. A visual soa-
based ontology alignment tool. In OM, 2011.

5. O. Udrea, R. Miller, and L. Getoor. Homer: Ontology visualization and analysis.
In Demo session ISWC, 2007.

3 http://alignapi.gforge.inria.fr/format.html

IT486
Rectangle

Is my ontology matching system similar to yours? �

Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ian Horrocks

Department of Computer Science, University of Oxford, Oxford UK

Abstract. In this paper we extend the evaluation of the OAEI 2012 Large BioMed
track, which involves the matching of the semantically rich ontologies FMA, NCI
and SNOMED CT. Concretely, we report about the differences and similarities
among the mappings computed by the participant ontology matching systems.

1 Introduction

The quality of the mappings computed by an ontology matching system in the Ontology
Alignment Evaluation Initiative (OAEI) [2, 1] is typically measured in terms of preci-
sion and recall with respect to a reference set of mappings. Additionally, the OAEI also
evaluates the coherence of the computed mappings [1].

However, the differences and similarities among the mappings computed by differ-
ent systems have often been neglected in the OAEI.1 In this paper we provide a more
fine-grained comparison among the matching systems participating in the OAEI 2012
Large BioMed track;2 concretely (i) we have harmonised (i.e. voted) the computed map-
ping sets, and (ii) we provide a graphical representation of the similarity of these sets.

2 Mapping harmonization

We have considered the mappings voted (i.e. included in the output) by at least one
ontology matching system. Figure 1 shows the harmonization (i.e. voting) results for the
FMA-NCI and FMA-SNOMED matching problems. Mappings have received at most
11 and 8 votes (i.e. number of participating systems3), respectively. For example, in the
FMA-NCI matching problem, 3,719 mappings have been voted by at least 2 systems.

Figure 1 also shows the evolution of F-score, Precision and Recall for the different
harmonized mapping sets. As expected the maximum recall (respectively precision) is
reached with the minimum (respectively maximum) number of votes. For example, the
maximum recall in the FMA-SNOMED problem is 0.81, which shows the difficulty of
identifying correct mappings in this matching problem.

The harmonized mapping sets with the best trade-off between precision and recall
have been selected as the representative mapping sets of the participating ontology
matching systems. For the FMA-NCI matching problem we have selected the mappings
sets with (at least) 3, 4 and 5 votes, while in the FMA-SNOMED matching problem we
have selected the sets with (at least) 2 and 3 votes (see dark-grey bars in Figure 1).
� This research was financed by the Optique project with the grant agreement FP7-318338.
1 As far as we know, only in the 2007 Anatomy track some effort was done in this line: http:
//oaei.ontologymatching.org/2007/results/anatomy/

2 Results available at: http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/
3 Systems with several variants have only been considered once in the voting process.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 3 4 5 5 7 8 9 10 11

S
co

re

N
um

be
r

of
 m

ap
pi

ng
s

Number of votes

11,160

3,719

3,074 2,862 2,739 2,563 2,420 2,292 2,077
1,630

812

Size
Precision

Recall
F-measure

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 3 4 5 5 7 8

S
co

re

N
um

be
r

of
 m

ap
pi

ng
s

Number of votes

17,020

7,997

6,592

4,218

2,846
2,052

1,610
1,002

Size
Precision

Recall
F-measure

Fig. 1: Harmonisation in the FMA-NCI (left) and FMA-SNOMED (right) problems

0

0.10

0.20

0.30

0.40

0 0.10 0.20 0.30 0.40

Ja
cc

ar
d

di
st

an
ce

Jaccard distance

LogMap
LogMap-noe

LogMapLt

GOMMA

GOMMA-Bk

ServOMap

ServOMapL
YAM++

UMLS

UMLSL
UMLSA

Vote3

Vote4

Vote5

0

0.10

0.20

0.30

0.40

0.50

0.60

0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Ja
cc

ar
d

di
st

an
ce

Jaccard distance

LogMap
LogMap-noe

LogMapLt

GOMMA

GOMMA-Bk

ServOMap

ServOMapL
YAM++

UMLS

UMLSL
UMLSA

Vote2

Vote3

Fig. 2: Mapping similarity in the FMA-NCI (left) and FMA-SNOMED (right) problems

3 Mapping similarity among systems

We have compared the similarity among (i) the representative mapping sets from the
harmonisation (see Section 2), (ii) the UMLS-based reference mappings of the track,
and (iii) the mapping sets computed by the top-8 ontology matching systems in the
FMA-NCI and FMA-SNOMED matching problems [1]. To this end we have calculated
the jaccard distance (|MA∪MB |−|MA∩MB |)/|MA∪MB|, which ranges from 0
(the same) to 1 (different), between each pair (MA and MB) of the mapping sets from
(i)-(iii), and represented such distances in a two-dimensional scatterplot (see Figure 2).
System names which are distant to each other indicate that their computed mappings
differ to a large degree. For example, in Figure 2 (right), the mappings computed by
LogMapLt and GOMMA are very different with respect to the mappings computed by
other systems, as well as with respect to the harmonized and reference mapping sets.

References

1. Aguirre, J., et al.: Results of the Ontology Alignment Evaluation Initiative 2012. In: Ontology
Matching Workshop. Vol-946 of CEUR Workshop Proceedings (2012)

2. Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., Trojahn, C.: Ontology alignment
evaluation initiative: Six years of experience. J. Data Sem. 15, 158–192 (2011)

Ontological Quality Control in Large-scale, Applied
Ontology Matching
Catherine Legg, Samuel Sarjant

The University of Waikato, New Zealand

 Email: clegg@waikato.ac.nz, sarjant@waikato.ac.nz

Abstract. To date, large-scale applied ontology mapping has relied greatly on label
matching and other relatively simple syntactic features. In search of more holistic and
accurate alignment, we offer a suite of partially overlapping ontology mapping
heuristics which allows us to hypothesise matches and test them against the
knowledge in our source ontology (OpenCyc). We thereby automatically align our
source ontology with 55K concepts from Wikipedia with 93% accuracy.

1. Introduction
We have developed a method of specifically ontological quality control in
ontology mapping which combines a suite of partially overlapping mapping
heuristics with common-sense knowledge in OpenCyc. Our approach differs from
previous largely label-matching approaches (Suchanek et al, 2008, Ponzetto and
Navigli, 2009) in its use of knowledge, and also from previous knowledge-based
approaches (Shvaiko and Euzenat, 2005, Sabou et al, 2006), in treating potential
matches as hypotheses, and testing them more iteratively and open-endedly than
previously accomplished.

2. Iterative Mapping Process
Concept to Wikipedia article mapping is governed by a priority queue which
iteratively evaluates potential mappings ordered via continuously updated
weightings. The process begins with concept-to-article mappings (Table 1), then
verifies these using article-to-concept heuristics. The weight of each potential
mapping is equal to the product of weights produced by the two sets of heuristics.

 Example
TITLE MATCHING Batman-TheComicStrip Batman (comic strip):1.0}
SYNONYM MATCHING ComputerWorm Worm:1.0, Computer worm:0.39, ... (+5 more)}
CONTEXT-RELATED
SYNONYM MATCHING

ComputerWorm Computer worm:1.0, Worm:0.59,... (+4 more)}

TITLE MATCHING Dog Dog:1.0, HotDog:1.0}
LABEL MATCHING Dog Dog:1.0, HotDog:0.995, CanineAnimal:0.03, CanineTooth:0.03}

ency check information on
concept and the mapped article. Most Wikipedia first sentences are conventionally
structured as: X is/was/are/were a/an/the Y Y is links to articles typically

2

representing appropriate classes. The mapping weight is multiplied by the
proportion of assertions not rejected using O .

Example 1: Bill Laswell is an American [[bassist]], [[record
 Only three of the four

assertions in this sentence are kept: BillLaswell is a UnitedStatesPerson,
BassGuitarist, and Producer. BillLaswell cannot be a RecordCompany
because OpenCyc knows a person cannot be a company.

Example 2: The concept Basketball-Ball initially maps as follows
(Basketball:1.0, Basketball (ball):0.95, College basketball:0.02). The second
candidate is the correct one, as the first refers to the team sport. The algorithm
attempts to map its first choice Basketball back to Basketball-Ball, which
succeeds but also creates a new potential reverse mapping Basketball
Basketball. Consistency checking now tests Basketball-Ball is a
TeamSport , which fails, removing this potential mapping. The next highest
reverse-mapping is Basketball Basketball, which is found to be consistent, so
a mapping is recorded for that. The process now backtracks to hypothesising the
second-best option from the original list: Basketball (ball):0.95, which also
successfully reverse-maps and is consistent, creating a new (correct) mapping. It is
worth emphasising how similar the are by standard
semantic relatedness measures, and thus the subtlety our methods are capable of.

3. Results and Conclusions
The algorithm identified 54,987 mappings of OpenCyc concepts to Wikipedia
articles. Applying manual analysis to a random 300 mappings, 266 were judged

5%), 21
(the mapping was largely correct but one side generalised the other). Thus 93%

of our mappings were YAGO reports 95%
accuracy, what is being rated is not mapping joins between Wordnet and
Wikipedia, but the truth of assertions in infoboxes. Although our efforts so far lack
the scale of projects such as YAGO, we suggest they have a role to play in long-
term development towards maximum accuracy in this field. We offer our results at:
http://bit.ly/10MlLjl.

References
Euzenat, J. and Shvaiko, P. (2007). Ontology Matching. Springer-Verlag.
Ponzetto, S.P., and Navigli, R. (2009). Large-Scale Taxonomy Mapping for Restructuring

and Integrating Wikipedia, IJCAI 2009, Pasadena, California, pp. 2083-2088.

Knowledge for Ontology Mapping, OM-2006, Athens, GA, USA.
Shvaiko, P. and Euzenat, J. (2005). A Survey of Schema-based Matching Approaches.

Journal on Data Semantics 4.
Suchanek, F. M., Kasneci, G., and Weikum, G. (2008). Yago: A Large Ontology from

Wikipedia and WordNet. Elsevier Journal of Web Semantics 6(3), 203-217.

IT486
Rectangle

Variations on Aligning Linked Open Data Ontologies

Valerie Cross, Chen Gu, Xi Chen, Weiguo Xia, Peter Simon

 Computer Science and Software Engineering Department
Miami University, Oxford, OH 45056

crossv@muohio.edu

Traditional OA systems are not as suitable for aligning LOD ontology schemas; for

example, equivalence relations are limited among LOD concepts so that OA systems
for LOD ontology alignment also find subclass and superclass relations. Four recent
approaches for LOD ontology alignment are BLOOMS (BL) [1] and BLOOMS+ [2],
AgreementMaker (AM) [3], WikiMatch (WM) [4], and Holistic Concept Mapping
(HCM) [5]. Table 1 briefly compares these systems for aligning LOD ontologies.

Table 1. Recent OA systems for aligning LOD ontology schemas

OA

system
Mapping
type

Knowledge
Source

Data
Structure

Algorithms Experiment
description

BL/BL+

Equivalence,
subclass

Wikipedia
category
hierarchy

Concept
category
trees in a
forest

Tree overlap
using node
depth,
contextual
similarity on
superconcepts

LOD reference
alignments,
Proton mappings
to DBpedia,
Geonames,
Freebase.

 AM

Equivalence,
subclass,
superclass

WordNet,
other LOD
ontologies,
i.e.,DBpedia
or FOAF

Lexicon
for a
concept

Advanced
Similarity
Matcher,
inferencing on
import concept

LOD reference
alignments

 WM Equivalence Wikipedia
articles

sets of
articles

Jaccard index
on article sets

OAEI 2011.5
conference track,
multifarm dataset

 HCM Equivalence,
similar to,
disjoint

Wikipedia
category
hierarchy

Concept
category
trees in a
forest.

IR tf-idf on
comment, label
keyword, topic
sets ppjoin
with Jaccard

Concepts from
triples of Billion
Triple Challenge
dataset, expert
evaluation

Unlike the Ontology Alignment Evaluation Initiative (OAEI), no standard reference
alignment exists for LOD ontologies. Researchers [4] had experts develop a
benchmark, the LOD reference alignments between ontology schema pairs taken from
eight LOD ontologies: AKT Reference (A), BBC program(B), DBpedia (D),
FOAF(F), Geonames(G), Music(M), SIOC (S), and the Semantic Web Conference
(W) because of their substantial LOD coverage domain diversity, and publicly
available schemas. Experts produced both subclass and equivalence mappings
between the pairs listed in Table 2. BLOOMS and AM are compared in the last two
columns [3] since WM or HCM produce only equivalence mappings and few of these

exist in the LOD reference alignments. Both BLOOMS and AM use inferencing to
produce some subclass mappings, BLOOMS using post-processing with the Jena
reasoner and AM using its own inferencing techniques. To understand this influence,
we performed an analysis on the LOD reference alignment for each pair to see the
percentage of its mappings inferrable from its equivalence mappings, given in column
1. The * for M, B indicates an analysis was not possible since many BBC concepts
could not be found directly in its file or even when opening the file using Protégé.

 Table 2. LOD reference alignment pairs

Pair % inferable # mappings BLOOMS AM
 Prec | Recall Prec | Recall

F, D 87% 225 0.67 0.73 0.72 0.80
G, D 71% 41 0 0 0.26 0.68
M, D 20% 645 0.39 0.62 0.62 0.40
W, D 29% 519 0.70 0.40 0.58 0.35
M, B * 528 0.63 0.78 0.48 0.16
 S, F 27% 22 0.55 0.64 0.56 0.41
W, A 58% 366 0.42 0.59 0.48 0.43

BLOOMS has better recall except for F,D and G,D. F,D has 87% inferable mappings

contributes to finding more correct mappings. For the G,D pair BLOOMS does not
find the only equivalence relation SpatialThing = Place so that Jena cannot produce
any of the inferable mappings. AM finds this mapping, likely from the comment field
for SpatialThing s 68% (recall) of the reference
alignment mappings, very close to the 71% inferable mappings. Of the five remaining
pairs, AM has better precision for M,D with the smallest percentage of inferable
mappings. BLOOMS with Wikipedia finds more correct mappings since very few are
from
relations, but those that it does find are more likely correct with its 0.62 precision

References

1. Jain, P., Hitzler, P., Sheth, A. P., Verma, K., and Yeh, P. Z.: Ontology Alignment for Linked
Open Data. In: Proceedings of the International Semantic Web Conference (ISWC) (2010)

2. Jain, P., Yeh, P. Z, Verma, K., Vasquez, G., Damova, M., Hitzler, P., and Sheth, A. P.:
Contextual Ontology Alignment of LOD with an Upper Ontology:A Case Study with
Proton. In Proceedings of the Extended Semantic Web Conference (ESWC) (2011)

3.
 Open Data Ontologies. In: Workshop on Discovering Meaning On the Go in Large
 Heterogeneous Data (LHD), The 22nd International Joint Conference on Artificial
 Intelligence (IJCAI-11) (2011)
4. Hertling, S. and Paulheim, H.: WikiMatch Using Wikipedia for Ontology Matching, in:

Seventh International Workshop on Ontology Matching (OM 2012) (2012)
5. Grutze, T., Bohm, C.. Naumann, F.: Holistic and Scalable Ontology Alignment for Linked

Open Data. In: Workshop on Linked Data on the Web (LDOW) at WWW (2012)

LOD4STAT: a scenario and requirements

Pavel Shvaiko1, Michele Mostarda2, Marco Amadori2, and Claudio Giuliano2

1 TasLab, Informatica Trentina S.p.A., Trento, Italy
2 Fondazione Bruno Kessler - IRST, Trento, Italy

Abstract. In this short paper we present a scenario and requirements for on-
tology matching posed by a statistical eGovernment application, which aims at
publishing its data (also) as linked open data.

Introduction. Our application domain is eGovernment. By eGovernment we mean an
area of application for information technologies to modernize public administration by
optimizing work of various public institutions and by providing citizens and businesses
with better and new services. More specifically, we focus on statistical applications for
eGovernment. The driving idea is to capitalize on the statistical information in order
to increase knowledge of the Trentino region. Releasing statistical data (with disclo-
sure control) as linked open data aims at simplifying access to resources in digital for-
mats, at increasing transparency and efficiency of eGovernment services, etc. The main
challenge is the realization of a knowledge base, which is natively enabled to work
with RDBMS tables. Despite this approach has been tailored specifically to the statis-
tical database domain, there is substantial room for generalization. In this view, there
was a number of initiatives aiming at releasing governmental data as linked open data
to be taken into account: in GovWILD [1] links were established automatically with
specifically developed similarity measures, while in [2], the alignment was done semi-
automatically with Google Refine. The currently available matching techniques can be
well used for automating this process [3].
Scenario. Figure 1 shows the key component, called Statistical Knowledge Base (SKB),
of the LOD4STAT system-to-be. The SKB aims at enabling its users to query statistical
data, metadata and relations across them without requiring specific knowledge of the
underlying database. Users can issue queries, such as find all data related to population
age and employment for the municipality of Trento. Specifically, user query is analyzed
in order to extract concepts out of labels. Then, these are matched at run time against the
SKB. For the query example, the term population age is connected to Registry Office,
while employment is connected to Social Security. The system returns a set of tables,
metadata and entities from the Registry Office (with information about population and
age) and from the Social Security (with information about employment) containing data
for the city of Trento and will suggest possible joins between columns.

The SKB is an interconnected aggregation of ontologies (interpreted in a loose
sense), such as WordNet, DBpedia, ESMS1 what allows both multi-classification and
multiple views on data. These ontologies have to be matched among them to enable
navigation across them through the respective correspondences. The SKB is also able
to export query results in several formats, such as RDF Data Cube and JSON-Stat. The
SKB is represented by three (horizontal) layers. The upper layer is a collection of on-
tologies specific to the statistics domain, e.g., ESMS. The middle layer is composed

1
http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/metadata

Fig. 1: LOD4STAT: the statistical knowledge base component.

of relational tables associated with metadata. The lower layer is composed of a collec-
tion of general purpose ontologies, e.g., WordNet, DBpedia. Table columns are to be
matched to the entities of the involved ontologies. Notice that SKB allows for the def-
inition of explicit connections between columns of different tables that can be joined
together. Every time an alignment is updated the respective data is updated accordingly.
Requirements. There are several key requirements posed by this application, such as:
performance - answer queries within 3s., as suggested by the UI interaction practice;
availability - service up by 99% of time, no more than 15mins. downtime per day during
working hours. These requirements put only constraints on run time matching needed
between the user query and the SKB ontologies. Matching results can be approximate,
though their correctness is preferred over completeness. For what concerns design time
matching inside the SKB, it can be performed at design time semi-automatically with
sound and complete alignment when any of these knowledge sources evolve. Notice
that statistical disclosure control methods use weights associated to the table columns,
and it should be possible to inherit them through the respective alignments.
Conclusions and future work. In this short paper we have presented a scenario and
requirements for ontology matching within a statistical eGovernment application. We
note that such requirements in part have a transversal character, such as for run time
query matching and design time matching between the ontologies of the system. How-
ever, there are also peculiarities related to the use of alignments, such as support for
statistical disclosure control. Future work includes formalization, implementation and
evaluation of the system in order to be brought to production.

Acknowledgments. The work has been supported by the Autonomous Province of Trento, Italy.

References
1. C. Böhm, M. Freitag, A. Heise, C. Lehmann, A. Mascher, F. Naumann, V. Ercegovac,

M. Hernández, P. Haase, and M.l Schmidt. GovWILD: integrating open government data
for transparency. In Proceedings of WWW, pages 321–324, 2012.

2. F. Maali, R. Cyganiak, and V. Peristeras. A publishing pipeline for linked government data.
In Proceedings of ESWC, pages 778–792, 2012.

3. P. Shvaiko and J. Euzenat. Ontology matching: state of the art and future challenges. TKDE,
25(1):158–176, 2013.

Interlinking and Visualizing Linked Open Data
with Geospatial Reference Data

Abdelfettah Feliachi1, Nathalie Abadie1, Fayçal Hamdi2, and Ghislain Auguste
Atemezing3

1 IGN, COGIT, 73 Avenue de Paris, 94165 Saint-Mandé, France
2 CEDRIC, CNAM, F-75141 Paris Cedex 03, France

3 EURECOM, Multimedia Department, Campus SophiaTech, France

1 Context and purposes

An increasing number of thematic datasets are published as RDF graphs and
linked to other datasets by identifying equivalent resources in other relevant
datasets. Among the set of properties usually used as data linking criteria, ge-
olocation (addresses, locations, coordinates) remains one of the most commonly
used.

However, resources that actually refer to complex topographic features are
generally described by very simple geolocation properties, such as a position de-
fined by coordinates (long, lat). On the other hand, geographic reference datasets
provide more precise geometric information about geographic features. Inter-
linking thematic linked open datasets with geographic reference datasets would
enable us to take advantage of both information sources to link independent the-
matic datasets and create rich cartographic applications for data visualization.

This data linking task is generally performed by comparing properties values
of each resource of a given data set, with homologous properties of the resources
described in other datasets [3]. In the field of geographic databases, data match-
ing is also performed by comparing properties, and especially complex geometries
(curves, lines, polygons) that are used to represent the shape and the location
of geographic features. This task is usually based on distance measures chosen
according to the type of the geometric primitives that must be compared [1,
2, 4, 5]. We aim at combining both approaches to link both thematic and geo-
graphical reference data and exploit the generated links in a data visualization
application.

2 Approach and use case

In order to take advantage of existing data linking tools, we have converted
geographic shape data and stored them into a RDF triple store. This task has
been achieved by using the Datalift4 platform that also enables to perform the
linking process with external published datasets, through the use of Silk5 linking
tool. Our linking approach is mainly based on geolocation properties comparison.

4 http://datalift.org/
5 https://www.assembla.com/spaces/silk/wiki/Silk_Workbench

2 Interlinking and Visualizing Linked Open Data

Thus we have added to Silk more GIS distance measures for computing the
shortest distance between any geometric primitive and simple position locations
used in thematic datasets.

The result of this interlinking process is a list of owl:sameAs links between
entities of each datasets, at a given threshold. These links are used to extend
the geographic reference data set with information queried on the fly from the
external thematic datasets through the visualization interface. We have applied
this approach on a geographical reference dataset about buildings and data about
historical monuments extracted from French DBpedia6, on the area of Paris.

Fig. 1. DBpedia points locating historical monuments linked with polygons describing
buildings in a geographic reference dataset.

3 Conclusion

The use of links between thematic and reference data could be further investi-
gated to enable data visualization at different level of detail, and visual detection
errors during matching process of geodata.

References

1. Mustire, S. et Devogele, T. Matching networks with different levels of detail.
GeoInfor-matica, paratre en 2008

2. Olteanu, A.-M. Appariement de donnes spatiales par prise en compte de connais-
sances imprcises. Thse de doctorat. Universit de Marne-La-Valle, 2008

3. Scharffe, F., Euzenat, J.: Mthodes et outils pour lier le Web des donnes. RFIA 2010:
Re-connaissance des Formes et Intelligence Artificielle (2010)

4. Voltz, S. An Iterative Approach for Matching Multiple Representations of Street
Data. In : Proceedings of ISPRS Workshop, Multiple representation and interoper-
ability of spatial data, Hanovre (Allemagne), 22-24 fvrier 2006, p. 101-110

5. Walter, V. et Fritsch, D. Matching Spatial datasets: Statistical Approach. Interna-
tional Journal of Geographical Information Science, 1999, 13(5), p. 445-473

6 http://fr.dbpedia.org

IT486
Rectangle

Matching Geospatial Instances

Heshan Du1, Natasha Alechina1, Michael Jackson1, Glen Hart2

1 University of Nottingham
2 Ordnance Survey of Great Britain

The work presented in this paper extends our work on matching formal and
informal geospatial ontologies [1], aimed to realize the synergistic use of author-
itative and crowd-sourced geospatial information. A geospatial instance is an
object which has a certain and verifiable location (geometry, topographic foot-
print), as well as a meaningful label (for example, Victoria Shopping Centre in
Nottingham, UK). The source of examples in this paper are: The OpenStreetMap
(OSM) [2] and the Ordnance Survey of Great Britain (OSGB) [3].

Different geospatial instances may have the same purely lexical information
and the same classification in terms of an ontology, but different locations. For
example, there may be several restaurants called ‘Prezzo Ristorante’ in the same
city. Therefore, when matching geospatial instances, it is essential to use location
information. However, few of existing ontology matching or data interlinking
methods can match spatial instances effectively.

There is also a choice in representing objects such as shopping centres as a
collection of parts or as a single instance. For example, Victoria Centre is rep-
resented as a collection of shops and other businesses in OSGB and as a single
instance in OSM. In order to produce a meaningful correspondence between in-
stances in OSGB and in OSM, we propose to use ‘partOf’ relation (mereological
partOf in geometry and having similar labels). If for two instances a and b we
get ‘partOf’ relations in both directions, we generate a hypothesis that a and b
belong to ‘sameAs’.

Here we propose a new method for establishing ‘sameAs’ and ‘partOf’ re-
lations between geospatial instances from different ontologies. In crowd-sourced
data, there is an increased possibility of error in measurement, and tendency to
simplify shapes of buildings. For this reason, in our method we use buffers to
compare geometries of instances. The size of the buffer (intuitively, ‘the margin
of error’ σ) is a parameter which can be arrived at experimentally or within rea-
son set arbitrarily. Intuitively the optimal value of σ corresponds to the maximal
deviation between two representations of the same object in two different data
sets. In the case of OSGB and OSM data for Nottingham, this is experimentally
determined as 20m. The new method has four steps.

Step 1: Extracting geometry sets. An ABox contains facts (geometry, lexical
and semantic classification information) about geospatial instances. We extract
a set of geometries, Gi, from all the spatial instances in each ABox Ai, i = 1, 2.

Step 2: Matching geometry sets. For two sets of geometries, G1, G2, a level
of tolerance α and tolerance for the second best β, we generate the best two
candidate matches for each geometry in G1 if they exist in G2, and the best two
candidate matches for each geometry inG2 if they exist inG1. The candidates are

2

selected by comparing minimal buffers. The buffer of a geometry g, buffer(g, σ) =
{p : ∃p′ ∈ g. distance(p, p′) ≤ σ}, (σ > 0). For two geometries g and h, the
minimal buffer of h containing g is buffer(h, σ) such that g ⊆ buffer(h, σ) and
for all σ′ < σ, g �⊆ buffer(h, σ′). For any geometry g, the minimal buffer α
(α ≤ σ) of its best candidate o1 (g ⊆ buffer(o1, α)) is the smallest among those
of all the candidates. We generate a ’buffered part of’ (BPT) relation between
each geometry and its candidates, i.e. (g, o1) ∈ BPT (σ).

Step 3: Comparing labels. We use string comparison, including equality,
inclusion, abbreviation and edit distance to check whether the labels, such as
names or addresses, of two instances are similar. If there is no pair of labels
of spatial instances s1, s2 that are similar, then their lexical information is in-
compatible, (s1, s2) ∈ LF . Otherwise, their lexical information is compatible,
(s1, s2) ∈ LT .

For every pair of spatial instances s1, s2, if (g1, g2) ∈ BPT (α) (where gi is
the geometry of si, i = 1, 2) and (s1, s2) ∈ LT , then (s1, s2) ∈ partOf possibly
holds, and we will add it to the initial instance mapping M .

Step 4: Verifying initial instance mapping M using semantic classification
information. It is part of ontology (ABox and TBox) matching process, presented
in [1].

We implement the method described above as part of GeoMap [1]. From the
studied area (2km sq) of Nottingham city centre, 713 geospatial individuals of 47
types are added to OSGB Buildings and Places ontology from the OSGB Address
Layer 2 and the OSGB Topology Layer [3], 253 geospatial individuals of 39 types
are added into OSM ontology automatically from the building layer of OSM
data. The ground truth instance mapping is obtained from manually matching
all the instances in the two ontologies. It contains 286 ‘partOf’ relations, and
73 ‘sameAs’ relations can be inferred. The data used is available on http://

www.cs.nott.ac.uk/~hxd/GeoMap.html. We compare the performance of our
method with LogMap [4] and KnoFuss [5]. The precisions of mappings produced
by GeoMap, LogMap and KnoFuss are 1, 0.24 and 0.18 respectively, and the
recalls are 0.95, 0.38, 0.25 respectively. The precision and recall of GeoMap are
much higher, mainly because LogMap and KnoFuss cannot make effective use
of location information.

References

1. Du, H., Alechina, N., Jackson, M., Hart, G.: Matching Formal and Informal Geospa-
tial Ontologies. In: Geographic Information Science at the Heart of Europe. Lecture
Notes in Geoinformation and Cartography. Springer (2013) 155–171

2. OpenStreetMap: http://www.openstreetmap.org (2012)
3. Ordnance Survey: http://www.ordnancesurvey.co.uk/oswebsite (2012)
4. Jiménez-Ruiz, E., Grau, B.C.: LogMap: Logic-Based and Scalable Ontology Match-

ing. In: International Semantic Web Conference (1). (2011) 273–288
5. Nikolov, Andriy and Uren, Victoria and Motta, Enrico: KnoFuss: a Comprehen-

sive Architecture for Knowledge Fusion. In: Proceedings of the 4th International
Conference on Knowledge Capture. (2007) 185–186

IT486
Rectangle

