
Peer-to-Peer Networking and Applications manuscript No.
(will be inserted by the editor)

Integrating Peer-to-Peer and Cloud Computing for Massively Multiuser
Online Games

Hanna Kavalionak · Emanuele Carlini · Laura Ricci · Alberto Montresor ·
Massimo Coppola

Received: date / Accepted: date

Abstract Cloud computing has recently become an attrac-
tive solution for massively multiplayer online games, also
known as MMOGs, as it lifts operators from the burden
of buying and maintaining large amount of computational,
storage and communication resources, while offering the il-
lusion of infinite scalability. Yet, cloud resources do not come
for free: a careful orchestration is needed to minimize the
economical cost. This paper proposes a novel architecture
for MMOGs that combines an elastic cloud infrastructure
with user-provided resources, to boost both the scalability
and the economical sustainability provided by cloud com-
puting. Our system dynamically reconfigures the platform
while managing the trade-off between economical cost and
quality of service, exploiting user-provided resources when-
ever possible. Simulation results show that a negligible re-
duction in the quality of service can reduce the cost of the
platform up to 60% percent.

Keywords Massively Multi-player On-line Games · Cloud
Computing · Peer-to-Peer · Distributed Systems

1 Introduction

In the last years, on-line gaming entertainment has acquired
an enormous popularity among both industrial and academic
researchers. This attention is justified by the economic growth
of the field, in particular regarding massively multiplayer on-
line games (MMOG). According to [51], in 2010 the MMOG

Kavalionak H., Montresor A.
University of Trento
E-mail: {alberto.montresor,hanna.kavalionak}@unitn.it

Carlini E., Coppola M.
Institute of Information Science and Technologies CNR-ISTI, Pisa,
Italy E-mail: {emanuele.carlini,massimo.coppola}@isti.cnr.it

Ricci L.
University of Pisa E-mail: ricci@di.unipi.it

market was worth 6 billion dollars worldwide with a pre-
dicted value of 8 billion dollars by 2014, whilst the number
or users reached 20 million users worldwide in 20101.

MMOGs are large-scale applications providing a real-
time, shared, persistent and seamless virtual environment
(VE) to huge communities of users. MMOGs operators pro-
vide the necessary hardware infrastructure to support such
communities, obtaining their profit from the fees users pay
periodically to access the game. Therefore, operators’ profit
is strictly linked to the number of users who participate in
the MMOG; moreover, the more popular is a game, the more
attractive it becomes for new users. For this reason, offering
an acceptable level of service while assuring the infrastruc-
ture to sustain a large number of users is a core goal for
MMOG operators.

Today’s architectures for MMOGs rely on a client/server
model. This centralized approach enables a straightforward
management of the main functionalities of the virtual en-
vironment, such as user identification, state management,
synchronization among players and billing. However, with
larger and larger numbers of concurrent users, centralized
architectures are hitting their scalability limits, especially in
terms of economical return for the operators.

Virtual data locality has been used to increase scalability
of MMOG. The most common approach, called zoning [31],
divides the VE into regions, each region independently man-
aged by a server. As in zoning, mirroring [16] divides the
VE into regions, but a region can be replicated in multiple
servers at the same time. A infrastructure is then dedicated
for the consistency of the mirrored regions. Instancing [4] is
similar to mirroring, but each replica of a region is indepen-
dent, such that players cannot communicate among different
replicas.

1 http://www.mmodata.net, August 2012

Alberto Montresor
https://doi.org/10.1002/cpe.3289

2 Hanna Kavalionak et al.

These three mechanisms help distribute the load of the
MMOG on multiple servers. However, they do not address
the problem of resource provisioning. Indeed, server clus-
ters have to be bought and operated to withstand service
peaks, also balancing computational and electrical power
constraints. A cluster-based centralized architecture concen-
trates all communication bandwidth at one data center, re-
quiring the static provisioning of a large bandwidth capa-
bility. This may lead to over-provisioning, which leaves the
MMOG operators with unused resources when the load on
the platform is not at its peak.

On-demand resources provisioning (also known as cloud
computing [6]) may alleviate the aforementioned scalabil-
ity and hardware ownership problems [39,41]. The possi-
bility of renting machines lifts the MMOG operators from
the burden of buying and maintaining hardware, and offers
the illusion of infinity resource availability, allowing (po-
tentially) unlimited scalability. Also, the pay-per-use model
enables to follow the daily/weekly/seasonal access patterns
of MMOGs.

However, the exploitation of cloud computing presents
several issues. The recruiting and releasing of machines must
be carefully orchestrated in order to cope with start-up times
of on-demand resources and to avoid incurring on unneces-
sary expenses due to unused servers. Further, besides server
time, bandwidth consumption may represents a major ex-
pense when operating a MMOG. Thus, even if an infras-
tructure based entirely on on-demand resources is feasible,
the exploitation of user-provided resources may further re-
duce the server load and increase the profit margin for the
MMOG operator.

These aspects have been investigated extensively in the
research community in the last decade [5,26,20]. Mecha-
nisms to integrate user-provided resources in a MMOG in-
frastructure naturally evolved from the peer-to-peer (P2P)
paradigm. By reducing the load on centralized servers, P2P-
based solutions present several attractive advantages. First,
P2P techniques are inherently scalable – the available re-
sources grow with the number of users. Second, if a peer
fails, P2P networks are able to self-repair and reorganize,
hence providing robustness to the infrastructure. Third, net-
work traffic is distributed among the users involved, making
difficult the creation of bottlenecks. Furthermore, all these
properties pair with little or no costs for the VE operators.

However, P2P-based infrastructures require additional
mechanisms to suit the requirements of a MMOG. When
a peer leaves the system, its data must be transferred some-
where else; given that the disconnection may be abrupt, repli-
cation mechanism must guarantee that data will not be lost.
The lack of a central authority hinders security and anti-
cheating enforcement. Moreover, user machines typically
have heterogeneous constraints on computational, storage

and communication capabilities, making them complex to
be exploited.

The high degree of complementarity between on-demand
and user-provided resources suggests to strictly integrate the
two approaches. The core idea is to allow operators to choose
the balance between on-demand and user-provided resources.
In our design, an operator can decide to have an infrastruc-
ture more reliable and responsive (for example for particu-
larly interactive MMOGs) or to reduce the economical effort
and provide a less powerful infrastructure, perhaps suitable
for less interactive MMOGs. In other words, the idea is to
let the operator to choose on how to make profit, either by
offering a more controllable service, or by saving on the cost
of infrastructure or in a point in the middle between the two.

These considerations drove the design of the MMOG ar-
chitecture presented in this paper. Our contribution can be
outlined as the following. First, our infrastructure for the
management of MMOG objects is based on a Distributed
Hash Table (DHT). Our DHT exploits virtual nodes [23].
Each virtual node corresponds to a contiguous and non over-
lapping portion of address space of the DHT. Each virtual
node contains a set of MMOG objects and it can be dynam-
ically associated to physical machines with a little disrup-
tion in the underlying DHT structure. This allows us to mi-
grate objects among cloud- or user-provided resources with
few impact on the QoS. Second, we developed a dynamic
resource provisioning model, that manages the migration
of the objects between physical machines according to the
preferences defined by the operator. The provisioning ap-
proach allows to cope with the impact caused by the start-up
times and over-renting of cloud on-demand resources. Third,
we provided a model for the QoS and the economical cost of
the MMOG on top of the integrated architecture. Following
our model, a MMOG operator can tune the system according
to the application requirements. Finally, we tuned and evalu-
ated the architecture through extensive simulations. The re-
sults showed that slightly decreasing the quality of service
may yield a cost reductions up to 60%.

The paper is structured as follows. Section 2 discusses
the architectural background that puts our contribution into
context. Section 3 provides the definition of the system model,
whereas Section 4 presents the algorithm for resources or-
chestration in details. Section 5 evaluates the platform through
simulations. Section 6 offers an overview of the related work,
with particular focus on hybrid MMOG architectures and
P2P/cloud computing integration. Finally, Section 7 concludes
the paper.

2 Architecture

This section introduces the overall structure of the proposed
MMOG hybrid architecture. In order to motivate our design

Integrating Peer-to-Peer and Cloud Computing for Massively Multiuser Online Games 3

choices, we first briefly review the main characteristics of a
centralized single server architecture for MMOGs.

Players connect to a centralized server by means of a
game client. The game client shows on the player’s screen
the visual representation of the virtual environment and maps
the actions of the player (i.e. movements and/or interactions
with objects) into communications with the server. The vir-
tual environment is populated with entities, which can be
avatars representing players or objects that can be manip-
ulated. The player actions can be classified as positional
actions and state actions [28]. State actions correspond to
changes of the entity’s state, e.g. the act of closing a door
or collecting an object. Positional actions correspond to the
movement of entities across the virtual environment and are
the ones that change the positions of the avatars. The po-
sitional actions may trigger a migration if the DVE is geo-
graphically divided into zones and those zones are assigned
to the nodes. Since a node manages the zone and all its
content (including avatars), when an avatar changes zone,
it should also be transferred to another node.

When an action occurs, the server must spread the in-
formation to the other players. However, not all players are
interested in all actions. In fact, players only receive actions
executed inside an area centered at the their virtual position,
called area of interest (AOI). It is a task of the server to dy-
namically update and maintain the AOI of the players.

2.1 Distributed MMOG

Unlike single server architectures described above, distributed
MMOG architectures employ strategies to divide the virtual
world into regions, and to find a proper assignment of these
regions to multiple nodes. We use the generic term ”node”
to indicate either peers running by the user, or virtual ma-
chines running inside a cloud. Some architectures adopt a
spatial division of the virtual environment into regions, and
assign all the entities in a region to a node. Region-based
partitioning is efficient for AOI resolution; since entities are
clustered according to their spatial position, identifying en-
tities included in an AOI is a relatively easy task. However,
entities distribution is usually not spatially uniform, due to
the presence of hotspots, i.e. regions with high concentration
of entities. One of the drawback of hotspots is that they gen-
erate a large amount of load on the nodes managing them.
Furthermore, due to the spatial division, positional actions
may trigger a change into entity-region assignment, imply-
ing the transfer of entities among nodes. This may reduce
the interactiveness of the game, given that entities are not ac-
cessible during transfers, in fact denying any possible state
action on it. This is even more critical when considering the
rate of transfer that in turn depends on the rate of positional
actions (usually high) and the dimension of the regions.

By comparison, an hash-based entity assignment presents
complementary characteristics. Since the association of an
entity to a node does not depend on the position of the en-
tity, positional actions do not trigger any migration of ob-
jects among nodes. Also, due to the random assignment,
entities in a hotspot are managed by several nodes, whose
load is uniformly distributed. However, this solution makes
AOI resolution impractical (the objects of an AOI may be
spread among different nodes) and therefore it is rarely used
in practice.

Overall Architecture

Positional
Action Manager

position
DB

State Action
Manager

state
DB

state
actions

positional
action

Player
Fig. 1 Overall architecture

2.2 The proposed architecture

In order to retain the advantages of both the entity assign-
ment strategies discussed above, we propose a distributed
MMOG architecture (shown in Figure 1) that exploits two
components, each one managing a different kind of actions.
The positional action manager (PAM), which we previously
presented in [10]), manages the positions of the entities by
organizing a epidemic-based distributed overlay among play-
ers. The state action manager (SAM), which is the focus of
this paper, stores the entities state and is organized accord-
ing to an entity-to-node assignment based on hashing. This
assignment strategy enables to handle the state of the enti-
ties without any transfer of them across nodes due to posi-
tional actions. Such transfers may anyway occur, but instead
of being triggered by positional actions, they are usually per-
formed to optimize the distribution of the entities (and as a
consequence, of the load) among the nodes.

2.3 State action manager

In order to build and maintain an overlay for the manage-
ment of the entity state in the MMOG, the state action man-
ager (see Figure 2) is based on a distributed hash table (DHT)

4 Hanna Kavalionak et al.

VN

VN
VN

VNVN

NODE ANODE B

SAM
Architecutre

CLIENT

CLIENT

DHT RING

CLIENT

object

Manager

Fig. 2 Black dots are the objects inside the virtual environment. VN
boxes correspond to virtual nodes. Node A manages 2 VNs, whereas
node B manages 3 VNs. Client connects to the nodes to modify and
read the objects. The manager has a global knowledge of the state of
the node and the VNs.

[47,46]. A typical DHT manages a logical address space,
whose size is large enough to avoid clashes among items (i.e.
a common size is 2160). Each entity of the MMOG (avatar,
objects) is assigned with an address in such space, which we
refer to as its ID. The IDs are uniformly assigned to balance
the distribution of the entities in the address space. The ad-
dress space is partitioned among the nodes, together with the
associated entities. Nodes are then connected to each other
by an overlay, for routing and synchronization purposes. The
overlay is built to guarantee O(logN) bounds, where N is the
number of nodes in the DHT, both for the routing hops and
for the size of the routing tables.

In addition to the typical DHT mechanisms, we adopt
the virtual node (VN) paradigm over DHTs proposed by
Godfrey et al. [23], to introduce a clear separation between
the logical and the physical nodes. Each virtual node is in
charge of an address range of the DHT. Several virtual nodes
may be allocated on the same physical node. From a client
perspective, a virtual node acts as a state server for a set of
entities. Since the entities that a client is interested in may be
managed in principle by different virtual nodes, each client
may have multiple simultaneous connections to them. For
instance, in Figure 2, a client is connected with node A and
B at the same time. Therefore, the number of concurrent con-
nections for a player is then bounded by the amount of en-
tities in its AOI. Also, entities are normally not updated at
the same time altogether. Hence, even if a connection exists
between a player and a VN, it is used only when entities are
actually modified and VN pushes the updates.

In our architecture, we define the load of a VN as the
upload bandwidth consumed to broadcast entities state to
its associated clients. The load depends on the amount of
entities that correspond to the VN and the amount of clients
accessing them. The load changes over time, according to
the interaction pattern of the avatars. Moreover, load may be
unbalanced due to the presence of more popular entities. For

instance, objects belonging to an hotspot receive an higher
amount of updates.

The proposed architecture also includes an additional
module, called manager, whose goal is to distribute the load
among the nodes, so to exploit their heterogeneity. DHT
nodes periodically notify the manager with their own load
information. The manager periodically computes new as-
signments node-VNs based on the received information and,
if necessary, the enrollment or the disposal of nodes from the
DHT. The issue of the manager placement is out of the scope
of this work. We consider the manager to be centralized and
statically placed on a proprietary server. In this scenario, the
adoption of the VN paradigm yields concrete advantages: (i)
more powerful nodes may receive a higher number of VNs
than less powerful ones, (ii) heavy loaded nodes may trade
VNs with unloaded ones, (iii) in case of a physical node fail-
ure, its VNs are possibly transferred/reassigned to different,
unloaded, physical nodes, so reducing the risk of overloaded
nodes. Moreover, migrating VN is easy and light. Their mi-
gration does not affect the organization of the address space
at the DHT level. It only requires the exchange of data man-
aged by the VN as well as the update of the mapping be-
tween the logical identifier of the VN and the physical ad-
dress of the node hosting it.

2.4 NAT-traversal

A relevant limitation of deploying real P2P systems on the
Internet is the fact that a large part of all the nodes are behind
Network Address Translation (NAT) gateways and firewall
systems. This kind of architecture makes it difficult for two
nodes belonging to different private sub-networks to con-
tact each other directly. At the same time, on-line gaming
type applications require nodes (i.e. players) to be able to
communicate directly. NAT traversal issues are well known
in the field of P2P communication and widely addressed in
the literature [19,44]. We leave the development of the NAT
traversal approach for our architecture as future work and in
the following we assume that nodes are able to communicate
directly.

2.5 Virtual nodes

One of the main advantages of the virtual node approach
is the possibility to easily move entities across the nodes
of the DHTs. This ability is a fundamental requisite for en-
abling proactive load distribution mechanisms. To better un-
derstand the advantages of exploiting virtual nodes, let us
spend a few words on the load distribution in classical DHTs
(i.e. that does not employ virtual nodes). There are essen-
tially two ways to dynamically distribute the load in classi-
cal DHTs:

Integrating Peer-to-Peer and Cloud Computing for Massively Multiuser Online Games 5

1. Move nodes. An unloaded node (i.e. A) moves to a pre-
cise address of the DHT, so to unload a heavy loaded
node (i.e. B). This operation requires A to leave the DHT
and rejoin in a position so that part of the load form B
is transferred to A. Even if this approach may work in
general, it is too time consuming and creates too over-
head for a real-time application as a virtual environment.
To fully understand the process, let us consider C as the
successor of A (i.e. the node that is after A in the ring-
shaped space of the DHT)2. Let us suppose that the DHT
includes a node B which is overloaded, while C is under-
loaded. A can leave and then re-join the DHT in a posi-
tion preceding B in order to unload B. When A leaves, C
becomes responsible of the address space left free by A.
This information must be spread in the DHT, so that the
routing for the former A address space points correctly
to C. In addition, before leaving, A must transmit all the
data on its entity descriptors to C. When A joins the DHT
and becomes the predecessor of B, this information must
be spread to the DHT to adjust routing path. B also must
send to A the entity descriptors that are in the new ad-
dress space of A. In addition, A must build its routing
table, in order to be part of the overlay. In summary, this
process requires the transfer of two set of entities (from
A to C and from B to A), the spreading of new informa-
tion about 3 nodes and the building of a new routing ta-
ble. All these operations take time, and, most important,
imply a large number of transferred data during which
the entities are not reachable from clients.

2. Move descriptors. This technique requires moving the
entity descriptors among nodes to distribute the load.
Practically, an entity descriptor changes its ID in the
ring-shaped address of the DHT. During the transfer of
the descriptor, the entity is not accessible by clients. How-
ever, moving descriptors prevents clients the ability of
caching the address of the descriptors, since any time a
client accesses to an entity, it must query the DHT for
its position. This requires to wait O(logN) steps, which
may be too long with an high number of nodes.

With virtual nodes, load distribution is lighter and more
flexible with respect to a classical DHT. Node directly ex-
change virtual nodes (a process that we call virtual node mi-
gration), which offers the following advantages:

– the ID of the entity does not change over time;
– it is possible to transfer load without nodes to leave the

DHT;
– a virtual node that has moved does not have to rebuild

its entire routing table. In fact, moving a virtual node

2 We consider Chord in this example, but with small differences the
following considerations are valid for other DHT implementations as
well

requires only to stabilize a few routing paths, much less
than in a classical DHT system;

– it is possible to partially increase or decrease the load of
a node.

During a VN migration, entities of the VN cannot be
accessed. In other words, players cannot interact with the
objects inside the VN that is migrating. Also, it can be the
case of a player modifying the state of the object locally, just
to see it reverted back when the migration of the corollary is
completed. To this end, it is important to keep the transition
time as short as possible, in order to provide an acceptable
level of interactivity for the VE clients.

2.6 Replication and fault tolerance

In a distributed system, the need of replication comes from
the intrinsic unreliability of nodes. Since we target an het-
erogeneous system including both peer and cloud nodes, a
fair orchestration of replication is a relevant issue. Our ap-
proach is based on the reasonable assumption that, in gen-
eral, cloud nodes can be considered reliable whereas peer
nodes are unreliable, due to the high degree of churn which
characterizes P2P systems. This difference is mainly due to
the lack of control over peers, which are prone to unexpected
failures, and may leave the system abruptly. On the other
hand, cloud nodes generally belong to a stable infrastruc-
ture based on virtualization, and this greatly increases their
robustness and flexibility.

In order to cope with the unreliability of peers, we pro-
pose that every VN assigned to a peer is always replicated.
The replica, called backup virtual node (bVN), is then as-
signed to a trusted resource, i.e. a cloud node. To keep the
state of the bVN up-to-date with the original, peers send
periodic updates to the cloud nodes. The replica schema
adopted is optimistic [45], i.e. players can access to entities
without previous synchronization between the regular VN
and the relative bVN. This schema leads to eventual consis-
tency, favoring availability over consistency of the entities.
The periodic updates from the peer to cloud for synchro-
nizing bVN add further bandwidth requirements. However,
the synchronization is performed at relatively large intervals
(e.g. 30 seconds) with respect to the player updates, to re-
duce the required bandwidth.

The presence of bVNs guarantees a certain degree of
availability in case of peer failures. Consider a peer P that
manages a single VN and cloud node C that manages the
respective bVN. When P departs from the system, either
abruptly or gracefully, C becomes the new manager of the
primary replica. As a consequence, clients connected to P
must now connect to C. In the case of a gracefully depar-
ture of P, P itself may inform them about the new role of C;

6 Hanna Kavalionak et al.

∆ t length of a time step
V N set of virtual nodes

vload(t) upload bandwidth load in byte of v at time t
vent(t) entities managed by v at time t
N(t) set of nodes at time t
ncap capacity of n
nbcost upload bandwidth cost per byte of n
nrcost renting cost of N at t

nload(t) upload bandwidth load in byte of n at time t
nl f (t) load factor of n at time t
nvs(t) the set of virtual nodes managed by n
npl(t) player being served by n at time t
α(t) [0,1] QoS of the platform at time t
αthres QoS threshold
β (t) cost in USD of the platform at time t

DU(∆ t) delayed updates during ∆ t
U(∆ t) total updates during ∆ t

z number of updates per second
E[latencyi, j] expected latency between nodes i and j

E[failn] expected failure probability for node n

Table 1 Table of symbols

otherwise, the involuntary departure of P can be detected ei-
ther by C, since it receives no more updates from P, or from
the DHT neighbors of P, due to the repairing mechanism
of DHTs. These nodes are able to notify the clients to send
their notification to C.

3 System model and problem statement

In this section, we provide a model of our distributed sys-
tem and introduce the problem statement; in order to im-
prove the readability, in Table 3 lists the parameters used
here. Let time be subdivided in discrete time steps of length
∆ t and denoted by t ∈N. Let V N be the set of virtual nodes
in the system. Then, ∀v∈V N we define vload(t) as the band-
width consumed by the virtual node v in the time step t, with
vload(0) = 0. Similarly, ∀v ∈ V N we define vent(t) as the
number of entities managed by v at time t, with vent(0) = 0.
Each virtual node in V N is assigned to a node.

The set N(t) contains the nodes that are in the system
at the time t. An arbitrary node n ∈ N(t) is characterized
by the following invariant properties: (i) bandwidth capac-
ity ncap, (ii) bandwidth cost nbcost , (iii) renting cost nrcost .
Over time, nodes are assigned with virtual nodes. We indi-
cate with nV N(t) the set of virtual nodes assigned to a node
n at time t. The outgoing bandwidth load imposed on a node
at time t is indicated as nload(t) = ∑v∈nV N(t) vload(t). From
this, we define nLF(t) = nload(t)/ncap as the load factor of n
at t. Finally, we indicate with npl(t) the number of players
served by n at time t.

We consider two different kinds of nodes, virtual ma-
chines rented from a cloud and peers provided by users.
User-provided resources have no associated cost for band-
width and renting, while cloud nodes are assigned with a

pricing model taken from Amazon EC2 [1], with the as-
sumption that we can charge cloud nodes per unit of time
∆ t. Hence, it is possible to compute the cost per time unit
as the sum of the bandwidth cost and the renting cost of the
nodes, according on the bandwidth consumed at time t. The
total system cost β (t) is computed as follows:

β (t) = ∑
n∈N(t)

((nload(t)∗nbcost)+nrcost) (1)

In this formulation the cost due the upload bandwidth changes
over time. Rather, the renting cost depends on the number of
cloud nodes exploited.

3.1 Quality of service

Each virtual node offers a service that is comparable to a
publish/subscribe system [25]. Players subscribe to nodes,
send inputs and receive back updates at a fixed rate. The spe-
cific rate depends on the particular MMOG genre, typically
in the order of few updates per second. Here we define this
frequency as z = 4, corresponding an update every 250ms
which fits medium-paced MMOGs [15]. When updates are
delayed, players may perceive a clumsy interaction with the
virtual environment. If the number of consequent delayed
updates is large, players might not be able to interact with
the environment at all. To favor a fully interactive virtual
environment, the rate of updates should be as stable as pos-
sible. We consider the capacity of the nodes to provide a
constant rate of updates as the metric for the Quality of Ser-
vice (QoS).

In general, there are two main causes for delayed up-
dates: (i) the network infrastructure between the node and
the client, and (ii) the ability of the node to send the updates
in time. In the first case, since we assume the Internet as the
communication media, latency spikes and jitter are responsi-
ble of delayed updates. In this paper we do not consider this
issue, since it is general for any architecture. Moreover, sev-
eral solutions (such as LocalLag [35]) have been proposed
to mitigate the effects of network delays in MMOGs.

In this paper we consider the second case (i.e. the de-
lays generated by servers), as it is greatly affected by the ex-
ploitation of user-provided resources. In fact, peers are more
prone to delay updates rather than a datacenter server, given
their smaller reliability and limited bandwidth capability.

As QoS measure, let α(t) ∈ [0,1] be the fraction of up-
dates the nodes send within time t for all the entities whose
state changed at time t− 1. For example, if at a given time
t the nodes successfully sent only half of the updates for
all the entities whose state is changed at time t − 1, then
α(t) = 0.5. Let us define U(t) as the total number of up-
dates from t − 1 to t and DU(t) as the number of delayed
updates from t−1 to t. Then:

Integrating Peer-to-Peer and Cloud Computing for Massively Multiuser Online Games 7

α(t) = 1− DU(t)
U(t)

(2)

There are three cases in which the nodes might incur in de-
layed updates:

– Virtual node migration. During a migration, the service
is unavailable for the time the entities are transferring
between nodes. In this case, the number of delayed up-
dates depends on the migration time (MT, the times for
a VN to migrate between nodes), which is discussed in
Section 5.2.

– Overloading. When a node is overloaded, it simply does
not have enough bandwidth to send updates. As a conse-
quence, it either drops or delays some updates.

– Failures. When a node crashes and a back up node takes
its place, the players need time to “know” the new up-
dates provider. During this time the players are not re-
ceiving new system updates.

In a sense, migrations and overloading can be seen as
a “necessary evil”, as they trade some QoS in exchange of
more flexibility. Hence we do not take them into account
when we compute the target QoS for virtual node assign-
ment. The migration is a graceful process that we can tune
to minimize the affection on the QoS. In particular, the size
of the virtual nodes can be chosen so that their MT remains
under a definite time threshold. The details of this aspect and
the tuning are discussed in Section 4.3.

Node overloading happens when the prediction function
would compute an under-estimation of the load. In this case,
less nodes than the necessary are recruited, causing a reduc-
tion in the QoS. To give the possibility to the operators to
control the overloading, we define LFup as an upper bound
for the nodes load factor. LFup is in the range [0,1], where
0 indicates that no upload bandwidth of nodes can be used,
and 1 indicates that all the bandwidth is used for managing
of VNs. By setting this parameter, operators can force the
nodes to work under their capacity, as a node n will accom-
modate up to LFup ∗ ncap load. The LFup parameter has to
be carefully selected, as a high value can cause overloading,
whereas a low value may cause resource over-provisioning.
Ideally, LFup should be able to cope with the error of the
prediction function without affecting the economical cost of
the infrastructure. An empirical evaluation of these factors,
as well as the tuning of the LFup, is presented is Section 5.

Due to the above considerations, we consider failures as
the main cause of delayed updates. Delayed updates from
failures depend on (i) the probability that a node fails dur-
ing ∆ t and (ii) the time the infrastructure needs to recover
from the failure, and (iii) the number of players accessing
the node at the time of failure.

Assuming a model that describes failures of the nodes
over time, we define E[failn] as the expected probability for

a node to fail during an arbitrary time step. When a node
crashes, the backup node becomes the new node (see Section
2). The failure time (FT, in seconds) is the time that goes
from the failure of a node to the moment the players have
the information about the new node. Let us define Tf as the
time-out needed for a backup node to notice the failure of the
node. If a node does not communicate for Tf seconds with
the backup node, it is considered failed. Also, let us define as
E[latency] as the expected latency between the backup node
and the players. Then, FT = Tf +E[latency]. According to
the definitions above we have:

DU(t) = (FT × z) ∑
n∈N(t)

(E[failn]×npl(t)) (3)

To let operators control the QoS, we then define the system-
wide parameter αthres. It represents the percentage of suc-
cessful updates that must be kept by the platform. For in-
stance, with αthres = 0.99, only 1% of updates can be de-
layed due to failures. Note that αthres indirectly controls the
assignment of the virtual nodes between user-provided and
cloud nodes.

3.2 Problem statement

Our aim is to provide an assignment of the virtual nodes to
the nodes that respects the bound defined by the operator to
control the quality of service, while keeping the economical
cost as low as possible. Hence, we define the problem of as-
signing virtual nodes to nodes as follows:

Problem Statement. Find an assignment of virtual nodes to
nodes to minimize β (t) such that: α(t)≥αthres, and nLF(t)<
LFup for every n ∈ N(t).

4 Dynamic virtual node allocation

The task of the manager is to compute a virtual node as-
signment respecting the constraints defined in the problem
statement in the previous section.

The work of the manager is divided into time intervals,
which we refer to as epochs. Figure 3 shows the manage-
ment of two consecutive epochs. During an epoch, the man-
ager executes the following: (i) instantiates or releases on-
demand nodes from the cloud, and migrates the virtual nodes
according to the assignment plan done in the prior epoch
(Section 4.3), and (ii) computes the new assignment for the
next epoch (Section 4.2). The new assignment is computed
with an heuristics based on the load prediction for the next
∆ t time units. Over time, the manager receives updates from
the nodes about their load. These updates are not synchro-
nized with the epochs. If an update arrives when the new

8 Hanna Kavalionak et al.

Nodes

Manager

Epoch

prediction function updates

Time

Time

Compute
AssignmentInstancing + Migration Compute

AssignmentInstancing + Migration

prediction
Δt

Fig. 3 Time management

assignment computation is already started, it will be consid-
ered in the next epoch.

The duration of an epoch (which we refer to as τepoch)
must be tuned to accommodate the instantiation time pro-
vided by the cloud platform chosen, which normally is in
the order of few minutes [33]. Due to the fact that we use an
heuristics to compute the assignments, τepoch is largely oc-
cupied by the instancing+migration time. As a consequence,
in the following we assume that ∆ t ≈ τepoch.

4.1 Load prediction

The manager computes the load of the virtual nodes by us-
ing a prediction mechanism for each of them. The manager
stores, for a virtual node v, the data necessary to forecast the
load of v at arbitrary time. We refer to this data as Lv.

For example, by considering a prediction mechanism based
on a simple exponential smoothing:

vload(t +1) = α(
T

∑
i=0

vload(i)(1−α)i−1) (4)

then Lv would be the historical observations of the load of v
up to time t. Over time, the manager receives renewed load
estimation functions from the nodes. Indeed, Lv is computed
locally by each node, and then sent to the manager (see Al-
gorithm 1). Periodically nodes check the error between the
observed load value and the predicted value computed us-
ing Lv on the manager (line 3). If the error is larger than a
predefined threshold ξest , then Lv is updated and sent to the
manager (lines 4 and 7).

In our implementation we exploited an exponential smooth-
ing function [21] to predict load trends. This model assured
a good prediction power in spite of its simplicity. Neverthe-
less, the described approach in principle allows us to apply
a wide range of statistical models for the load estimation, as
for example autoregressive models for data prediction such
as ARMA or ARIMA [37]. The choice of the model depends
on the expected data fluctuations and the desired accuracy of
the prediction ξest . ξest represents a reasonable error in the
load estimation due to the choice of the estimation model.

Algorithm 1: Server’s load estimation
Data: managerAddress, the IP of the manager

1 repeat
2 foreach v ∈V N do
3 if |predictedLoad(Lv)−observedLoad| ≥ ξest

then
4 Lv← update(observedLoad);
5 msg← add(v, Lv) ;

6 if msg.size 6= 0 then
7 send(msg, managerAddress);

8 until true;

High accuracy estimation models predict the load trend for
large times interval ∆ t ahead. On the other hand, these mod-
els require intensive computation and are not suitable for
fast-pace applications like virtual environments. An in-depth
analysis of different prediction mechanisms is left as future
work.

4.2 Virtual Nodes Assignment

The virtual node assignment is computed by exploiting an
heuristics and according to the predicted system state and
the thresholds defined by the operator. For the sake of pre-
sentation, we divide the heuristics in two sub-tasks, virtual
node selection, and destination selection.

Virtual Node Selection The aim of this task is to mark the
virtual nodes to be migrated, adding them to vnpool . Note
that in this phase the manager works on an in-memory rep-
resentation of the system, and that the actual migrations are
executed once the virtual nodes assignment plan is defined.

The pseudo-code of this task is presented in Algorithm 2.
Initially, the manager marks virtual nodes from overloaded
nodes. Note that the manager compares the predicted load
factors of the node at time t + 1 against LFup (line 2). The
removal order of the virtual nodes considers the derivative
of the virtual nodes’ load trend. A virtual node with an high
derivative would probably have a burst in the load soon, and
migrating it may avoid overloading. Hence, the virtual nodes

Integrating Peer-to-Peer and Cloud Computing for Massively Multiuser Online Games 9

Algorithm 2: Virtual Nodes Selection
input : LFup, upper load factor threshold
input : Psize, the min amount of VNs to consider per epoch
input : αtresh, QoS threshold
output: vnpool , the list of virtual nodes to migrate

// Add VNs of overloaded nodes

1 foreach n ∈ N(t) do
2 while nl f (t +1) > LFup do
3 vnpool ← maxDerivative(nvn(t));

// Add VNs to control QoS

4 while α(t +1) ≥ αtresh do
5 VP← v ∈V N : v is assigned to a user resource;
6 vnpool ← maxDerivative (VP);

// Add backed up VN•
7 vnpool ← vnpool ∪ backUp();
// Removing VN from unused clouds

8 if size(vnpool) < Psize then
9 VC← v ∈V N : v is assigned to a cloud resource;

10 Sort VC in ascending order according to nodes predicted
load factor;

11 vnpool ← (Psize− size(vnpool)) VNs from VC;

// Anyway perturb the system

12 if size(vnpool) < Psize then
13 vnpool ← (Psize− size(vnpool)) random VN;

with the highest derivative are marked for migration as first
(line 3).

Afterwards, the manager marks virtual nodes for migra-
tion until α(t + 1) is over the αthresh defined by the oper-
ator (line 4). In this phase, only virtual nodes assigned to
user-provided resources are considered (line 5). Moreover
(line 7), the manager adds the virtual nodes currently man-
aged by the back-up cloud nodes to vnpool (see Section 2.6).

If, after these steps, the number of virtual nodes in vnpool
is less than Psize (line 8), additional virtual nodes are taken
from cloud nodes with the lowest predicted load factor (line 11).
This would lead to a removal of the unused cloud resources
over time. If the size of the vnpool is still lower than Psize, ad-
ditional random virtual nodes are marked (line 13), to guar-
antee a constant level of perturbation to the system, useful
to avoid being stuck in local optimal solutions.

Destination Selection The aim of this task is to assign the
virtual nodes from vnpool to nodes. The idea is to find, for
each virtual node in vnpool , a set of candidate nodes (nodepool),
and then assigns the virtual node to the node candidate that
minimizes the cost. The pseudo-code of this task is pre-
sented in Algorithm 3. Note that in the code we use the no-
tation n⊕ v to indicate a system where the node n would
manage the virtual node v.

For each virtual node v in vnpool , the manager first se-
lects the node candidates such that, if assigned v, their pre-
dicted load factor would be less than LFup (line 3). If no node
satisfies this requirement, a new cloud node is recruited and

Algorithm 3: Destination Selection
input : vnpool , the list of virtual server to migrate
input : LFup, upper load factor threshold
output: Actions, the list of migrations to execute

1 foreach v ∈ vnpool do
2 Chosen = Null;
3 nodepool ← nodepool ∪ {n ∈ N(t): nl f (t +1) < LFup given

(n⊕ v)};
4 if nodepool is /0 then
5 Chosen← recruitNewCloud();

6 else
7 nodepool ← (n ∈ nodepool : α(t +1)> αthres given

(n⊕ v));
8 if nodepool = /0 then
9 Chosen← recruitNewCloud();

10 else
11 Sort nodepool ascending according the cost;
12 Chosen← nodepool .getFirst();

13 Actions← migrate(v,Chosen);

14 executeActions();
15 releaseUnusedCloud();

v is assigned to it (line 5). Otherwise, the manager removes
from nodepool all the nodes that would decrease the QoS be-
low αthres (line 7). If no candidates remain in nodepool after
this further selection, a new cloud node is recruited. Other-
wise, among the candidates left in nodepool , the manager se-
lects the one minimizing the cost (line 12). Whenever all the
virtual nodes are assigned, the manager performs all the mi-
grations (see next section) and releases unused cloud nodes
(lines 14 and 15).

4.3 Migration

At the start of the epoch, the manager executes the migra-
tions that comes as output from the assignment computation
of the previous epoch.

The migration procedure has been originally presented
in our prior work [11]. We briefly explain it here with an ex-
ample. Suppose that a virtual node V migrates from a source
node A to a destination node B. The actions involved (pre-
sented in the sequential diagram of Figure 4) are the follow-
ing:

1. The manager sends a reference to V and the address of
recipient node B to node A.

2. A sends V to B, together with the list of users connected
to V . In the transient time that is needed to complete
the transfer, players still send entity update messages to
A, which in turn forwards them to B. Note that in this
transient period, entities may go out-of-sync and, as a
consequence, players may perceive some visual incon-
sistencies.

10 Hanna Kavalionak et al.

3. Once received the message, node B notifies the clients
that it has became the manager of V . From this point
on, clients are able to modify the state of the entities
included in V . However, the routing tables of the DHT
have to be updated to assure correct routing resolutions.

4. To this end, V executes a join operation having B as tar-
get in order to update its references in the DHT. This
operation updates the routing table of the node that are
in the path from V to B, still leaving dangling references
to A as the manager of V . To make consistent all refer-
ences, the stabilization process of the DHT is executed.

5. Finally, a leave operation is executed by V on A in order
to complete the process.

M
I
G

Manager Node A Node B Players

1. initTransfer
2. startTransfer

state action
state-action

3a. endTransfer

Migration
Time

3b. changeServer
L
E
A
V
E

J
O
I
N

DHT STABLIZATION

Fig. 4 Migration of a VN from the node A to node B

Since the objects inside the VN are not accessible to the
clients during the transfer, this phase might affect users ex-
perience. To avoid this problem, it is important to limit the
migration time of a virtual node, which largely depends on
its size. A detailed tuning of the virtual nodes dimension is
described in Section 5.2.

5 Experimental Results

The first part of this section presents the characteristics of
the workloads used in our simulations. Then, we propose
an empirical analysis to tune the dimension of the virtual
servers and the maximum capacity threshold. Finally, we
discuss the simulation results that consider cost and QoS
varying different parameters, such as the number of players,
the QoS threshold, and the churn level.

5.1 Workload Definition

A realistic simulation of the bandwidth load is central to
properly evaluate a MMOG infrastructure3. The bandwidth

3 We consider the load related to the management of the users. We
do not take into account the bandwidth consumed for other tasks, like
backup management, intra-server communications, and other services
at application level (e.g. voice over IP).

load is sampled according to a discrete time step model.
We define each step t to have a duration equal to ∆ t. For
each step we compute the outgoing bandwidth requirement
for the broadcasting of the entities of the players. The pric-
ing model for bandwidth and renting is the one of Amazon
EC2 [1]. In the following, we briefly describe the aspects
considered when building the synthetic workload for our
experimental setup; a more complete analysis is provided
in [8])

Mobility models for players. Avatars move according to re-
alistic mobility traces that have been computed exploiting
the mobility model presented by Legtchenko et al. [32], which
simulates avatars movement in Second Life [2]. We have
presented this implementation, as well as a comparison with
other mobility models, in [9]. In the model, players gather
around a set of hotspots, which usually corresponds to towns,
or in general to points of interest of the virtual world. Move-
ments are driven by a finite-state automaton, whose transi-
tion probabilities are taken from the original paper [32].

The objects distribution. To place objects over the virtual
environment, we use the same space characterization of hotspot
areas used by the mobility model. A fraction of the objects
is placed inside hotspot areas, so that their concentration fol-
lows a Zipfian distribution [42], with a peak in the hotspot
center. The rest of the objects is randomly placed outside
of hotspots. Figure 6 shows a snapshot of the placement of
avatars and objects in the virtual environment.

The variation of the players number over time. Evaluating
how the infrastructure adapts itself to variations in the num-
ber of players is an important task. In particular, since the
load is in direct correspondence with the number of play-
ers, we are interested on how an increasing (and decreasing)
load is managed by the infrastructure. We used two variation
patterns of the players number. The first simulates the arrival
and the leaving of a player according to a seasonal pattern,
like the one described in Figure 5. In this pattern, the min-
imum value is set equal to the 10% of the maximum. The
second pattern considers a stable number of users, i.e. their
number does not change during the simulation. We gener-
ated two different workload from these patterns. In the rest
of this section, we refer to the workload with the seasonal
pattern as W1, and to the pattern with no variation as W2.

5.2 Tuning the Virtual Nodes Dimension

As we stated in Section 3, the migration time (MT) may af-
fect the interactivity of the virtual environment. The more
time a migration takes, the more the users perceive the vir-
tual environment as “frozen”.

Integrating Peer-to-Peer and Cloud Computing for Massively Multiuser Online Games 11

 0

 200

 400

 600

 800

 1000

N
u
m

b
e
r

o
f
p
la

y
e
rs

 0

 2

 4

 0 50 100 150 200

L
o
a
d
 (

M
B

/s
)

Ticks

Fig. 5 Number of players over time (up) and correspondent load vari-
ation (down)

Fig. 6 Objects and avatars placement in the virtual environment

The MT of a virtual node mostly depends on its size; in-
deed, it is important to tune this size to minimize this prob-
lem. The size of the virtual node depends on several factors:
(i) the size of the routing table, (ii) the number of the clients
accessing the virtual node, and (iii) the number of entities
handled. In the following we enter in details of these three
aspects.

The size of the routing table. The routing table of the vir-
tual node contains the references to other DHT nodes, and
depends on the particular DHT implementation chosen. In
general, the routing table size is logarithmic with respect to
the number of nodes participating in the DHT [46]. In our
implementation we use Chord DHT [47] where each entry
of the table is composed by a DHT-ID (160 bits) and a IP (32
bits). By considering a large DHT with 10K virtual nodes,
the routing table contains 14 entries. Hence, the size of the
routing table is 336 bytes.

The number of the clients accessing the virtual nodes. Any
virtual node maintains a list of accessing clients. In order
to estimate the number of connected clients per virtual node
entity, we conducted an empirical analysis. We counted the

clients per entity per minute (hence, we consider a quite
large timespan) in a simulation with synthetic generated avatars
movements. The movements and the placement of the ob-
jects in the virtual environment were generated as described
in Section 5.1. Figure 7 shows the histogram of the clients
(in percentage) plotted in a log-log scale. The trend of the
plot resembles a power law, i.e. a function of the form y(x)=
Kx−α . By fitting the data, we derived K = 0.5 and α = 1.4
(the corresponding function is also plotted in the figure). We
exploited a number generator based on this function to gen-
erate the number of accessing clients for each virtual node,
which is then multiplied for the length of the entry of the
accessing clients list. An entry contains a UID (32 bits), a IP
(32 bits) and a port (32 bits).

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

data

k=0.5 α=1.4

Fig. 7 Average clients per entity per minute plotted in log-log

The number of entities handled. The content of an entity is
composed by (i) a UID (32 bits), (ii) a DHT-ID (160 bits),
(iii) a point representing the two-dimensional position in the
virtual environment of the entity (32+32 bits), and (iv) a list
of attributes, where to each entry name (32 bits) corresponds
a respective value (64 bits). Let us assume that the dimen-
sion of the attribute list is arbitrarily fixed for all entities to
10 elements. We argue that this value is a good average es-
timate to contain enough information for a general MMOG.
Summing up, each entity descriptor has a size of about 140
bytes.

We aim to determine the maximum size of a virtual node
such that in the 95% of the cases the migration time (MT)
takes less than the interactivity delay users may tolerate in
response of their actions. This delay spans from few hun-
dreds of milliseconds in fast-paced MMOGs up to two sec-
onds in slow-paced MMOGs [15]. Here we stay in the mid-
dle, and consider the interactivity delay under 1 second as
tolerable, which fits medium-paced game genre.

In order to find the maximum size of a virtual node we
needed a MT model. The size of the virtual nodes were

12 Hanna Kavalionak et al.

generated by considering the aspects (size of routing table,
accessing clients and entities handled) detailed above. To
model MT we have exploited (with some minor modifica-
tion) the model for TCP latency proposed by Cardwell et
al. [7]. This TCP latency model requires Round Trip Times
(RTTs) as input parameter. We model RTT delays according
to the traces of the king dataset [24].

Based on the MT model we conducted experiments to
study the influence of a size of virtual node on MT. Figure 8
shows that virtual nodes managing less than 15 entities have
an MT less than one second with the 95th percentile. In the
following, we use 15 as a maximum number of entities per
virtual node.

More generally, this result may be used in two ways.
Given a virtual environment with a predictable number of
entities, it is possible to define the minimum number of vir-
tual nodes to employ. On the other side, if a specific number
of virtual nodes are needed, it is possible to know the maxi-
mum number of entities the system can support.

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 0 5 10 15 20 25 30 35 40 45 50

m
ill

is
e
c
o
n
d
s

number of objects

MT 95th

Fig. 8 95th percentile of MT with different amount of objects

5.3 Impact of a Virtual Node on the CPU

In order to understand whether a user-provided node can
manage a VN, we deployed a prototype of our architecture
on a real test-bed. For the experiment we considered a VN
with 12 objects, accessed by 20 players concurrently and
each player modifying the state of an object every 100ms
(in total 200 messages/seconds arrive to the VN). With this
setup, we measured the impact on the CPU of an average
desktop workstation to be around the 6%. This suggests that
a non-dedicated machine can manage a VN without com-
promising its performances.

5.4 Tuning the Capacity Threshold

In this section we discuss the evaluation of two parameters:
(i) the maximum node capacity LFup (see Section 3) and (ii)
the error of the load prediction ξest (see Section 4). A proper
tuning of these parameters is essential to avoid nodes over-
loading as well as resource under- and over-provisioning.

 0

 1

 2

 3

 4

 5

 6

 7

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o
v
e
rl
o
a
d
in

g

LFup

0.05 εest
0.25 εest
0.5 εest

Fig. 9 Percentage of overloading over LF up for different eps

 30

 35

 40

 45

 50

 55

 60

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c
o
s
t
in

 U
S

$

LFup

0.5 εest
0.25 εest
0.05 εest

Fig. 10 Total simulation cost over LF up with different eps

In our experiments we considered the value of LFup to
be the same for all the nodes. Figure 9 shows the percentage
of overloading load for different LFup values. As we can see
from this figure, for a low LFup the selection of epsilon is
irrelevant. In particular, until LFup = 0.8 the percentage of
overloading remains around 0%. Nevertheless, setting ξest =

0.05 allows to tune LF up = 0.9 without nodes overloading
and shows better shows in terms of resource utilization. By
comparison, with ξest = 0.25 or higher, overloading starts at
LFup = 0.8. However, if we use all the capacity of the nodes
(LF up = 1), the percentage of overloading grows up to 7%.
This can be explained with the tendency of our prediction

Integrating Peer-to-Peer and Cloud Computing for Massively Multiuser Online Games 13

mechanism to under-predict the load of the virtual nodes,
causing the utilization of less resources then needed.

As we can see in Figure 10, the system cost decreases as
LFup increases. Nevertheless, for a high LFup (LFup = 0.9)
the selection of the ξest is not relevant. The fact that with
ξest = 0.05 we yield better results in terms of resource uti-
lization, candidates LFup = 0.9 and ξest = 0.05 as good val-
ues for the parameters. Note that these results hold for the
chosen prediction mechanism, and should be recomputed if
other prediction techniques are used.

5.5 Cost over the number of players

In this section we analyze the cost per minute over time and
the total cost of a simulation with the seasonal (W1) and fixed
(W2) access patterns, and with different number of players
(from 1 up to 10 thousand). The QoS threshold, αthres, is set
to 0.95, LFup = 0.9 and ξest = 0.05.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 100 200 300 400 500

c
o
s
t
in

 U
S

$

time

10000 players
5000 players
2000 players
1000 players

Fig. 11 Cost per minute over time considering workload 1, w1

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 100 200 300 400 500

c
o
s
t
in

 U
S

$

time

10000 players
5000 players
2000 players
1000 players

Fig. 12 Cost per minute over time considering workload 2, w2

Figures 11 and 12 show the cost per minute over time
with W1 and W2 respectively. From the figures, it is evident

that the cost largely depends on the number of players. The
cost with W1 has evident peaks and falls, and the cost per
minute grows accordingly with the number of players. In
this sense, the ability to exploit user-provided resources in
situation of low load yields a clear advantage. On the con-
trary, the cost with W2 is more stable, as the load is imposed
only by the movements of the players in the virtual world
and not by their access patterns. However, it is interesting to
notice that the cost growing is not linear in terms of number
of players and the cost for 10k users is almost 4 times higher
than for 5k. This occurs since with a dramatic growing of
load, user-provided resources became less able to serve vir-
tual nodes.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

c
o
s
t
in

 U
S

$

max number of players

1 αthresh
0.99 αthresh
0.97 αthresh
0.95 αthresh

Fig. 13 Total cost with workload 1

 0

 20

 40

 60

 80

 100

 120

 140

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

c
o
s
t
in

 U
S

$

number of players

1 αthresh
0.99 αthresh
0.97 αthresh
0.95 αthresh

Fig. 14 Total cost with workload 2

Figures 13 and 14 depict the cost of a ten hours sim-
ulation for different number of players for W1 and W2 re-
spectively. As it was expected, the cost with W2 is higher
due to the larger number of concurrent players participating
to the virtual world. Moreover, as we can see from the fig-
ures, a lower QoS threshold allows to significantly reduce
the total system cost. However, the difference of total cost

14 Hanna Kavalionak et al.

between αthres = 1 and αthres = 0.99 is 20% considering
W1, whereas it drops to 1% when considering W2. Further-
more, the difference between αthres = 1 and αthres = 0.95 is
around 60% in W1, whereas it is still 1% in W2. This sug-
gests that with a fixed, maximum number of players, some
virtual nodes are too heavily loaded to be managed by user-
provided resources, even if those resources are available.
This results in a larger utilization of cloud resources, which
in turn increases the cost. Nevertheless, the system with W2

shows good results in case of medium size load (around 5k
users) and allows to reduce up to 60% of the cost between
αthres = 1 and αthres = 0.95.

Figures 13 and 14 also introduce another interesting ob-
servation. The cost of the two workloads when αthres is 0.95
and 0.97 are basically the same. This suggests that a fur-
ther reduction in the αthres would have no impact on the cost
of the platforms. This occurs because no virtual nodes can
be assigned to user-provided resources, due to their limited
bandwidth capabilities. The correspondence of results with
αthres equal to 0.95 and 0.97 is also present in the next sec-
tion.

5.6 Qos and Cost Trade-off

One of the strength of our approach is to provide MMOG
operators the ability to set the desired level of QoS of the
platform. The operator chooses the QoS threshold, αthresh,
which affects the assignment of virtual nodes to nodes. In
general, the higher the threshold, the less virtual nodes are
assigned to user-provided resources. As a consequence, this
threshold indirectly controls the operational cost of the plat-
form.

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 100 200 300 400 500

Q
o
S

time

0.99 αthresh
0.97 αthresh
0.95 αthresh

Fig. 15 QoS over time with different QoS thresholds

To evaluate the trade-off between cost and QoS we con-
sidered the workload W1, ξest = 0.05, LFup = 0.9 and 5k
players. Figure 15 shows how the architecture maintains the
QoS in the system above the specified QoS level. At first,

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 100 200 300 400 500

c
o
s
t
in

 U
S

$

time

1 αthresh
0.99 αthresh
0.97 αthresh
0.95 αthresh

Fig. 16 Cost per minute with different QoS thresholds

as we can see from the figure, the architecture successfully
maintains a level of QoS above the threshold. However, the
system QoS never reaches the threshold of 0.95. This is
because all the virtual nodes that can be assigned to user-
provided resources have been already assigned. One more
point is when the level of the QoS raises up, regardless of
the threshold. These increments occur when cloud resources
are exploited to supply the low number of user-provided re-
sources. For instance, around the 200th and 400th ticks ac-
cording to the seasonal pattern there are no available user-
provided resources to support the system (see Figure 5).

Figure 16 shows the cost per minute for different QoS
thresholds. In the situations of peak load and lack of user-
provided resources the utilization of cloud increases, in fact
increasing the cost as well. This suggests that on-demand
resources are essential in order to support the MMOG.

5.7 Churn analysis

By employing user-provided resources, our system is ex-
posed to the effects of the players’ churn, i.e. the process
of players leaving and joining the MMOG over time. We
considered two aspects of churn. The first aspect is related
to the seasonal access pattern of players, which considers
the churn over long periods of time. This aspect is modelled
by considering a workload with a variable total number of
players over time (see Section 5.1). The second aspect re-
gards the churn during short periods of time. This kind of
churn does not affect the ”big picture” of the seasonal ac-
cess pattern of players, but instead generates an interchange
of players during a small fraction of time. We modelled this
second aspect by assigning to the probability of players in-
terchange the values 0.05, 0.1 and 0.5.

Figure 17 shows the results in terms of QoS. In the ex-
periments we used αthresh = 0.95. The figure suggests that
the level of churn directly affects the minimum level of QoS
reached. In case of high churn level, the amount of user-

Integrating Peer-to-Peer and Cloud Computing for Massively Multiuser Online Games 15

provided resources is reduced to maintain an acceptable level
of QoS. For instance, with a churn level of 0.05 the QoS
stays around 0.99, whereas with a churn level of 0.5 the QoS
drops to the threshold parameter 0.95. This is confirmed in
Figure 18, which measures the cost at the same conditions.
As we can see with a churn level of 0.5 the cost is signifi-
cantly higher than in the other cases.

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 100 200 300 400 500 600

Q
o
S

time

0.05
0.10
0.5

Fig. 17 QoS over time with different churn levels

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 100 200 300 400 500 600

c
o
s
t
in

 U
S

$

time

0.05
0.1
0.5

Fig. 18 Cost over time with different churn levels

6 Related work

In this section we frame our work in two macro-areas: in-
tegration of P2P and Cloud Computing (Section 6.1) and
hybrid architectures for MMOGs (Section 6.2). In Section
6.3 we collect and compare approaches that, to the best of
our knowledge, are more relevant with respect to the provi-
sioning of resources in Cloud-operated MMOGs.

6.1 Integration of P2P and Cloud Computing

Combined cloud and P2P infrastructures recently gained at-
tention from the research community. These infrastructures
aim to resolve the issues typical of pure P2P solutions.

A common problem is the asymmetry in the bandwidth
capability of user-provided resources, where the download
bandwidth is usually much higher than upload. In content
distribution and information dissemination, a widely used
approach to enable the upload of the content from user- pro-
vided resources is to use the so called helpers, i.e. additional
cloud nodes supporting the delivery of content [36,48,49,
38].

A MMOG infrastructure can be seen as a content deliv-
ery system, where the content is the state of the virtual envi-
ronment. In this sense, the addition of cloud to support user-
provided servers in the management of the MMOG, is com-
parable to adding helpers. However, unlike classical content
delivering, the state of the MMOG is modified by the players
themselves, so servers shall manage not only the diffusion
but also the consistency and correctness of the information.

An essential property in hybrid P2P-cloud architectures
is self-configuration: components and protocols are auto-
nomically configured according to specific target goals (such
as reliability and availability). In dynamic contexts, self-
configuration is often supported by forecasting the resource
utilization [52] and orchestrating the leasing and releasing
of pay-per-use resources. In our previous work [30] we ex-
ploited a resource prediction mechanism to self -tune the
amount of replicas on top of an hybrid P2P and cloud sys-
tem. We leveraged this experience to proactively assign the
objects of the MMOG to the nodes of the infrastructure.

6.2 Hybrid MMOG architectures

Last decade has seen the rising of several P2P-based archi-
tectures targeting large-scale on-line games. Among them,
the hybrid MMOG architectures focused on the combina-
tion of centralized resources with P2P paradigms to support
MMOGs. To the best of our knowledge, this work is the first
proposing the integration of P2P and cloud computing as a
solution for MMOGs.

Hybrid MMOG architectures aim to exploit and com-
bine user-provided resources (peers) and centralized resources
(servers) in a seamless infrastructure. A central issue for hy-
brid MMOGs is to define a partitioning of the virtual en-
vironment, so that it is possible to assign specific tasks to
peers. A widely-used method is spatial partitioning, i.e. the
virtual environment is divided into regions or cells, whose
dimension can be either fixed or variable. These regions are
in turn assigned to a peer or a server, that becomes the man-
ager of the entities in such regions. Kim et al. [31] consider
a virtual environment partitioned in square regions, initially

16 Hanna Kavalionak et al.

managed by a central server. The first peer with enough
computational and bandwidth capabilities to enter a cell be-
comes the cell manager. Afterwards, a fixed number of peers
entering the same cell act as backup managers in order to in-
crease failure robustness. Similarly, Barri et al. [3] proposes
an hybrid system including a central server and a pool of
peers. The central server runs the MMOG and, as soon as it
reaches the maximum of its capacity, it delegates part of the
load to the peers.

Other approaches employ a functional partitioning of the
MMOG, where only subset of functions are delegated to
peers. For instance, Chen and Muntz [14] proposes a func-
tional partition of the MMOGs tasks. Central servers are re-
sponsible for user authentication and game persistence while
manage only regions characterized by high-density user in-
teractions, whereas peers support low-density interaction re-
gions. Jardine and Zappala [28] provide a distinction be-
tween positional and state-changing actions. They propose
an hybrid architecture where peers manage positional ac-
tions, that are more frequent and prone to be maintained
locally. Central servers handle state-changing actions, that
are not transitory and require a larger amount computational
power. By comparison, our general architecture exploits a
similar characterization of actions, while the functional par-
titioning is done at the level of components rather than at
resource type. In other words, we employ two different com-
ponents that respectively manage positional and state-changing
actions.

With respect to the state of the art, we stay somewhere
in the middle. On one hand, we consider some functionali-
ties, like authentication, to be handled by centralized and full
controllable servers. On the other hand, other functionalities
may be mapped to both central servers and peers. This re-
quires a more flexible, dynamic strategy for region distribu-
tion, to allow for a fine-grained management of the resources
by the MMOG operator. Resources control is very impor-
tant for our approach, because the seamless combination of
cloud computing and P2P requires to keep under control the
cost and effectively deal with the implicit uncertainty related
to peers.

6.3 Resource provisioning in Cloud Computing

With the advent of Cloud Computing there is the tendency to
decouple resource management of applications and services
from the underlying infrastructure. This requires mechanisms
and strategies for adapting the provisioning of resources to
the variable workload of applications and to meet the given
QoS. A number of works in this field are focused on gen-
eral purpose architectures for adaptive resource provisioning
[12,27,18], whereas other considered more specific chal-
lenges, such as cost optimization [22,13] and energy sav-
ing [29]. Along with general-purpose works, application-

specific proposals such as scientific [17] and data streaming
[43] have been proposed.

In this context, MMOG architectures are not exceptions.
In the last years, several works have been proposed with
the specific aim of resource provision in on-demand infras-
tructures according to MMOGs workloads and QoS. In the
following we describe and compare the works that, at best
of our knowledge, show most analogies with our paper. We
identified five main features that characterize provisioning
for MMOG services (see Table 2):

– underlying infrastructure;
– feedback model, which differentiates between respond-

ing to monitoring or employing some type of prediction
to allow a pro-active behavior;

– provisioning principles, describes the principles that drive
the provisioning;

– migration, whether the impact of migration is considered
when orchestrating provisioning;

– cost analysis, whether a cost analysis of the proposed
solution is performed.

D. Ta et al. [50] proposes a set of algorithms to optimize
resources in a MMOG platform, while maintaining the net-
work latency as low as possible. The assignment of clients
to servers is done purely based on the latency, as they as-
sume servers to have unlimited computing and bandwidth
capabilities. However, the authors considered a fixed-pool
of resources, therefore they do not provide mechanisms to
acquire and releasing resources. As a consequence, migra-
tion is not considered in the affection of the QoS and the
paper does not provide an analysis of cost related with the
management of the platform. Similarly to us, Marzolla et
al [34] present an adaptive Cloud resource provisioning for
MMOG. Their system replies accordingly to the level of the
QoS (i.e. latency between servers and clients) adding or re-
leasing resources. However, their system is not pro-active
as they do not consider load prediction when computing the
amount of necessary resources. In a series of papers [39,
40], Nae et at. present a comprehensive architecture for the
management and on-demand provisioning of resources for a
MMOG platform. Their work takes into account the impact
of migration on the QoS, employs a prediction system and
provides cost analysis. The main difference with our work is
in the fact that the authors do not consider directly the cost of
the platform as a mean to drive the provisioning. One more
difference is in the integration of user-provided resources
into the system.

corollary

7 Conclusion

The combination of cloud and P2P computing is currently
an hot topic in various applications, including large scale on-

Integrating Peer-to-Peer and Cloud Computing for Massively Multiuser Online Games 17

- Underlying infrastructure Feedback model Provisioning principles Migration Cost analysis
D. Ta et al. [50] server clusters N/A network latency no no

Marzolla et al. [34] cloud monitoring response time no no
Nae et al. [39,40] cloud prediction resource type and network latency yes yes

Our work cloud, user resources prediction server overloading, cost yes yes

Table 2 Comparison among approaches employing adaptive resource provisioning

line games. The embedded flexibility of these architectures
is a valuable asset for operators, that can choose which kind
of resources to use. In this direction, this paper proposes a
hybrid architecture merging the different characteristics of
P2P and cloud nodes to offer a valid support for large scale
on-line games. An efficient and effective provisioning of re-
sources and mapping of load are mandatory to realize an ar-
chitecture that scales in economical cost and quality of ser-
vice to large communities of users.

Our heuristics tackles these issues by strategically mi-
grating the load and recruiting new resources. We also pro-
vide operators with the ability to control the behavior of the
platform. By selecting a desired QoS level, operators can
control the amount of cloud and user-provided resources to
exploit. This allows performing aggressive strategies with
the aim of reducing the cost. We demonstrated that trading
a negligible amount of QoS cuts the cost of the platform up
to 60%. Furthermore, the approach is proved to be robust in
case of high system load and extremely high level of net-
work churn.

Due to its flexibility and generality, our work opens ad-
ditional research paths that can be explored. For instance, an
analysis with different load prediction mechanisms would
adapt our techniques to other kind of workloads. Another
interesting improvement would be to adapt our technique to
the possibility to use different cloud providers at the same
time, in order to increase economical effectiveness. Further-
more, the investigation of NAT traversal solutions might in-
crease applicability of our approach in realistic network con-
ditions.

References

1. Amazon elastic compute cloud (Amazon EC2). http://aws.

amazon.com/ec2/, [Online; accessed Aug-2012]
2. Second life website. Http://secondlife.com/, [Online; accessed

Jan-2013]
3. Barri, I., Giné, F., Roig, C.: A Scalable Hybrid P2P System for

MMOFPS. 2010 18th Euromicro Conference on Parallel, Dis-
tributed and Network-based Processing pp. 341–347 (2010)

4. Barri, I., Gine, F., Roig, C.: A Hybrid P2P System to Support
MMORPG Playability. 2011 IEEE International Conference on
High Performance Computing and Communications pp. 569–574
(2011)

5. Bharambe, A., Douceur, J., Lorch, J., Moscibroda, T., Pang, J.,
Seshan, S., Zhuang, X.: Donnybrook: Enabling large-scale, high-
speed, peer-to-peer games. ACM SIGCOMM Computer Commu-
nication Review 38(4), 389–400 (2008)

6. Buyya, R., Yeo, C., Venugopal, S., Broberg, J., Brandic, I.: Cloud
computing and emerging IT platforms: Vision, hype, and reality
for delivering computing as the 5th utility. Future Generation com-
puter systems 25(6), 599–616 (2009)

7. Cardwell, N., Savage, S., Anderson, T.: Modeling tcp latency.
In: INFOCOM 2000. Nineteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings.
IEEE, vol. 3, pp. 1742–1751. IEEE (2000)

8. Carlini, E.: Combining peer-to-peer and cloud computing for large
scale on-line games. Ph.D. thesis, IMT Institute for Advanced
Studies Lucca (2012)

9. Carlini, E., Coppola, M., Ricci, L.: Evaluating compass routing
based aoi-cast by mogs mobility models. In: Proceedings of the
4th International Conference on Simulation Tools and Techniques,
pp. 328–335. ICST (2011)

10. Carlini, E., Coppola, M., Ricci, L.: Reducing Server Load in
MMOG via P2P Gossip. In: Proceedings of the 11th An-
nual Workshop on Network and Systems Support for Games
(NetGames) (2012)

11. Carlini, E., Ricci, L., Coppola, M.: Flexible load distribution for
hybrid distributed virtual environments. Future Generation Com-
puter Systems (2012)

12. Casalicchio, E., Silvestri, L.: Architectures for autonomic service
management in cloud-based systems. In: Computers and Commu-
nications (ISCC), 2011 IEEE Symposium on, pp. 161–166. IEEE
(2011)

13. Chaisiri, S., Kaewpuang, R., Lee, B.S., Niyato, D.: Cost mini-
mization for provisioning virtual servers in amazon elastic com-
pute cloud. In: Modeling, Analysis & Simulation of Computer
and Telecommunication Systems (MASCOTS), 2011 IEEE 19th
International Symposium on, pp. 85–95. IEEE (2011)

14. Chen, A., Muntz, R.: Peer clustering: a hybrid approach to dis-
tributed virtual environments. In: Proceedings of 5th ACM SIG-
COMM workshop on Network and system support for games,
p. 11. ACM (2006)

15. Claypool, M., Claypool, K.: Latency and player actions in online
games. Communications of the ACM 49(11), 40–45 (2006)

16. Cronin, E., Kurc, A., Filstrup, B., Jamin, S.: An efficient synchro-
nization mechanism for mirrored game architectures. Multimedia
Tools and Applications 23(1), 7–30 (2004)

17. Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The
cost of doing science on the cloud: the montage example. In: Pro-
ceedings of the 2008 ACM/IEEE conference on Supercomputing,
p. 50. IEEE Press (2008)

18. Espadas, J., Molina, A., Jiménez, G., Molina, M., Ramı́rez, R.,
Concha, D.: A tenant-based resource allocation model for scaling
software-as-a-service applications over cloud computing infras-
tructures. Future Generation Computer Systems 29(1), 273–286
(2013)

19. Ford, B., Srisuresh, P., Kegel, D.: Peer-to-peer communication
across network address translators. In: USENIX Annual Technical
Conference, General Track, pp. 179–192. USENIX (2005)

20. Frey, D., Royan, J., Piegay, R., Kermarrec, A., Anceaume, E., Le
Fessant, F.: Solipsis: A decentralized architecture for virtual envi-
ronments. Proceeding of 1st International Workshop on Massively
Multiuser Virtual Environments (MMVE’08) pp. 29–33 (2008)

21. Gardner, E.: Exponential smoothing: The state of the art—part ii.
International Journal of Forecasting 22(4), 637–666 (2006)

18 Hanna Kavalionak et al.

22. Ghanbari, H., Simmons, B., Litoiu, M., Iszlai, G.: Feedback-based
optimization of a private cloud. Future Generation Computer Sys-
tems 28(1), 104–111 (2012)

23. Godfrey, B., Lakshminarayanan, K., Surana, S., Karp, R., Stoica,
I.: Load balancing in dynamic structured P2P systems. In: INFO-
COM 2004. Twenty-third Conference of the IEEE Computer and
Communications Societies, pp. 2253–2262. IEEE (2004)

24. Gummadi, K., Saroiu, S., Gribble, S.: King: Estimating latency
between arbitrary internet end hosts. In: Proceedings of the 2nd
ACM SIGCOMM Workshop on Internet measurment, pp. 5–18.
ACM (2002)

25. Hu, S.: Spatial Publish Subscribe. Proc. of IEEE Virtual Reality
(IEEE VR) workshop, Massively Multiuser Virtual Environment
(MMVE’Äô09) (2009)

26. Hu, S., Chen, J., Chen, T.: VON: a scalable peer-to-peer network
for virtual environments. Network, IEEE 20(4), 22–31 (2006)

27. Huber, N., Brosig, F., Kounev, S.: Model-based self-adaptive re-
source allocation in virtualized environments. In: Proceedings
of the 6th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, pp. 90–99. ACM (2011)

28. Jardine, J., Zappala, D.: A hybrid architecture for massively mul-
tiplayer online games. In: Proceedings of the 7th ACM SIG-
COMM Workshop on Network and System Support for Games,
p. 60. ACM (2008)

29. Kantarci, B., Mouftah, H.T.: Optimal reconfiguration of the cloud
network for maximum energy savings. In: Proceedings of the 2012
12th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (ccgrid 2012), pp. 835–840. IEEE Computer So-
ciety (2012)

30. Kavalionak, H., Montresor, A.: P2P and cloud: A marriage of con-
venience for replica management. In: Proc. of IWSOS’12, pp.
60–71. Springer (2012)

31. Kim, K., Yeom, I., Lee, J.: HYMS: A hybrid mmog server archi-
tecture. IEICE Transactions on Information and Systems E87,
2706–2713 (2004)

32. Legtchenko, S.: Blue Banana: resilience to avatar mobility in dis-
tributed MMOGs. Networks pp. 171–180 (2010)

33. Markatchev, N., Curry, R., Kiddle, C., Mirtchovski, A., Sim-
monds, R., Tan, T.: A cloud-based interactive application service.
In: e-Science, 2009. e-Science’09. Fifth IEEE International Con-
ference on, pp. 102–109. IEEE (2009)

34. Marzolla, M., Ferretti, S., D’angelo, G.: Dynamic resource pro-
visioning for cloud-based gaming infrastructures. Computers in
Entertainment (CIE) 10(3), 4 (2012)

35. Mauve, M., Vogel, J., Hilt, V., Effelsberg, W.: Local-lag and time-
warp: Providing consistency for replicated continuous applica-
tions. IEEE Transactions on Multimedia 6(1), 47–57 (2004)

36. Michiardi, P., Carra, D., Albanese, F., Bestavros, A.: Peer-assisted
content distribution on a budget. Computer Networks 56(7),
2038–2048 (2012)

37. Montgomery, D., Jennings, C., Kulahci, M.: Introduction to time
series analysis and forecasting, vol. 526. Wiley (2011)

38. Montresor, A., Abeni, L.: Cloudy weather for P2P, with a chance
of gossip. In: Proc. of P2P’11, pp. 250–259. IEEE (2011)

39. Nae, V., Iosup, A., Podlipnig, S., Prodan, R., Epema, D.,
Fahringer, T.: Efficient management of data center resources for
Massively Multiplayer Online Games. 2008 SC - International
Conference for High Performance Computing, Networking, Stor-
age and Analysis pp. 1–12 (2008)

40. Nae, V., Prodan, R., Fahringer, T.: Cost-efficient hosting and load
balancing of massively multiplayer online games. In: Grid Com-
puting (GRID), 2010 11th IEEE/ACM International Conference
on, pp. 9–16. IEEE (2010)

41. Nae, V., Prodan, R., Iosup, A., Fahringer, T.: A new business
model for massively multiplayer online games. In: Proceeding of
the second joint WOSP/SIPEW international conference on Per-
formance engineering, pp. 271–282. ACM (2011)

42. Newman, M.: Power laws, pareto distributions and zipf’s law.
Contemporary physics 46(5), 323–351 (2005)

43. Payberah, A.H., Kavalionak, H., Kumaresan, V., Montresor, A.,
Haridi, S.: Clive: Cloud-assisted p2p live streaming. In: Peer-to-
Peer Computing (P2P), 2012 IEEE 12th International Conference
on, pp. 79–90. IEEE (2012)

44. Roverso, R., El-Ansary, S., Haridi, S.: Natcracker: Nat combina-
tions matter. In: ICCCN, pp. 1–7. IEEE (2009)

45. Saito, Y., Shapiro, M.: Optimistic replication. ACM Computing
Surveys (CSUR) 37(1), 42–81 (2005)

46. Steinmetz, R., Wehrle, K.: Peer-to-Peer Systems and Applications,
vol. 3485. Lecture Notes in Computer Science (2005)

47. Stoica, I., Morris, R., Liben-nowell, D., Karger, D.R., Kaashoek,
M.F., Dabek, F., Balakrishnan, H.: Chord: A Scalable Peer-to-Peer
Lookup Protocol for Internet Applications. IEEE/ACM Transac-
tions on Networking (TON) 11(1), 17–32 (2003)

48. Sweha, R., Ishakian, V., Bestavros, A.: Angels in the cloud: A
peer-assisted bulk-synchronous content distribution service. In:
Proc. of CLOUD’11, pp. 97–104. IEEE (2011)

49. Sweha, R., Ishakian, V., Bestavros, A.: AngelCast: cloud-based
peer-assisted live streaming using optimized multi-tree construc-
tion. In: Proc. of MMsys’12, pp. 191–202. ACM (2012)

50. Ta, D.N.B., Nguyen, T., Zhou, S., Tang, X., Cai, W., Ayani, R.:
Interactivity-constrained server provisioning in large-scale dis-
tributed virtual environments. Parallel and Distributed Systems,
IEEE Transactions on 23(2), 304–312 (2012)

51. Wu, J.: The World of MMORPG: a Tale of Two Regions (2010).
URL strategyanalytics.com

52. Wu, Y., Wu, C., Li, B., Qiu, X., Lau, F.: Cloudmedia: When cloud
on demand meets video on demand. In: Proc. of ICDCS’11, pp.
268–277. IEEE (2011)

