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Abstract—Several novel metrics have been proposed in recent
literature in order to study the relative importance of nodes in
complex networks. Among those, k-coreness has found a number
of applications in areas as diverse as sociology, proteinomics,
graph visualization, and distributed system analysis and design.
This paper proposes new distributed algorithms for the computation
of the k-coreness of a network, a process also known as k–core
decomposition. This technique (i) allows the decomposition, over a
set of connected machines, of very large graphs, when size does
not allow storing and processing them on a single host, and (ii)
enables the run-time computation of k-cores in “live” distributed
systems. Lower bounds on the algorithms complexity are given,
and an exhaustive experimental analysis on real-world datasets is
provided.

Index Terms—k-core decomposition, Graph analysis, Bulk Syn-
chronous Parallel

1 INTRODUCTION

I N the last few years, a number of metrics and methods
have been introduced for studying the relative “im-

portance” of nodes within complex network structures.
Examples include betweenness, eigenvector and closeness
centrality indexes [2], [3]. Such studies have been applied
in a variety of settings, including real networks like
the Internet topology, social networks like co-authorships
graphs, protein networks in bio-informatics, and so on.

Among these metrics,k-coreness is a well-established
method for identifying a special family of maximal in-
duced subgraphs of a graph calledk-cores, or k-shells[4].
Informally, a k-core is obtained by recursively removing
all nodes of degree smaller thank, until the degree of all
remaining vertices is larger than or equal tok. This is also
the intuition of the standard Batagelj–Zaveršnik algorithm
for k-coreness calculation [5]. The process of computing
the k-coreness is also calledk-core decomposition: nodes
are said to have corenessk (or, equivalently, to belong to
the k-shell) if they belong to thek-core but not to the
(k+ 1)-core. As an example ofk-core decomposition for
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a sample graph, consider Figure 1. Note that by definition
cores are nested, meaning that nodes belonging to the3-
core belong to the2-core and1-core, as well. Larger values
of “coreness”, though, clearly correspond to nodes with a
more central position in the network structure.

Fig. 1: k–core decomposition for a sample graph.

Motivation : k-core decomposition has found a number of
applications; for example, it has been used to characterize
social networks [4], to help in the visualization of complex
graphs [6], to determine the role of proteins in complex
proteinomic networks [7], to analyze the static structure
of large-scale software systems [8], to describe the archi-
tecture of randomly damaged uncorrelated networks [9].
and finally to identify good “spreaders” in epidemiological
studies [10].

Centralized algorithms for thek-core decomposition
already exist [5]. The distributed version of this problem
is motivated by two possible scenarios: the graph could be
so large to not fit into a single host, due to memory re-
strictions; or its description could be inherently distributed
over a collection of hosts, making it inconvenient to move
each portion to a central site. As examples of the former
scenario, consider the Facebook social graph, with 800
million users (nodes) and more than 100 billion friend
connections (edges) in January 2012; or the web crawls
of Google and Yahoo, which stopped to announce the
size of their indexes in 2005, when they both surpassed
the 10 billion pages (nodes) milestone. As an example



of the latter, consider “live” distributed systems, such as
P2P overlays, that self-inspect their topologies (peers are
nodes in the graph, and their network connections are
edges): given that cores with largerk are known to be
good spreaders [10], this information can be used at run-
time to optimize the diffusion of messages in epidemic
protocols [11].

Contribution : We consider two computational models:

• One-to-one, in which onecomputational unit is asso-
ciated withonenode in the graph and communication
occurs only through direct messages between nodes
connected through an edge. This is the model under-
lying Pregel [12], a distributed framework proposed
by Google for processing large-scale graphs; but it
can also be applied to the live distributed systems
described above.

• One-to-many, in which one host storesmanynodes
together with their local and remote edges, while
communication occurs through messages between
hosts. This model is not supported by any existing
distributed framework, but it well fits a cloud and/or
grid computing scenario where the graph is already
distributed over a collection of storage units, and the
computation can be efficiently performed as close as
possible to them.

The main contribution of this paper is a novel algorithm
for distributedk-core distributed decomposition that can
be applied to both models. Section 4 first proposes a
version that can be used in the one-to-one scenario, and
then shows how to migrate it to the one-to-many scenario,
by efficiently placing a collection of nodes under the
responsibility of a single host. We prove that the resulting
algorithm completes thek-core decomposition inO(N)
rounds, withN being the number of nodes; more precisely,
Section 5 shows an upper bound equal toN−K+1, with
K being the number of nodes with minimal degree, and
describes a class of graphs that approach the bound by
requiring N − K rounds. While such upper bounds are
rather high, it turns out that real world graphs —such as
the Slashdot comment network, the citation graph of Arxiv
or the Gnutella overlay network— require a surprisingly
low number of rounds, as demonstrated in the experiments
described in Section 6.

2 RELATED WORK

In this section we revise the relevant state-of-art in the
field. We consider two research areas, models for dis-
tributed and parallel graph computation and centralized
algorithms for computing thek-core decomposition.

2.1 Distributed Graph Computation Models

A number of related works for the distributed and/or par-
allel processing of graph structures has been presented in

the literature. This field attracted considerable attention in
the last few years, when the need of effectively performing
computations over large-scale graphs became very relevant
for a number of Web-related applications. An overview of
the problems related to the processing of massively large
graphs can be found in [13].

One popular framework for massively parallelizing
computational tasks is MapReduce [14], introduced by
Google in 2004 for the parallel processing of large data-
sets. MapReduce is meant to allow developers to quickly
and easily write applications that can process vast amounts
of data on large clusters built using commodity hardware.
MapReduce builds around a recursive structure, with the
data-sets being split into independent chunks that can be
processed in parallel. While Map-Reduce can be used for
processing graphs, its structure is not optimized for such
tasks. This is the reason that led Google researchers to
develop another framework, called Pregel [12], optimized
for mining graphs data.

Pregel is largely inspired by the Bulk Synchronous
Parallel model (BSP) [15], [16], [17]. The computation
in Pregel consists of a sequence of iterations, called
supersteps, during which the framework runs a user-
defined function on each vertex. In this function, a node
receives messages from neighbor nodes sent during the
previous superstep, modifies its local state and sends
messages to its neighbor nodes, to be received in the next
superstep. Barrier synchronization is used, so that each
superstep is separated from the next one. Individual nodes
may leave the computation when they have reached the
convergence to their final state. Although they can run in
an asynchronous environment, the algorithms described in
this paper can be directly translated in the Pregel model.

In [18], the authors propose DisNet, a master-worker
framework for parallel computation over large graphs. In
the paper, the authors present the computation of between-
ness centrality as a use case. Similarly to Pregel, DisNet
is built around a vertex-centric approach to parallelize the
computational process. The main difference with Pregel
lies in the way communication with workers take place.
The solution proposed by DisNet is able to achieve higher
performance at the cost of lower flexibility.

In [19] a programming model (called ’Signal/Collect’)
for synchronous and asynchronous graph algorithms is
presented. The work is motivated by some issues arising
in the Semantic Web domain, relative to the processing
of large graphs of RDF triplets. Signal/Collect is also
a vertex-centric parallel model. The synchronous case is
similar to computations in Pregel. A use case based on the
computation of PageRank is considered.

A distributed framework for large graphs processing
is presented in [20]. Distributed computations are orga-
nized into a hierarchy and coordinated by appropriate
synchronizers. This framework is vertex-centric as well;
yet, coordination is achieved by means of asynchronous
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messages.
In [21] deterministic parallel algorithms for solving a

number of graph computation problems (list ranking, Euler
tour, connected components, spanning forests, etc.) over
BSP and coarse grained multicomputer are presented.

In [22] the authors evaluate the performance of three
platform models (relational, data-parallel and special-
purpose in-memory) for computing a number of metrics
for very large-scale graphs (including, PageRank, Strongly
Connected Components and Approximate Shortest Paths).
Their results show that, for metrics like PageRank, data-
parallel models present very good performance levels.

2.2 k-Core Decomposition

The de facto standard algorithm for computingk-core
decomposition is the one originally proposed by Batagelj
and Zaveřsnik (BZ) [5]. Their algorithm is based on the
recursive deletion of vertexes (and edges incident to them)
of degree less thank. The algorithm makes use of bin-
sort, and can run inO (max(m,n)), which equalsO(m)
for connected networks.

BZ algorithm requires random access to the whole
graph, which should therefore be kept in the main memory
for the sake of performance. In [23] the authors address the
case in which the graph cannot – due to size constraints
– be kept in the main memory, but has to be accessed
through a (slow) external memory. They propose a mod-
ification of BZ algorithm that requiresO(kmax) scans of
the graph, wherekmax is the largest coreness index of the
graph.

The BZ algorithm does not lend itself to a distributed
implementation. When dealing with extremely large-scale
graphs, which can neither be held in the main memory nor
stored on a single external memory, novel approaches are
necessary.

3 NOTATION AND SYSTEM MODEL

Let G be an undirected graphG = (V,E) with N = |V |
nodes andM = |E| edges. We denotedG(u) the degree
of u in G, whereasG(C) = (C,E|C) is the subgraph of
G induced by subset of nodesC, whereE|C = {(u, v) ∈
E : u, v ∈ C}. The concept ofk–core decomposition[5]
is condensed in the following two definitions:

Definition 1. A subgraphG(C) induced by the setC ⊆ V
is a k-core if and only if ∀u ∈ C : dG(C)(u) ≥ k, and
G(C) is maximal, i.e., forC ⊃ C, there existsv ∈ C such
that dG(C)(v) < k.

Maximality of k-cores guarantees uniqueness, i.e., there
exists at most onek-core inG for everyk = 1, 2, . . ..

Definition 2. A node inG is said to havecorenessk if and
only if it belongs to thek-core but not the(k + 1)-core.

Let kG(u) denote the coreness ofu in G. In what
follows,G will be dropped by the notation when it is clear
from the context which subgraph ofG we are referring to.

The distributed system is composed by a collection of
hostsH, whose overall goal is to compute thek-core
decomposition ofG. Each nodeu is associated to exactly
one hosth(u) ∈ H, that is responsible for computing
the coreness ofu. Each hostx is thus responsible for a
collection of nodesV (x), defined as follows:

V (x) = {u : h(u) = x}.

Each hostx has access to two functions,neighborV ()
andneighborH(), that return a set ofneighbor nodesand
neighbor hosts, respectively. Hostx may apply these func-
tions to either itself or to the nodes under its responsibility;
it cannot obtain information about neighbors of other hosts
or nodes under the responsibility of other nodes. Formally,
for eachu ∈ V and eachx ∈ H, the functions are defined
as follows:

neighborV (u) = {v : (u, v) ∈ E}
neighborV (x) = {v : (u, v) ∈ E ∧ u ∈ V (x)}
neighborH(x) = {y : (u, v) ∈ E ∧ u ∈ V (x)∧ v ∈ V (y)}

A special case occurs when the graph to be analyzed
coincides with the distributed system, i.e.H = V . When
this happens, the labelu will be used to denote both the
node and the host, and in general we will use the terms
node and host interchangeably. Also, note that in this case
neighborV (u) = neighborH(u).

Hosts communicate through reliable channels. For the
duration of the computation, we assume that hosts do not
crash.

4 ALGORITHM

Our distributed algorithm is based on the property oflo-
cality of thek-core decomposition: due to the maximality
of cores, the coreness of nodeu is the largest valuek such
that u has at leastk neighbors that belong to ak-core or
a larger core. The locality property writes:

Theorem 1 (Locality). ∀u ∈ V : k(u) = k if and only if

(i) there exist a subsetVk ⊆ neighborV (u) such that
|Vk| = k and ∀v ∈ Vk : k(v) ≥ k and

(ii) there is no subsetVk+1 ⊆ neighborV (u) such that
|Vk+1| = k + 1 and ∀v ∈ Vk+1: k(v) ≥ k + 1.

Proof.
⇒) Sincek(u) = k, Wk ⊆ V exists such thatu ∈ Wk

andG(Wk) is ak-core, and there is no setWk+1 ⊆ V
such thatu ∈Wk+1 andG(Wk+1) is a (k+1)-core.
Part (i) follows sincedG(Wk)(u) ≥ k, so that at least
k neighbors ofu belong tok-coreG(Wk).
Part (ii) follows by contradiction: assume that
v1, . . . , vk+1 are k + 1 neighbors ofu with core-
nessk + 1 or more. Fori = 1, . . . , k + 1, denote
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Wi ⊆ V such thatvi ∈Wi andG(Wi) is a (k + 1)-
core. Consider setU = {u} ∪

⋃k+1
i=1 Wi. Indeed,

if v ∈ U , dG(U)(v) ≥ k + 1: if v = u, indeed
d(u) ≥ k+1 by construction, whereas ifu 6= v ∈Wi,
dG(U)(v) ≥ dG(Wi)(v) ≥ k+1. Hence, a(k+1)-core
exists (G(U) may well not be maximal) and it is the
(k + 1)-core foru. Contradiction.

⇐) For each nodevi ∈ Vk, 1 ≤ i ≤ k, k(vi) ≥ k
there existsWi ⊆ V such thatG(Wi) is a k-core
and vi ∈ Wi. Consider setU = {u} ∪

⋃k

i=1 Wi.
With the same argument used above we see that
for eachv ∈ U , dG(U)(v) ≥ k: if v = u, indeed
d(u) ≥ k by construction, whereas ifu 6= v ∈ Wi,
dG(U)(v) ≥ dG(Wi)(v) ≥ k. Again, this proves that
k(u) ≥ k.
Suppose now thatk(u) = k′ ≥ k + 1, by contradic-
tion. This means that there is subsetW ⊆ V such that
G(W ) is a k′-core containingu, i.e. u has at least
k′ ≥ k+1 neighbors indG(W )(u), each of them thus
with corenessk′ ≥ k + 1; but this contradicts our
hypothesis (ii). We can conclude thatk(u) = k.

The locality property tells us that the information about
the coreness of the neighbors of a node is sufficient to
compute its own coreness. Based on this idea, our algo-
rithm works as follows: each node produces anestimate
of its own coreness and communicates it to its neighbors;
at the same time, it receives estimates from its neighbors
and use them to recompute its own estimate; in the case
of a change, the new value is sent to the neighbors and
the process goes on until convergence.

This outline must be formalized in a real algorithm; we
do it twice, for both the one-to-one and the one-to-many
scenarios. We conclude the section with a few ideas about
termination detection, that are valid for both versions.

4.1 One host, one node

Each nodeu maintains the following variables:

• core is an integer that represents the local estimate
of the coreness ofu; it is initialized with the local
degree.

• est[ ] is an integer array containing one element for
each neighbor;est[v] represents the most up-to-date
estimate of the coreness ofv known by u. In the
absence of more precise information, all its entries
are initialized to+∞.

• changedis a Boolean flag set to true ifcorehas been
recently modified; initially set to false.

The protocol is described in Algorithm 1. Each node
u starts by broadcasting a message〈u,d(u)〉 containing
its identifier and degree to all its neighbors. Wheneveru
receives a message〈v, k〉 such thatk < est[v], the entry
est[v] is updated with the new value. A new temporary
estimatet is computed by functioncomputeIndex() in
Algorithm 2. If t is smaller than the previously known

value ofcore, core is modified and thechangedflag is set
to true. FunctioncomputeIndex() returns the largest value
i such that there are at leasti entries equal or larger thani
in est, computed as follows: the first three loops compute
how many nodes have estimatei or more,1 ≤ i ≤ k, and
store this value in arraycount. The while loop searches
the largest valuei such thatcount[i] ≥ i, starting fromk
and going down to1.

The protocol execution is divided in periodic rounds:
everyδ time units, variablechangedis checked; if the local
estimate has been modified, the new value is sent to all the
neighbors andchangedis set back to false. This periodic
behavior is used to avoid flooding the system with a flow
of estimate messages that are immediately superseded by
the following ones.

It is worth remarking that during the execution, variable
core at nodeu (i) is always larger or equal than the real
coreness value ofu, and (ii) cannot increase upon the
receipt of an update message. Informally, these two ob-
servations are the basis of the correctness proof contained
in Section 5.

Algorithm 1 : Distributed algorithm to compute thek-
core decomposition; routine executed by nodeu.

on initialization do
changed← false;
core← d(u);
foreach v ∈ neighborV (u) do est[v]←∞;
send 〈u, core〉 to neighborV (u);

on receive〈v, k〉 do
if k < est[v] then

est[v]← k;
t← computeIndex(est, u, core);
if t < core then

core← t;
changed← true;

repeat everyδ time units (round duration)
if changedthen

send 〈u, core〉 to neighborV (u);
changed← false;

Algorithm 2 : int computeIndex( int [ ] est, int u, k)

for i = 1 to k do count[i]← 0;
foreach v ∈ neighborV (u) do

j ← min(k,est[v]);
count[j] = count[j] + 1;

for i = k downto 2 do
count[i− 1]← count[i− 1] + count[i];

i← k;
while i > 1 and count[i] < i do

i← i− 1;
return i;

4



Fig. 2: A simple example describes the run of the al-
gorithm: core[u] value at nodeu is reported in squared
brackets, a nodev marked blue is active, i.e.,changed[v]
is true, whereas arrows along edges denote whereest[v]
triggerscore[u] to change at the receiving nodeu.

The pseudo-code algorithm 1 can be easily adopted
to existing frameworks like Map-Reduce or Pregel. In
Pregel, for example, all the new estimates received at
the beginning of a superstep are stored inest, and a
single invocation tocomputeIndex is performed. If the
local k variable is decreased, its value is sent to all its
neighbors; otherwise, the node leaves the computation, to
be awakened again when new estimates are received.

4.1.1 Example
We describe here a run of the algorithm on the sample
graph reported in Fig. 2. At the first round, all nodes
v have core = d(v); nodes2, 3, 4 and 5 send the same
value core = 3 to their neighbors: these messages do
not cause any change in the estimates of the coreness
of receiving nodes. However, in the same round, nodes
1 and 6 notify their core = 1 value to nodes2 and 5,
respectively: as a consequence, node2 and5 update their
estimates tocore= 2. Thus, in the second round another
message exchange occurs, since nodes2 and5 notify their
neighbors that their local estimate changed, i.e., they send
core = 2 to nodes1, 3, 4 and 3, 4, 6, respectively. This
causes an updatecore= 2 at nodes3 and4, which have
to send out another updatecore= 2 to nodes2 and4 and
nodes3 and5, respectively, in the third round. However,
no local estimate changes from now on, which in turns
means that the algorithm converged. Finally,core= 2 for
v = 2, 3, 4, 5 andcore= 1 for v = 1, 6.

4.1.2 Optimization
Depending on the communication medium available, some
optimizations are possible. For example, if a broadcast
medium is used (like in a wireless network) and the neigh-
bors are all in the broadcast range, thesend to primitive

can be actually implemented through a broadcast. If the
send to primitive is implemented through point-to-point
send operations, a simple optimization is the following:
message updates〈u, core〉 are sent to a nodev if and only
if core< est[v]; in other words, it is sent only if a node
u knows that the new local estimatecore can potentially
lower the coreness estimation at nodeu; otherwise, it is
skipped. In our experiments, described in Section 6, this
optimization has shown to be able to reduce the number
of exchanged messages by approximately50%.

4.2 One host, multiple nodes

The algorithm described in the previous section can be
easily generalized to the case where a hostx is responsible
for a collection of nodesV (x): x runs the algorithm on
behalf of its nodes, storing the estimates for all of them
and sending messages to the hosts that are responsible for
their neighbors. Described in this way, the new version of
the algorithm looks trivial; an interesting optimization is
possible, though. Whenever a host receives a message for
a nodeu ∈ V (x), it “internally emulates” the protocol:
the estimates received from outside can generate new
estimates for some of the nodes inV (x); in turn, these can
generate other estimates, again inV (x); and so on, until no
new internal estimate is generated and the nodes inV (x)
become quiescent. At that point, all the new estimates
that have been produced by this process are sent to the
neighboring hosts, where they can ignite these cascading
changes all over again.

Each nodex maintains the following variables:

• est[ ] is an integer array containing one element for
each node inV (x) ∪ neighborV (x); est[v] represents
the most up-to-date estimate of the coreness ofv
known by x. Given that elements ofneighborV (x)
could belong toV (x) (i.e. some of the neighbors
nodes of nodes inV (x) could be under the responsi-
bility of x), we store all their estimates inest[ ] instead
of having a separate arraycore[ ] for just the nodes
in V (x).

• changed[ ] is a Boolean array containing one element
for each node inV (x); changed[v] is true if and
only if the estimate ofv has changed since the last
broadcast.

The protocol is described in Algorithm 3. At the begin-
ning, all nodesv ∈ V (X) are initialized toest[v] = d(v);
in the absence of more precise information, all other
entries are initialized to+∞. FunctionimproveEstimate()
is run to compute the best estimatesx can obtain with the
local information; then, all the current estimates for the
nodes inV (x) are sent to all nodes.

Whenever a message is received, the arrayest is up-
dated based on the content of the message; function
improveEstimate() is called to take into account the new
information thatx may have received.
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Algorithm 3 : Distributed algorithm to compute thek-
core decomposition, executed by hostx.

on initialization do
foreach v ∈ neighborV (x) do est[v]← +∞;
foreach u ∈ V (x) do est[u]← d(u);
improveEstimate(est);
S ← {(u,est[u]) : u ∈ V (x)};
send 〈S〉 to neighborH(x);

on receive〈S〉 do
foreach (v, k) ∈ S do

if k < est[v] then est[v]← k;
improveEstimate(est);

repeat everyδ time units (round duration)
S ← ∅;
foreach u ∈ V (x) do

if changed[u] then
S ← S ∪ {(u,est[u])};
changed[u]← false;

if S 6= ∅ then
send 〈S〉 to neighborH(x);

Periodically, nodex computes the setS of all pairs
(v,est[v]) such that (i)x is responsible forv and (ii) est[v]
has changed since the last broadcast. IfS is not empty,
it is sent to all nodes in the system. Alternatively, barrier
synchronization could be adopted, starting a new round
whenever all the messages sent during the previous round
from all hosts have been received.

FunctionimproveEstimate() (Algorithm 4) performs the
local emulation of our algorithm. In the body of the
while loop, x tries and improve the estimates by calling
computeIndex() on each of the nodes it is responsible for.
If any of the estimates is changed, variableagain is set
to true and the loop is executed another time, because a
variation in the estimate of some node may lead to changes
in the estimate of other nodes.

4.2.1 Communication policy

There are two policies for disseminating the estimate
updates. The above version of the algorithm assumes that
a broadcast medium is available. This means that a single
message containing all the updates received since the last
round could be created and sent to all.

Alternatively, we could adopt a communication system
based on point-to-point send operations. In this case, it
does not make sense to send all updates to all nodes,
because each update is interesting only for a subset of
nodes. So, for each hosty ∈ H, we create a message
containing only those updates that could be interesting
for y. The modification to be applied to Algorithm 3 are
contained in Algorithm 5.

4.2.2 Node-hosts assignment policy
The graph to be analyzed could be “naturally” split among
different hosts, or nodes could be assigned to hosts based
on a well-defined policy. It is difficult to identify efficient
heuristics to perform the assignment in the general case.
In this paper, we adopt a very simple policy: assuming that
nodes identifiers are integers in the range[0 . . . n− 1] and
hosts identifiers are integers in the range[0 . . . |H| − 1],
each nodeu is assigned to host(u mod |H|).

Algorithm 4 : improveEstimate(int [ ] est)
again← true;
while againdo

again← false;
foreach u ∈ V (x) do

k ← computeIndex(est, u,est[u]);
if k < est[u] then

est[u]← k;
changed[u]← true;
again← true;

Algorithm 5 : Code to be substituted in Algorithm 3

repeat everyδ time units (round duration)
foreach y ∈ neighborH(x) do

S ← { (u,est[u]) : u ∈ V (x) ∧
(u, v) ∈ E ∧ v ∈ V (y) };

if S 6= ∅ then
send 〈S〉 to y;

foreach u ∈ V (x) do
changed[u]← false;

4.3 Termination
To complete both algorithms, we need to discuss a mech-
anism to detect when convergence to the correct coreness
values has been reached. There are plentiful of alternatives:

• Centralized approach: each host may inform a cen-
tralized server whenever no new estimate is generated
during a round; when all hosts are in this state, mes-
sages stop flowing and the protocol can be terminated.
This is particularly suited for the “one node, multiple
hosts” scenario, where it corresponds to a master-
slaves approach.

• Decentralized approach: epidemic protocols for ag-
gregation [24] enable the decentralized computation
of global properties inO(log |H|) rounds. These
protocols could be used to compute the last round in
which any of the hosts has generated a new estimate
(namely, the execution time): when this value has
not been updated for a while, hosts may detect
the termination of the protocol and start using the
computed coreness.

• Barrier synchronization: if barrier synchronization
is adopted in the one-to-many version, nodes may
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decide to stop when none of them has produced any
new estimate update during the previous round.

• Fixed number of rounds: as shown in Section 6, most
of real-world graphs can be completed in a very small
number of rounds (few tens); furthermore, after very
few rounds the estimation error is extremely low.
Results show that if one tolerates a small error, i.e.,
on the order of a few units, an approximatek-core
decomposition can be generated running the protocol
for a fixed number of rounds, i.e.,15–20 rounds.

5 CORRECTNESS PROOFS

We now prove that our algorithms are correct and eventu-
ally terminate. While we focus on the one-to-one scenario,
the results can be easily extended to the one-to-many case.

5.1 Safety and liveness

Theorem 2 (Safety). During the execution, variablecore
at each nodeu is always larger or equal than k(u).

Proof. By contradiction, assume there exists nodeu1 such
that core(u1) < k(u1). By Theorem 1, there is a set
V1 ⊆ V such that|V1| = k(u1) and for eachv ∈ V1:
k(v) ≥ k(u1). In order to setcore(u1) smaller thank(u1),
u1 must have received a message containing an estimate
smaller thank(u1) from at least one of the nodes inV1.
Notice this cannot happen at timet = 0, since initialization
forces dG(v) = core(v) ≥ k(v), ∀v ∈ V . Thus, let
us consider any subsequent round at timet = 1, 2, . . .
Formally,u1 must have received a message〈u2, core(u2)〉
from u2 at time t2, such thatu2 ∈ V1 and core(u2) <
k(u1). Given thatk(u1) ≤ k(u2) (becauseu2 ∈ V1), we
conclude thatcore(u2) < k(u2): in other words, we found
another node whose estimate is smaller than its coreness.
By applying Theorem 1 again, we derive thatu2 received
a message〈u2, core(u3)〉 from u3 at time t3 < t2, such
that core(u3) < k(u2) ≤ k(u3). This reasoning leads
to an infinite sequence of nodesu1, u2, u3, . . . such that
core(ui) < k(ui) andui received a message fromui+1 at
time ti, with ti > ti+1. Given the finite number of nodes,
this sequence contains a cycleui, ui+1, . . . , uj = ui; but
this meansti > ti+1 > . . . > tj = ti, a contradiction.

Theorem 3 (Liveness). There is a time after which the
variable coreat each nodeu is always equal to k(u).

Proof. By Theorem 2 variablecore(u) cannot be smaller
thank(u); by construction, variablecorecannot grow. So,
if we prove that the estimate will eventually become equal
to the actual coreness, we have proven the theorem. The
proof is by induction on the corenessk(u) of nodeu ∈ V .

• k(u) = 0: in this case,u is isolated. Its degree, used
to initialize core(u), is equal to its coreness and the
protocol terminates at the very beginning for nodeu.

• k(u) = 1: assume, by contradiction, thatk(u) = 1 but
core(v) is always at least2. Let D be the set of all

nodesv such thatcore(v) is always at least2; clearly,
u ∈ D.E By Algorithm 1 and 2, each nodev ∈ D
must have two neighbors belonging toD. Therefore,
for all v ∈ D, dG(D)(v) ≥ 2 andD is contained in
a 2-core. Given thatu ∈ D, u belongs to a 2-core, a
contradiction.

• Induction step: by contradiction, suppose there is a
nodeu1 such thatk(u1) = k > 1 and core(u1) > k
forever. By Theorem 1, there aref ≥ k neighbors
of u with coreness greater than or equal tok, and
d(u) − f neighbors ofu whose coreness is smaller
thank.
If f = k, by the inductive assumption,u1 will
eventually received(u1) − k estimates smaller than
k, while the otherk estimates will always be larger
or equal tok by Theorem 2. So,u1 eventually sets
core(u1) equal tok, a contradiction.
If f ≥ k + 1, let C be the set of nodesv such
that k(v) = k but core(v) ≥ k + 1 forever. Because
f > k, we know that everyv ∈ C has at leastf + 1
neighbors, such that for each of these neighborsu,
eitherk(u) ≥ k+1 or k(u) = k but core(u) ≥ k+1
forever. Also, letD be the set of all nodesv such that
core(v) is at leastk+1 forever and note thatc ⊆ D.
By Algorithm 1 and 2, for anyv ∈ D, v must have
at leastk + 1 neighbors belonging toD. Therefore,
for all v ∈ D, dG(D)(v) ≥ k+ 1 andD is contained
to a k + 1-core. Given thatC ⊆ D, this means that
nodes inC belong to ak+1-core, which contradicts
the definition ofC.

5.2 Time complexity

We proved that our algorithms eventually converge to the
correct coreness; we now discuss upper bounds on the
execution time, defined as the total number of rounds
during which at least one node broadcasts its new estimate
(when no new estimates are produced, the algorithm stops
and the correct values have been obtained).

For this purpose, we assume that rounds are syn-
chronous; during one round, each node receives all mes-
sages addressed to it in the previous round (if any), com-
putes a new coreness estimate and broadcasts a message to
all its neighbors if the estimate has changed with respect
to the previous round. At round1, each node broadcasts its
current estimate (equal to its degree) to all its neighbors.
To simplify the analysis, no further optimizations are
applied. In the final round, messages are sent but they do
not cause any variation in the estimates, so the protocol
terminates.

The first observation is that after the first round, in any
subsequent round before the final one at least one node
must change its own estimate, reducing it by at least1.
This brings to the following theorem:
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Theorem 4. Given a graphG = (V,E), the execution
time is bounded by1 +

∑

u∈V

[d(u)− k(u)].

Proof. The quantity[d(u)− k(u)] represents the “initial
error” at nodeu, i.e. the difference between the initial
estimate (the degree) and the actual coreness ofu. In the
worst case, at most one message is broadcast per round,
and each broadcast reduces the error by one unit, apart
from the last one which has no effect. Thus the execution
time is bounded by the sum of all initial errors plus one.

While the previous bound is based on the knowledge of
the actual coreness index of nodes, we can define a bound
on the execution time that depends only on the graph size:

Theorem 5. The execution time is not larger thanN .

Proof.
Given a run of the algorithm, denote

A(r) = {u ∈ V | core(u) = k(u) at roundr }.

We make the following observations:
i) A(1) 6= ∅: each nodeu with minimum degreeδ is

included inA(1). In fact, u is such thatk(u) = δ,
otherwise there would be a nodev ∈ neighborV (u)
with a degree less thanδ, which is impossible. Given
that core(u) = δ at round 1 by initialization, u
belongs toA(1).

ii) If u ∈ A(r), thenu does not send any message for
all remaining roundsr + 2, r + 3, . . ..

iii) A(r) ⊆ A(r + 1) ∀r.
It is easy to see that the statement is true forN ≤ 2, so
that we will consider onlyN ≥ 3 in the rest of the proof.

We denote byT the smallest round index at which
A(T ) = V . By definition, the execution time equalsT+1.1

Denote m(r) = min{k(u) : u 6∈ A(r)}, i.e., the
minimal coreness of a node that did not yet attain the
correct value at roundr. Also, denoteM(r) = {v : k(v) =
m(r), v 6∈ A(r)}, the set of all such nodes.

AssumeA(r) 6= V so thatM(r) 6= ∅: at roundr + 1
there must existv ∈M(r) such thatv ∈ A(r+ 1), i.e., v
attains the correct value at roundr + 1 and thus notifies
such value at roundr + 2 to its neighbors. To see this,
assume by contradiction that no nodeu in M(r) attains
the correct value at roundr + 1, i.e.,M(r) = M(r + 1):
this means that all nodes inM(r) havem(r)+1 neighbors,
v1, . . . , vm(r)+1, such thatcore(vi) ≥ m(r) + 1 at round
r+ 1 for i = 1, . . . ,m(r) + 1. We claim that for all such
nodescore(vi) ≥ m(r)+1 at successive roundsr+2, r+
3, . . ..

There are three possible cases for thevis:
1) k(vi) ≥ m(r)+1: due to Theorem 2 such nodes can

only notify core(vi) ≥ m(r) + 1 to nodeu;

1. This is due to the fact that, by our definition, the execution time
includes also the last round, in which updates are sent but they have no
further effect on the computed coreness.

2) k(vi) < m(r): from the definition ofm(r), vi ∈
A(r), and they never notify such value at rounds
r + 2, r + 3, . . . due to ii);

3) k(v) = m(r): either vis belong toA(r), and they
will never notify such value atr + 2 due to ii), or
they belong toM(r) = M(r + 1), so that if any
value is notified by such nodes, it will becore(vi) ≥
m(r) + 1 at roundr + 2.

Hence, all nodes inv1, . . . , vm(r)+1 will still have
core(vi) ≥ m(r) + 1 at roundr + 2, so thatM(r + 2) =
M(r + 1) = M(r). We can iterate the same argument at
roundsr+3, r+4, . . ., so that for all nodes inM(r), the
correct estimatem(r) will never be attained, contradicting
Theorem 3.

We hence proved thatD(r) = A(r) \ A(r − 1) 6= ∅
for r = 1, . . . , T , where we letA(0) = ∅ for the sake of
notation andA(1) 6= ∅ because of i). Also, it is easy to
see thatV = A(T ) = ∪Tr=1D(r) andD(r) ∩ D(s) = ∅
for r 6= s. Thus,

N = |
T
⋃

r=1

D(r)| =
T
∑

r=1

|D(r)| ≥ T

The tighter boundT ≤ N − 1 is obtained by contra-
diction. Consider roundN − 2 and assumeT > N − 1.
Using the same arguments as above,|A(N −2)| ≥ N −2.

Case|A(N − 2)| = N − 1: considerv such that{v} =
M(N − 2); due to ii) all neighbors ofv would notify
their true coreness at roundN − 1 at the latest. Hence,
v could calculatecore(v) = k(v) at roundN − 1, i.e.,
v ∈ A(N−1). Finally,A(N−1) = V , so thatT = N−1
against our assumption.

Case|A(N − 2)| = N − 2: denotev1 andv2 such that
v1, v2 6∈ A(N − 2). Indeed,v1 andv2 must be neighbors:
otherwise from ii) all their neighbors would notify their
true core value byN−1 so thatv1 andv2 would compute
their own correct core value byN − 1. Observe that both
v1 andv2 have neighbors in the setA(N − 2), otherwise
one of them would have degree1, which is not possible
since it would belong toA(1).

Consider nodev1 for simplicity: at roundN − 1, v1
estimatescore(v1) ≥ k(v1)+1. However, since onlyv2 has
a wrong estimation, from Thm. 1 there need to bek(v1)
nodesv2 6= ui, i = 1, . . . , uk(v1) such thatcore(ui) =
k(ui) ≥ k(v1) + 1. But,

• core(v2) ≥ k(v1)+1 becausev1 estimatescore(v1) ≥
k(v1) + 1

• core(v1) = k(v1) + 1 for only v2 has a wrong
estimation.

The same reasoning applies tov2: core(v1) ≥ k(v2) + 1
and core(v2) = k(v2) + 1 Thus,core(v1) = k(v1) + 1 ≥
k(v2) + 1 and alsocore(v2) = k(v2) + 1 ≥ k(v1) + 1 so
that core(v1) = core(v2). However, nodes inA(N − 2)
will not notify again their correct estimate from roundN
on and nodesv1 and v2 will perform the same estimate
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they had at roundN − 1, i.e., k(v2) + 1 = core(v1) =
core(v2) = k(v1)+1. Thus, no message can be exchanged
from roundN on, while core(vi) 6= k(vi) i = 1, 2. But,
this contradicts the liveness property so that it must be
T ≤ N − 1.

From the proof, we observe that the nodes of minimal
degree attain the correct coreness at the first round. We
can slightly refine the bound as:

Corollary 1. LetK be the number of nodes with minimal
degree inG. Then the execution time onG is not larger
thanN −K + 1 rounds.

We observe that the bound provided by Theorem 5 is
tighter than that provided by Theorem 4 if and only if
the initial average estimation error1

N

∑

u∈V

(

d(u)− k(u)
)

is larger than1− 1
N

.
Some important questions are (i) how tight is the bound

of Theorem 5, and (ii) is there any graph that actually
requiresN rounds to complete? Experimental results with
real-life graphs show that the bound is far from being tight
(graphs with millions of nodes converge in less than one
hundred rounds, see Sec. 6). However, we managed to
identify a class of graphs close to the bound, i.e., with
execution time equal toN−1 rounds forN ≥ 5. Assuming
that nodes are numbered from1 to N , the rules to build
such graphs are:

• nodeN is connected to all nodes apart from node
N − 3;

• each nodei = 1 . . . N − 2 is connected with its
successori+ 1;

• nodeN − 3 is also connected with nodeN − 1.

Figure 3 shows the graph obtained by this scheme for
N = 12. Graphically, it is convenient to represent node
N as thehub of a polygon, where nodes are located at
the corners. All nodes have degree3, apart from the hub
which has degreeN − 2 and node1 which has degree2.
When starting our algorithm, node1 acts as atrigger: it
has the smallest degree and its broadcast causes node2 to
change its estimate to2, which in turn will cause node3
to change its estimate to2, and so on until the estimate of
nodeN − 4 changes to2. Note that nodeN has changed
its estimate fromN − 2 to 3 after the first round, and has
maintained this estimate so far. In the next next round,
nodesN − 3 andN change their estimate to2; in the last
round, nodeN − 1 and N − 2 change their estimate to
2 as well and the algorithm terminates. Given that during
each round apart from the last two, at most one node has
changed its estimate, the total number of rounds is exactly
N − 1 (N − 2 plus the last round).

It is worth remarking that other simple structures one
may think of as potential worst cases offer lower execution
time. As an example, a linear chain of sizeN requires
⌈N/2⌉ rounds to converge.

5

6

7

8

910

1

2

3 4

11

12

Fig. 3: The worst-case graph, for which the execution time
is exactlyN − 1 rounds,N = 12.

One would expect that there should be a relation
between diameter and execution time. This is true for
example for linear chains ofN , where ⌈N/2⌉ rounds
are required. The smaller the diameter, the shorter should
be the execution time. However, despite we noticed a
beneficial effect of small diameters, this does not hold in
general: in fact, the example of Figure 3 provides a case
when the convergence time increases linearly withN but
the diameter is3, i.e., a constant regardless ofN .

5.3 Message complexity

The maximum number of exchanged messages can be
computed using a double counting argument: during the
run of the algorithm, each nodeu can at most receive
d(v)−k(v) updates from each neighborv ∈ neighborV (u).
If a node is connected (and thus exchange messages), its
coreness is at least1; thus, there are at mostd(u)+d(v)−2
messages that can be exchanged over the undirected edge
(u, v).

Theorem 6. Given a graphG = (V,E), the message

complexity is bounded by
[

∑

v∈V (G) d2(v)
]

− 2M .

Proof: It is simple to note that each node contributes
d(v) times a value ofd(v)− 1 to the sum; summing over
all links,

∑

(u,v)∈E

[d(u) + d(v)− 2] =





∑

v∈V (G)

d2(v)



− 2 ·M

Denoting the maximum degree in the graph with∆, an
upper bound to the above sum is2M(∆ − 1), which is
O(∆ ·M).

5.4 Special graphs

We can observe the convergence properties and the mes-
sage complexity of the algorithm in some particular cases:

• The algorithm converges in exactly1 round and2M
messages for every graph of given constant degree, or,
more in general, for all graphs such thatdv = k(v);
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• The algorithm converges in1+L rounds and with3M
messages for every tree withL levels; observe that
the calculation of thek-shell of a tree is equivalent to
the recursive removal of edges, so that the minimal
required number of rounds coincides with the number
of levels; in this case the algorithm convergence time
scales linearly withL;

• For all grid-type of topologies, e.g., meshes, triangu-
lar grids or where all nodes have same degree apart
from border nodes, the convergence time is dictated
by the maximum distance of an inner node from the
border. For instance, in the case of a mesh withp2

nodes, the number of rounds isp for p even andp+1
for p odd: this is also the number of hops that are
required for the information on the degree of corner
nodes to reach the opposite side of the grid. In this
example the convergence time scales linearly with the
diameter, i.e.,2(p− 1).

6 EXPERIMENTAL EVALUATION

This section reports experimental results, both through
a simulator and a real implementation. Simulations have
been performed using Peersim [25], on both the one-to-
one and the one-to-many versions of the algorithm, over
a selection of graphs contained in the Stanford Large
Network Dataset collection2. Undirected graphs have
been transformed in directed graphs by considering both
directions (i.e., two edges) for each link present in the
original one. We deployed a real implementation of the
one-to-many version of the algorithm in Amazon EC2
and compared it with the state-of-the-art BZ algorithm [5],
using a social network model called Nearest Neighbor [26]
to generate graphs of increasing size.

Unless otherwise stated, the results show the average
over 50 experiments. Experiments differ in the (non-
deterministic) order with which operations are performed
at different nodes.

6.1 One-to-one version

For this version, the main results are summarized in
Table 1, which is divided in two parts. On the left, the
main features of each graph considered are reported: name,
number of nodes, number of edges, diameter, maximum
degree, to conclude with maximum and average coreness.

On the right, the table reports information about the
performance of the one-to-one protocol, based on two
figures of merit: execution time (measured in rounds,
i.e., fixed-size time intervals during which each node
has the opportunity to send one update message to all
its neighbors) and total number of messages exchanged.
In particular,tavg , tmin and tmax represent the average,
minimum and maximum execution time measured over50

2. http://snap.stanford.edu/data/
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Fig. 4: One-to-one distributedk-core decomposition: per-
centage of active nodes versus time.

experiments.mavg andmmax represent the average and
maximum number of messages per node.

A few observations are in order. First of all, the ex-
ecution time is of the order of few tens of rounds for
most of the graphs, with only a couple of them requiring
few hundreds of rounds (web-Berkstan, the web graph of
Berkeley and Stanford, and RoadNet-TX, the road network
of Texas). Compared with our theoretical upper bounds
(number of nodes and total initial error), this suggests that
our algorithm can be efficiently used in real-world settings.

The average and maximum number of messages per
node is, in general, comparable to the average and max-
imum degree of nodes. Clearly, nodes with several thou-
sands neighbors will be more overloaded than others.

In order to understand why web-Berkstan requires so
many rounds to complete, we performed an in-depth
analysis of the dynamic behavior of the proposed algo-
rithms. In particular, we considered, for each core, the
time taken for all nodes within it to reach the correct
coreness value. Results are reported in Table 2. The
first two columns report the problematic cores and their
cardinality, respectively. The remaining columns represent
the percentage of nodes whose estimate is still erroneous at
round t = 25, 50, . . . , 300; an empty column corresponds
to 0%, i.e., the core computation has been completed.
At first look, the55-core seems particularly problematic,
given that more than one half of it is still incorrect at
round 25. But the 55-core completes before round225,
well before the1-core that terminates after round300.
Delays in computing the1-core may be associated to the
high diameter of this particular graph, with “deep” pages
very far away from the highest cores.

Additional information about the temporal behavior of
the protocol can be obtained by analyzing the percentage
of active nodes over time, shown in Figure 4 – where a
node is defined active at a given round if it has sent at least
one message during that round. It is possible to see that by
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Name |V | |E| ⊘ dmax kmax kavg tavg tmin tmax mavg mmax

1) CA-AstroPh 18 772 198 110 14 504 56 12.62 19.55 18 21 47.21 807.05
2) CA-CondMat 23 133 93 497 15 280 25 4.90 15.65 14 17 13.97 410.25
3) p2p-Gnutella31 62 590 147 895 11 95 6 2.52 27.45 25 30 9.30 131.25
4) soc-sign-Slashdot090221 82 145 500 485 11 2 553 54 6.22 25.10 24 26 29.32 3 192.40
5) soc-Slashdot0902 82 173 582 537 12 2 548 56 7.22 21.15 20 22 31.35 3 319.95
6) Amazon0601 403 399 2 443 412 21 2 752 10 7.22 55.65 53 59 24.91 2 900.30
7) web-BerkStan 685 235 6 649 474 669 84 230 201 11.11 306.15 294 322 29.04 86 293.20
8) roadNet-TX 1 379 922 1 921 664 1049 12 3 1.79 98.60 94 103 4.45 19.30
9) wiki-Talk 2 394 390 4 659 569 9 100 029 131 1.96 31.60 30 33 5.89 103 895.35

TABLE 1: Results obtained for one-to-one distributedk-core decomposition. Name of the data set, number of nodes,
number of edges, diameter, maximum degree, maximum coreness, average coreness, average-minimum-maximum
number of cycles to complete, average/maximum number of messages sent per node.

k # 25 50 75 100 125 150 175 200 225 250 275 300

1 55 776 14.12% 10.26% 7.36% 4.97% 2.99% 1.65% 0.92% 0.56% 0.21% 0.13% 0.08% 0.02%
2 83 109 3.81% 1.35% 0.55% 0.27% 0.14% 0.06%
3 67 910 1.42% 0.23%
4 44 548 0.95% 0.07%
5 68 728 0.46% 0.05%
6 35 985 3.48% 1.01% 0.01%
8 32 412 1.21% 0.46% 0.10%
9 28 042 0.18%

10 22 322 1.96% 0.64%
15 6 842 0.99%
55 2 548 50.78% 43.84% 36.77% 29.71% 22.76% 15.46% 8.40% 1.73%

TABLE 2: Information about nodes that are delaying the completion of the protocolin the web-Berkstan graph. The first column
k represents a coreness value; the second column # represents the sizeof thek-core, i.e., the number of nodes whose coreness isk;
the column labeledt = 25, 50, . . . , 300 represents the percentage of nodes in the given core that do not knowthe correct coreness
value aftert rounds. Empty cells corresponds to0%. All other coreness are correctly computed at round25.
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Fig. 5: One-to-one distributedk-core decomposition: evo-
lution of evaluation error (averaged over all nodes and
all repetitions) versus time. The smaller graph shows the
details of the first rounds of the computation.

round 20, less than 1% of the nodes are still active, with
BerkStan and wiki-Talk showing residual activity even
after one hundred rounds.

Another figure of merit is the temporal evolution of
error, measured as the difference – at each node – between
the current estimate of the coreness and its correct value.
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Fig. 6: One-to-one distributedk-core decomposition: evo-
lution of maximum evaluation error (over all nodes and
all repetitions) versus time.

Figure 5 shows the average error for our experimental
graphs. When the line stops, it means that the algorithm
has reached the correct coreness estimate, so the error
is zero. The “subfigure” zooms over the first rounds,
to provide a closer look to the test cases that converge
quickly. Figure 6 shows the maximum error (computed
over all nodes, and over50 experiments) for all our
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graphs (points have been slightly translated to improve
visualization). As it can be seen, in all our experimental
data sets, the maximum error is at most equal to 1 by cycle
22.

Error can be measured in yet another way – the ca-
pability of the protocol to identify the inner cores of the
graph. This is relevant in applications where the goal is
to identify the most influential nodes within a complex
networked structure instead of actually computing the
exactk–coreness of all nodes. To measure this, we ranked
the nodes by decreasing shell index, and we selected the
first 1% of nodes; we then counted, after each round,
the number of nodes whose estimate is correctly included
in the top 1%. This metric tells us that although index
estimates may be approximate, the composition of the
inner cores (the more important ones) has been correctly
discovered. The results, averaged over50 rounds, are
shown in Figure 7. The outcome is consistent with our
previous evaluations, with the top 1% nodes being cor-
rectly identified in few rounds. Two facts are worth being
mentioned: in all our datasets, the correct identification of
the inner cores happens suddenly; and wiki-Talk is again
the most problematic one, with none of the members of
the inner cores identified by round30, to sudden reach
100% by round32.

These error figures tell us that if the exact computation
of coreness is not required (for example if coreness is used
to optimize gossip protocols in a social network), thek-
core decomposition algorithms proposed may be stopped
after a predefined number of rounds, knowing that both
the average and the maximum errors would be extremely
low.

6.2 One-to-many version

The main reason for running the one-to-many version of
the protocol is to compute thek-core decomposition over
large graphs, that cannot fit into the memory of a single
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Fig. 8: One-to-many distributedk–core decomposition:
overhead per node – with broadcast medium.

machine. Experimental results showed that the number of
rounds needed to complete the protocol was equivalent to
that of the one-to-one version. One of the key performance
figures to be considered for the one-to-many version is the
communication overhead generated by update messages
exchanged among hosts. The overhead is computed as the
average number of times a node generates a new estimate
that has to be sent to another host.

Figures 8 and 9 show the overhead per node with a
variable number of hosts, with and without a medium
broadcast available, respectively. For visualization reasons,
only some of the original data sets have been considered;
but the results are similar for all of them. Twenty exper-
iments were considered for this case. In the graph, the
outcome of each experiment was represented as a point
(slightly translated for the sake of visualization clarity).

When a broadcast medium is not available and point-
to-point communication is used, the overhead increases
with the number of hosts available, tending to stabilize
to the levels of the one-to-one protocol (see themavg

column of Table 1 – values are slightly higher given that
the optimization of Section 4.1.2 cannot be applied in this
case). When a broadcast medium is available, on the other
hand, the efficiency is much higher. In this case, a single
message is sent at each round, containing all the estimates
that have changed since the previous one. Most of the
nodes reach the correct estimate after few rounds and very
few estimates are sent on their behalf after the first rounds;
the effect is that the average number of estimates sent per
node is extremely low, always smaller than3, making the
one-to-many algorithm particularly well-suited for clusters
connected through fast local area networks.

6.3 Realistic deployment

To test our protocol in a real deployment, we implemented
the one-to-many version with barrier synchronization and
executed it using machines rented from Amazon EC2.
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Fig. 9: One-to-many distributedk–core decomposition:
overhead per node – without broadcast medium.

Furthermore, we compared it with the state-of-the art BZ
algorithm executed in the same environment.

The implementation of the BZ algorithm is based on
the following assumptions: (i) it is possible to store in
main memory a small, constant-size amount of information
associated to each of the nodes in the graph; (ii) the
entire graph can be randomly accessed through an external
storage, but storing it entirely in memory is not possi-
ble. While these assumption are somehow realistic (the
“High-Memory Quadruple Extra Large Instance” rented
by Amazon has 68GB of main memory and 1.7TB of
storage, which are sufficient for a few billions of nodes
in memory and hundreds of billions of edges on storage),
still they show that computing large-scale graphs cannot
be done on commodity hardware.

We rented up to 16 “small instances” from Amazon and
run the BZ algorithm on one of them, and then the one-to-
many version on 4,8,16 machines.3 We created a series of
graphs using the Nearest Neighbor model [26], with size
varying between210 and222 nodes, to illustrate the scal-
ability of our approach. Figure 10 contains the results. In-
stead of showing the actual execution time, which behaves
linearly in both the centralized and distributed versions,
we decided to show the ratio between the execution time
of the distributed implementation and the centralized one.
As the reader can see, this ratio tends to converge when
size increases. To avoid an unfair comparison between
a centralized algorithm and a distributed one, we also
computed the efficiency of our distributed implementation
(measured as the ratio between speedup and number of
processes), which is around50% for all the configurations.

7 CONCLUSIONS

To the best of our knowledge, this paper is the first to pro-
pose distributed algorithms for thek-core decomposition

3. Amazon EC2 limits to 20 the number of machines that can be rented
under the same account.

 0

 0.2

 0.4

 0.6

 0.8

 1

210 212 214 216 218 220 222

T
im

e N
 / 

T
im

e 1

Nodes

N=1
N=4
N=8

N=16

Fig. 10: One-to-many distributedk–core decomposition:
computation time with respect to the centralized version.

of online and/or large graphs. While theoretical analysis
provided us with fairly large upper bounds on the number
of rounds required to complete the algorithm, which
are strict for specific worst-case examples, experimental
results have shown that for realistic graphs, our algorithms
efficiently converge in few rounds.

We provided a distributed implementation of the one-
to-many version and deployed on a fairly large network
composed by Amazon EC2 nodes. These results are far
from being definitive (many optimizations could be still
be applied to both the centralized and distributed versions,
e.g. exploring the use of threads in modern multi-threaded
processors); yet, the results suggest that a distribute ap-
proach could enable the analysis of larger graphs in less
time. The next logical step will be the implementation
of these algorithms in Pregel-like frameworks [27], [28],
[29]; unfortunately, at the time of writing, none of them
demonstrated sufficient stability to perform extensive test-
ing.
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[5] V. Batagelj and M. Zaveřsnik, “Fast algorithms for determining
(generalized) core groups in social networks,”Advances in Data
Analysis and Classification, vol. 5, pp. 129–145, 2011.

13



[6] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani,
“Large scale networks fingerprinting and visualization using thek-
core decomposition,” inAdvances in Neural Information Processing
Systems 18. MIT Press, 2006, pp. 41–50.

[7] G. Bader and C. Hogue, “Analyzing yeast protein–proteininterac-
tion data obtained from different sources,”Nature biotechnology,
vol. 20, no. 10, pp. 991–997, 2002.

[8] H. Zhang, H. Zhao, W. Cai, J. Liu, and W. Zhou, “Using the k-
core decomposition to analyze the static structure of large-scale
software systems,”The Journal of Supercomputing, vol. 53, pp.
352–369, 2010.

[9] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, “k-core
organization of complex networks,”Phys.Rev.Lett., vol. 96, 2006.

[10] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik,
H. Stanley, and H. Makse, “Identification of influential spreaders
in complex networks,”Nature Physics, vol. 6, pp. 888–893, Nov.
2010.

[11] J. A. Patel, I. Gupta, and N. Contractor, “JetStream: Achieving
predictable gossip dissemination by leveraging social network prin-
ciples,” in Proc. of the Int. Symposium on Network Computing and
Applications (NCA’06). Cambridge, MA: IEEE, 2006, pp. 32–39.

[12] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale
graph processing,” inProc. of the 28th ACM Symposium on
Principles of Distributed Computing (PODC’09). New York, NY,
USA: ACM, 2009.

[13] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. W. Berry,“Chal-
lenges in parallel graph processing,”Parallel Processing Letters,
vol. 17, pp. 5–20, 2007.

[14] J. Dean and S. Ghemawat, “MapReduce: simplified data processing
on large clusters,”Commun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[15] L. G. Valiant, “A bridging model for parallel computation,” Com-
mun. ACM, vol. 33, pp. 103–111, August 1990.

[16] A. V. Gerbessiotis and L. G. Valiant, “Direct bulk-synchronous
parallel algorithms,”J. Parallel Distrib. Comput., vol. 22, no. 2,
pp. 251–267, Aug. 1994.

[17] T. Cheatham, A. Fahmy, D. Stefanescu, and L. Valiant, “Bulk
synchronous parallel computing–a paradigm for transportable soft-
ware,” in Proc. of the 28th Hawaii Int. Conf. on System Sciences,
vol. 2, Jan. 1995, pp. 268–275 vol.2.

[18] R. Lichtenwalter and N. Chawla, “DisNet: A framework fordis-
tributed graph computation,” inProc. of the Int. Conf. on Advances
in Social Networks Analysis and Mining (ASONAM), Jul. 2011, pp.
263–270.

[19] P. Stutz, A. Bernstein, and W. Cohen, “Signal/collect:Graph
algorithms for the (semantic) web,” inThe Semantic Web – ISWC
2010, ser. Lecture Notes in Computer Science. Springer, 2010,
vol. 6496, pp. 764–780.

[20] E. Krepska, T. Kielmann, W. Fokkink, and H. Bal, “A high-
level framework for distributed processing of large-scale graphs,”
in Distributed Computing and Networking, ser. Lecture Notes in
Computer Science. Springer, 2011, vol. 6522, pp. 155–166.
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