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Abstract—Peer-to-peer (P2P) video streaming is an emerging
technology that reduces the barrier to stream live events over
the Internet. Unfortunately, satisfying soft real-time constraints
on the delay between the generation of the stream and its actual
delivery to users is still a challenging problem. Bottlenecks in
the available upload bandwidth, both at the media source and
inside the overlay network, may limit the quality of service
(QoS) experienced by users. A potential solution for this problem
is assisting the P2P streaming network by a cloud computing
infrastructure to guarantee a minimum level of QoS. In such
approach, rented cloud resources (helpers) are added on demand
to the overlay, to increase the amount of total available bandwidth
and the probability of receiving the video on time. Hence, the
problem to be solved becomes minimizing the economical cost,
provided that a set of constraints on QoS is satisfied. The main
contribution of this paper is CLIVE, a cloud-assisted P2P live
streaming system that demonstrates the feasibility of these ideas.
CLIVE estimates the available capacity in the system through
a gossip-based aggregation protocol and provisions the required
resources from the cloud to guarantee a given level of QoS at
low cost. We perform extensive simulations and evaluate CLIVE
using large-scale experiments under dynamic realistic settings.

I. INTRODUCTION

Peer-to-peer (P2P) live streaming is becoming an increas-
ingly popular technology, with a large number of academic [1],
[2], [3], [4], [5] and commercial [6], [7] products being
designed and deployed.

In such systems, one of the main challenges is to provide
a good quality of service (QoS) in spite of the dynamic
behavior of the network. For live streaming, QoS means high
playback continuity and short playback delay. There is a trade-
off between these two properties: it is possible to increase the
playback continuity by adopting larger stream buffers, but at
the expense of delay. On the other hand, improving playback
delay requires that no bottlenecks are present in either the
upload bandwidth of the media source and the aggregated
upload bandwidth of all peers in the swarm, i.e., the peers
forming the P2P streaming overlay [8], [9].

Increasing the bandwidth at the media source is not always
an option, and even when possible, bottlenecks in the swarm
have proven to be much more disruptive [8]. An interesting
approach to solve this issue is the addition of auxiliary helpers
to accelerate the content propagation. A helper could be an
active computational node that participates in the streaming
protocol, or it could be a passive storage service that just
provides content on demand. The helpers increase the total
upload bandwidth available in the system, thus, potentially
reducing the playback delay. Both types of helpers could be

rented on demand from an IaaS (Infrastructure as a Service)
cloud provider, e.g., Amazon AWS. Considering the capacity
and the cost of helpers, the problem consists in selecting the
right type of helpers (passive vs. active), and provisioning their
number with respect to the dynamic behavior of the users. If
too few helpers are present, it could be impossible to achieve
the desired level of QoS. On the other hand, renting helpers
is costly, and their number should be minimized.

This P2P-cloud hybrid approach, termed cloud-assisted P2P
computing, has already been pursued by a number of P2P
content distribution systems. For example, CLOUDANGEL [9]
dynamically places active helpers in the swarm to optimize
data delivery, and CLOUDCAST [10] employs a single passive
helper and enforces strict limits on the number of (costly) in-
teractions with it that originate from peers. However, adapting
the cloud-assisted approach to P2P live streaming is still an
open issue. Live streaming differs from the content distribution
for its soft real-time constraints and a higher dynamism in the
network, as the users may be zapping between several channels
and start or stop to watch a video at anytime [11], [12].

The contribution of this paper is the design and evaluation
of CLIVE, a novel cloud-assisted P2P live streaming system
that guarantees a predefined QoS level by dynamically renting
helpers from a cloud infrastructure. We model our problem
as an optimization problem, where the constraints are given
by the desired QoS level, while the objective function is to
minimize the total economic cost incurred in renting resources
from the cloud. We provide an approximate, on-line solution
that is (i) adaptive to dynamic networks and (ii) decentralized.

CLIVE extends existing mesh-pull P2P overlay networks for
video streaming [2], [5], [13], in which each peer in the swarm
periodically sends its data availability to other peers, which
in turn pull the required chunks of video from the neighbors
that have them. The swarm is paired with a CLIVE manager
(CM), which participates with other peers in a gossip-based
aggregation protocol [14], [15] to find out the current state of
the swarm. Using the collected information in the aggregation
protocol, the CM computes the number of active helpers
required to guarantee the desired QoS. CLIVE includes also a
passive helper, whose task is to provide a last resort for peers
that have not been able to obtain their video chunks through
the swarm.

A delicate balance between the amount of video chunks
obtained from the passive helper and the number of active
helpers in the system must be found. Either approaches are
associated with an economical cost, that depends on (i) the



running time for active helpers, (ii) the storage space and
number of data requests for passive helpers, and (iii) the
consumed bandwidth for both.

To demonstrate the feasibility of CLIVE, we performed
extensive simulations and evaluate our system using large-
scale experiments under dynamic realistic settings. We show
that we can save up to 45% of the cost by choosing the right
number of active helpers compared to only using a passive
helper to guarantee the predefined QoS.

II. SYSTEM MODEL AND PROBLEM DEFINITION

We consider a network consisting of a dynamic collection of
nodes that communicate through message exchanges. Nodes
could be peers, i.e., edge computers belonging to users watch-
ing the video stream, helpers, i.e., computational and storage
resources rented from an IaaS cloud, and the media source
(source for short), which generates the video stream and starts
its dissemination towards peers.

Each peer is uniquely identified by an ID, e.g., composed
by IP address and port, required to communicate with it. We
use the term swarm to refer to the collection of all peers.
The swarm forms an overlay network, meaning that each peer
connects to a subset of nodes in the swarm (called neighbors).
The swarm is highly dynamic: new peers may join at any time,
and existing peers may voluntarily leave or crash. Byzantine
behavior is not considered in this work.

There are two types of helpers: (i) an active helper (AH)
is an autonomous virtual machine composed of one or more
computing cores, volatile memory and permanent storage, e.g.,
Amazon EC2, and (ii) a passive helper (PH) is a simple
storage service that can be used to store (PUT) and retrieve
(GET) arbitrary pieces of data, e.g., Amazon S3. We assume
that customers of the cloud service are required to pay for
computing time and bandwidth in the case of AHs, and
for storage space, bandwidth and the number of PUT/GET
requests in the case of PHs. This model follows the Amazon’s
pricing model [16], [17].

We assume the source generates a constant-rate bitstream
and divides it into a number of chunks. A chunk c is uniquely
identified by the real time t(c) at which is generated. The
generation time is used to play chunks in the correct order, as
they can be retrieved in any order, independently from previous
chunks that may or may not have been downloaded yet.

Peers, helpers and the source are characterized by different
bounds on the amount of available download and upload
bandwidth. A node can create a bounded number of download
connections and accept a bounded number of upload connec-
tions over which chunks are downloaded and uploaded. We
define the number of download slots, Down(p), and upload
slots, Up(p), of a peer p as its number of download and
upload connections, respectively. Thanks to the replication
strategies between different data centers currently employed
in clouds [18], we assume that the PH has an unbounded
number of upload slots and can serve as many requests as it
receives. Preliminary experiments using PlanetLab and Ama-
zon Cloudfront show that this assumption holds in practice,

as adding as many clients as possible has not saturated the
upload bandwidth.

We assume that nodes are approximately synchronized; this
is a reasonable assumption, given that some cloud services,
like Amazon AWS, are already synchronized and sometimes
require the client machines to be synchronized as well.

The goal of CLIVE peers is to play the video with predefined
playback delay (the time between the generation of the video
and its visualization at the peer) and playback continuity (the
percentage of chunks that are correctly streamed to users). To
reach this goal, CLIVE is allowed to rent a PH and/or AHs
from the cloud.

Deciding about which and how much resources to rent from
the cloud can be modeled as an optimization problem, where
the objective function is to minimize the economic cost and
the constraints are the following:

1) the maximum playback delay should be less than or
equal to Tdelay , meaning that if a chunk c is generated
at time t(c) at the source, no peers will show it after
time t(c) + Tdelay ;

2) the maximum percentage of missing chunks should be
less than or equal to Ploss .

Note that different formulations of this problem are possible,
such as fixing a limit on the amount of money to be spent
and trying to maximize the playback continuity. We believe,
however, that a company, willing to stream its videos, should
not compromise on the users’ experience, but rather exploit
peers whenever possible and fall back to the cloud when peers
are not sufficient.

III. SYSTEM ARCHITECTURE

The basic elements forming CLIVE have been already
introduced: the media source, a swarm of peers, a single
passive helper (PH), and a number of active helpers (AH).
Aim of this section is to discuss how a such diverse collection
can be organized and managed. We present two architectural
models, illustrated in Figures 1 and 2. The baseline model
(Figure 1) can be described as a P2P streaming protocol,
where peers revert to the PH whenever a chunk cannot be
retrieved from other peers. The enhanced model (Figure 2)
builds upon the baseline, by considering AHs and by provid-
ing a distributed mechanism to provision their number and
appropriately organizing them.

In the rest of the section, we first discuss the baseline model,
introducing the underlying P2P video streaming protocol and
showing how it can be modified to exploit a PH. Then, we add
the AHs into the picture and illustrate the diverse architectural
options available when including them.

A. The baseline model

The baseline model can be seen as a P2P streaming service
associated with a server – as simply as that. We introduce
this model as a baseline for comparison and validation of our
enhanced architectural model.

Note that the idea of augmenting a P2P video streaming
application by renting cloud resources is general enough to



Fig. 1. The baseline model.

be applied to several existing video streaming applications.
We adopt a mesh-pull approach for data dissemination [19],
meaning that peers are organized in an unstructured overlay
and explicitly ask the missing chunks from their neighbors.
Peers discover each other using a gossip-based peer-sampling
service [20], [21], [22], [23]; then, the random partial views
created by this service can be used by any of the existing
algorithms to build the streaming overlay [2], [4], [24], [25].
In this model, neighboring peers exchange their data avail-
ability with each other, and the peers use this information to
schedule and pull the required chunks. There are a number of
studies [26], [27] on chunk selection policies, but here we use
the in-order policy, as in COOLSTREAMING [13], where peers
pull the missing chunks with the closest playback time first.

The baseline model builds upon this P2P video streaming
protocol by adding a PH (Figure 1). The source, apart from
pushing newly created video chunks to the swarm, temporary
stores them on the PH. In order to guarantee a given level of
QoS, each peer is required to have a predefined amount of
chunks buffered ahead of its playback time, called last chance
window (LCW), corresponding to a time interval of length
Tlcw . If a given chunk has not been obtained from the swarm
Tlcw time units before the playback time, it is retrieved directly
from the PH.

B. The enhanced model

If the P2P substrate does not suffice, the baseline model
represents the easiest solution, but as our experiments will
show, this solution could be too expensive, as an excessive
number of chunks could end up being retrieved directly from
the PH. However, even if the aggregate bandwidth of the
swarm may be theoretically sufficient to serve all chunks to all
peers, the soft real-time constraints on the playback delay may
prevent to exploit entirely such bandwidth. No peer must lag
behind beyond a specified threshold, meaning that after a given
time, chunks will not be disseminated any more. We need to
increase the amount of peers that receive chunks in time, and
this could be done by increasing the amount of peers that are
served as early as possible. The enhanced model pursues this
goal by adding a number of AHs to the swarm (Figure 2).

AHs receive chunks from the source or from other AHs,
and push them to other AHs and/or to peers in the swarm. To
discover such peers, AHs join the peer sampling protocol [23]
and obtain a partial view of the whole system. We use a
modified version of CYCLON [23], such that peers exchange

Fig. 2. The enhanced model.

their number of upload slots along with their ID. AH chooses
a subset of root peers (Figure 2) from their partial view and
establish a connection to them, pushing chunks as soon as
they become available. Root peers of an AH are not changed
over time, unless they fail or leave the system, or AH finds
a peer with more upload slots than the existing root peers.
Clearly, a peer could accept to be a root peer only for one
AH, to avoid to receive multiple copies of the same chunk.
The net effect is an increase in the number of peers that
receive the video stream early in time. The root peers also
participate in the P2P streaming protocol, serving a number
of peers directly or indirectly. PH still exists in the enhanced
model to provide chunks upon demand, but it will be used less
frequently compared to the baseline model.

Architecturally speaking, an important issue is how to
organize multiple AHs and how to feed chunks to them. There
are two possible models:
• Flat: the AHs receive all their chunks directly from the

source and then push them to peers in the swarm, acting
just as bandwidth multipliers for the source.

• Hierarchical: the AHs are organized in a tree with one
AH at the root; the source pushes chunks to the root,
which pushes them through the tree.

The advantage of the flat model is that few intermediary
nodes cause a limited delay between the source and the
peers. However, the source bandwidth could end up being
entirely consumed to feed the AHs; and more importantly, any
communication to the cloud is billed, including the multiple
ones from the source to the AHs. We, thus, decided to adopt
the hierarchical model, also considering that communication
inside the cloud is (i) extremely fast, given the use of gigabit
connections, and (ii) free of charge [28].

One important question in the enhanced model is: how
many AHs to add? Finding the right balance is difficult; too
many AHs may reduce the PH load, but cost too much,
given that they are billed hourly and not only per bandwidth.
Too few AHs also increases the PH load, and as we show
in the experiments, increases the cost. The correct balance
dynamically depends on the current number of peers in the
swarm, and their upload bandwidth.

The decision on the number of AHs to include in the system
is taken by the CLIVE manager (CM), a unit that is responsible
for monitoring the state of the system and organizing the AHs.



By participating in a decentralized aggregation protocol [14],
the CM obtains information about the number of peers in the
system and the distribution of upload slots among them. Based
on this information, it adds new AHs or remove existing ones,
trying to minimize the economic cost. The CM role can be
played either directly by the source, or by one AH. A detailed
description of the CM is provided in the next section.

IV. THE CLIVE MANAGER

Based on the swarm size and the available upload bandwidth
in the swarm, CM computes the number of AHs that have to be
active to minimize the economic cost. Then, depending on the
current number of AHs, new AHs may be booted or existing
AHs may be shutdown.

The theoretical number of AHs that minimize the cost is not
so straightforward to compute, because no peer has a global
view of the system and its dynamics, e.g., which peers are
connected and how many upload slots each peer has. Instead,
we describe a heuristic solution, where each peer runs a small
collection of gossip-based protocols, with the goal of obtaining
approximate aggregate information about the system. CM joins
these gossip protocols as well, and collects the aggregated
results. It exploits the collected information to estimate a lower
bound on the number of peers that can receive a chunk either
directly or indirectly from an AH or the source, but not from
PH. The CM, then, uses this information to detect whether the
current number of AHs is adequate to the current size of the
swarm, or if correcting actions are needed by adding/removing
AHs.

The participating swarm peers and CM in the gossip-based
aggregation protocol collect the following information:
• the current size of the swarm;
• the probability density function of the upload slots avail-

able at peers in the swarm.
The rest of this section provides the details about the

protocols used to collect the required information and the
model used to compute the number of peers reachable from
an AH or the source.

The swarm size estimation. The size of the current swarm,
Nswarm , is computed, with high precision, through an existing
aggregation protocol [14]. This information is made available
to all peers in the system, including CM that participates in
the aggregate computation.

Upload slots estimation. Knowing the number of upload
slots of all peers is infeasible, due to the large scale of
the system and its dynamism. However, we can obtain a
reasonable approximation of the probability density function
of the number of upload slots available at all peers.

Assume ω is the actual upload slot distribution among all
peers. We adopt ADAM2 [29] to compute Pω : N → R,
an estimate probability density function of ω. ADAM2 is a
gossip-based algorithm that provides an estimation of the
cumulative distribution function of a given attribute across
all peers. Pω(i), then, represents the proportion of peers that

Fig. 3. Live streaming time model.

have i upload slots w.r.t. the total number of peers, so that∑
i Pω(i) = 1. For ADAM2 to work, we assume that each

peer is able to estimate its own number of upload slots, and
the extreme values of such distribution are known to all.

Chunk lifetime. The number of peers that can receive a
chunk from either the swarm, the source or one of the AHs
is bounded by the time available to the dissemination process.
This time depends on a collection of system and application
parameters:
• Tdelay : No more than Tdelay time units must pass between

the generation of a chunk at the source and its playback
at any of the peers.

• Tlatency : The maximum time needed for a newly gener-
ated chunk to reach the root peers, i.e., the peers directly
receive the chunks from AHs or the source, is equal
to Tlatency . While this value may depend on whether a
particular root peer is connected to the source or to an
AH, we consider it as an upper bound and we assume
that the latency added by AHs is negligible.

• Tlcw : If a chunk is not available at a peer Tlcw time units
before its playback time, it will be retrieved from the PH.

Therefore, a chunk c generated at time t(c) at the source
must be played at peers no later than t(c) + Tdelay , otherwise
the QoS contract will be violated. Moreover, the chunk c
becomes available at a root peer at time t(c) + Tlatency , and
it should be available in the local buffer of any peer in the
swarm by time t(c)+Tdelay −Tlcw , otherwise the chunk will
be downloaded from the PH (Figure 3). This means that the
lifetime Tlife of a chunk from the root peer on is equal to:

Tlife = (Tdelay − Tlatency)− Tlcw (1)

Modeling the dissemination process. Whenever a root peer
r receives a chunk c for the first time, it starts disseminating
it in the swarm. Biskupski et al. in [30] show that a chunk
disseminated by a pull mechanism through a mesh overlay
follows a tree-based diffusion pattern. We define the diffusion
tree DT (r, c) rooted at a root peer r of a chunk c as the set
of peers defined as follows: (i) r belongs to DT (r, c), and
(ii) q belongs to DT (r, c) if it has received c from a peer
p ∈ DT (r, c).

Learning the exact diffusion tree for all chunks is difficult,
because this would imply a global knowledge of the overlay
network and its dynamics, and each chunk may follow a
different tree. Fortunately, such precise knowledge is not
needed. What we would like to know is an estimate of the
number of peers that can be theoretically reached through the



Algorithm 1: Lower bound for the diffusion tree size.

procedure size(DENSITY Pω, int depth)
int min ← +∞;
repeat k times

min ← min(min, recSize(Pω, depth));
return min;

procedure recSize(DENSITY Pω, int depth)
int n← 1;
int slots ← random(Pω);
for i← 1 to slots do

n← n+ recSize(Pω, depth − 1);
return n;

source or the current population of AHs.
The chunk generation execution is divided into rounds of

length Tround . Chunk uploaded at round i becomes available
for upload to other peers at round i + 1. The maximum
depth, depth , of any diffusion tree of a chunk over its Tlife is
computed as: depth = bTlife/Troundc. We assume that Tround
is bigger than the average latency among the peers in the
swarm. Given depth and the probability density function Pω ,
we define the procedure size(Pω, depth) that executes locally
at CM and provides an estimate of the number of peers of a
single diffusion tree (Algorithm 1). This algorithm emulates
a large number of diffusion trees, based on the probability
density function Pω , and returns the smallest value obtained
in this way. Emulation of a diffusion tree is obtained by the
recursive procedure recSize(Pω, depth). In this procedure,
variable n is initialized to 1, meaning that this peer belongs
to the tree. If the depth of the tree is larger than 0, another
round of dissemination can be completed. The number of
upload slots is drawn randomly by function random() from the
probability density function Pω . Variable n is then increased
by adding the number of peers that can be reached by recursive
call to recSize(), where the depth is decremented by 1 at
each step before the next recursion.

At this point, the expected number of the total peers that
can receive a chunk directly or indirectly from AHs and the
source, but not from PH, Nexp , is given by the total number
of root peers times the estimated diffusion tree size, Ntree =
size(Pω, depth). The number of root peers is calculated by
the sum of the upload slots at the source Up(s) and AHs
Up(h), minus the number of slots used to push chunks to the
AHs themselves, as well as to the PH, which is equal to the
number of AHs plus one. Formally,

Nexp =

(
Up(s) +

∑
h∈AH

Up(h)− (|AH|+ 1)

)
·Ntree (2)

where AH is the set of all AHs.

AHs management model. We define the cost Cah of an AH
in one round (Tround ) as the following:

Cah = Cvm +m · Cchunk (3)

Fig. 4. Calculating the number of peers that is economically reasonable to serve with
PH utilization instead to run an additional AH.

where Cvm is the cost of running one AH (virtual machine)
in a round, Cchunk is the cost of transferring one chunk from
an AH to a peer, and m in the number of chunks that one AH
uploads per round. Since we utilize all the available upload
slots of an AH, we can assume that m = Up(h). Similarly,
the cost Cph of pulling chunks from PH per round is:

Cph = Cstorage + r · (Cchunk + Creq) (4)

where Cstorage is the storage cost, Creq is the cost of retrieving
(GET) one chunk from PH and r is the number of chunks
retrieved from PH per round. Cchunk of PH is the same as in
AH. Moreover, since we store only a few minutes of the live
stream in the storage, Cstorage is negligible.

Figure 4 shows how Cah and Cph (depicted in Formulas 3
and 4) changes in one round (Tround ), when the number
of peers increases. We observe that Cph increases linearly
with the number of peers (number of requests), while Cah is
constant and independent of the number of peers in the swarm.
Therefore, if we find the intersection of the cost functions, i.e.,
the point δ in Figure 4, we will know when is economically
reasonable to add a new AH, instead of putting more load on
PH.

δ ≈ Cvm +m · Cchunk

Cchunk + Creq
(5)

CM considers the following thresholds and regulation be-
havior:

• Nswarm > Nexp+δ: This means that the number of peers
in the swarm is larger than the maximum size that can be
served with a given configuration, thus, more AHs should
be added to the system.

• Nswarm < Nexp+δ−Up(h)·Ntree : Current configuration
is able to serve more peers than the current network size,
thus, extra AHs can be removed. Up(h) ·Ntree shows the
number of peers served by one AH.

• Nexp + δ−Up(h) ·Ntree ≤ Nswarm ≤ Nexp + δ: In this
interval the system has adequate resource and no change
in the configuration is required.

CM periodically checks the above conditions, and takes
the necessary actions, if any. In order to prevent temporary
fluctuation, it adds/removes only single AH in each step.

V. EXPERIMENTS

In this section, we evaluate the performance of CLIVE using
KOMPICS [31], a framework for building P2P protocols that
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Fig. 5. The percentage of the peers receiving 99% playback continuity with different
values of Tlcw (measured in number of chunks). Top: join scenario, bottom: churn
scenario (1% churn rate).

TABLE I
SLOT DISTRIBUTION IN FREERIDER OVERLAY.

Number of slots Percentage of peers
0 49.3%
1 18.7%
2 8.4%

3-19 5.2%
20 6.8%

Unknown 11.6%

provides a discrete event simulator for testing the protocols
using different bandwidth, latency and churn scenarios.

A. Experimental setting

In our experimental setup, we set the streaming rate to
500kbps, which is divided into chunks of 20kb; each chunk,
thus, corresponds to 0.04s of video stream. Peers start playing
the media after buffering it for 15 seconds, and Tdelay equals
25 seconds. We set the bandwidth of an upload slot and
download slot to 100kbps. Without loss of generality, we
assume all peers have enough download bandwidth to receive
the stream with the correct rate. In these experiments, all peers
have 8 download slots, and we consider three classes of upload
slot distributions: (i) homogeneous, where all peers have 8
upload slots, (ii) heterogeneous, where the number of upload
slots in peers is picked uniformly at random from 4 to 13,
and (iii) real trace (Table I) based on a study of large scale
streaming systems [11]. As it is shown in Table I, around
50% of the peers in this model do not contribute in the data
distribution. The media source is a single node that pushes
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Fig. 6. Average playback latency across peers with different values of Tlcw (measured
in number of chunks). Top: join scenario, bottom: churn scenario (1% churn rate).

chunks to 10 other peers. We assume PH has infinite upload
bandwidth, and each AH can push chunks to 20 other peers.
Latencies between peers are modeled using a latency map
based on the King data-set [32].

In our experiments, we used two failure scenarios: join-
only and churn. In the join-only scenario, 1000 peers join the
system following a Poisson distribution with an average inter-
arrival time of 10 milliseconds, and after joining the system
they will remain till the end of the simulation. In the churn
scenario, approximately 0.01%, 0.1% and 1% of the peers
leave the system per second and rejoin immediately as newly
initialized peers [33]. However, unless stated otherwise, we did
the experiments with 1% churn rate to show how the system
performs in presence of high dynamism.

B. The effect of Tlcw on system performance

In the first experiment, we evaluate the system behavior with
different values for Tlcw , measured in number of chunks. In
this experiment, we measure playback continuity and playback
latency, which combined together reflect the QoS experienced
by the overlay peers. Playback continuity shows the percentage
of chunks received on time by peers, and playback latency
represents the difference, in seconds, between the playback
point of a peer and the source.

For a cleaner observation of the effect of Tlcw , we use the
homogeneous slot distribution in this experiment. Figure 5
shows the fraction of peers that received 99% of the chunks
before their timeout with different Tlcw in the join-only and
churn scenarios (1% churn rate). We changed Tlcw between 0
to 40 chunks, where zero means peers never use PH, and 40
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Fig. 7. The cumulative PH load with different values of Tlcw and churn rates.
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Fig. 8. Avg. estimation error.

means that a peer retrieves up to chunk c+40 from PH, if the
peer is currently playing chunk c. As we see, the bigger Tlcw
is, the more peers receive chunks in time. Although for any
value of Tlcw > 0 peers try to retrieve the missing chunks from
PH, the network latency may not allow to obtain the missing
chunk in time. As Figure 5 shows, all the peers retrieve 99%
of the chunks on time when Tlcw = 40. Given that each chunk
corresponds to 0.04 seconds, Tlcw = 40 implies 1.6 seconds.

The average playback latency of peers is shown in Figure 6.
In the join-only scenario, playback latency does not depend on
Tlcw , while in the churn scenario we can see a sharp increase
when Tlcw is small.

C. PH load in different settings

Here, we measured PH load or the amount of fetched
chunks from PH with different Tlcw values and churn rates.

Figures 7(a) and 7(b) show the cumulative load of PH in the
join-only and churn scenarios (1% churn rate), respectively.
As we see in these figures, by increasing Tlcw , more requests
are sent to PH, thus, increasing its load. Figure 7(c) depicts
the cumulative PH load over time for four different churn
rates and Tlcw equals 40 chunks. As the figure shows, there
is no big change in PH load under low churn scenarios
(0.01% and 0.1%), which are deemed realistic in deployed P2P
systems [33]. However, it sharply increases in the presence of
higher churn rates (1%), because peers lose their neighbors
more often, thus, they cannot pull chunks from the swarm in
time, and consequently they have to fetch them from PH.

D. Upload slot distribution estimation

In the next experiment, we evaluate the estimation of upload
slots distribution in the system. We adopt the Kolmogorov-
Smirnov (KS) distance [34], to define the upper bound on
the approximation error of any peer in the system. The KS
distance is given by the maximum difference between the
actual slot distribution, ω, and the estimated slot distribution,
E(ω). We compute E(ω) based on Pω for different number
of slots. Since the maximum error is determined by a single
point (slot) difference between ω and E(ω), it is sensitive to
noise. Hence, we measure the average error at each peer as
the average error contributed by all points (slots) in ω and
E(ω). The total average error is then computed as the average
of these local average errors.

We consider three slot distributions in this experiment:
(i) the uniform distribution, (ii) the exponential distribution
(λ = 1.5), and (iii) the Pareto distribution (k = 5, xm = 1).
Figure 8(a) shows the average error in three slot distributions,
and Figure 8(b) shows how the accuracy of the estimation
changes in different churn rates.

E. Economic cost

In the last experiment, we measure the effect of
adding/removing AHs on the total cost. Note, in these exper-
iments we set Tlcw to 40 chunks, therefore, regardless of the
number of AHs, all the peers receive 99% of the chunks before
their playback time. In fact, AHs only affect the total cost of
the service. In Section IV, we showed how CM estimates the
required number of AHs. Figure 9 depicts how the number
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Fig. 9. Number of AHs in different settings and scenarios.
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Fig. 10. PH load in different scenarios with dynamic changes of the number of AHs.

of AHs changes over time. In the join-only scenario and the
homogeneous slot distribution (Figure 9(a)), the CM estimates
the exact value of the peers that receive the chunks on time
using the existing resources in the system, and consequently
the exact number of required AHs. Hence, as it is shown,
the number of AHs will be fixed during the simulation time.
However, in the heterogeneous and real trace slot distributions
(Figures 9(b) and 9(c)), CM estimation changes over time, and
based on this, it adds and removes AHs. In the churn scenario
(1% churn rate), CM estimation also changes over the time,
thus, the number of AHs fluctuates.

Relatively, we see how PH load changes in different sce-
narios in the baseline and enhanced models (Figure 10).
Figure 9(a) shows that three AHs are added to the system in
the join-only scenario and the homogeneous slot distribution.
On the other hand, we see in Figure 10(a), in the join-only
scenario, with the help of these three AHs (enhanced model),
the load of PH goes down nearly to zero. It implies that three
AHs in the system are enough to minimize PH load, while
preserving the promised level of QoS. Hence, adding more
than three AHs in this setting does not have any benefit and
only increases the total cost. Moreover, we can see in the
join-only scenario, if there is no AH in the system (baseline
model), PH load is much higher than the enhanced model,
e.g., around 90mb, 40mb, and 130mb per second in the
homogeneous, heterogeneous, and real trace, respectively. The
same difference appears in the churn scenario.

Figure 11 shows the cumulative total cost over the time in

different scenarios and slot distributions. In this measurement,
we use Amazon S3 as PH and Amazon EC2 as AHs. Accord-
ing to the price list of Amazon [16], [17], the data transfer
price of S3 is 0.12$ per GB, for up to 10 TB in a month. The
cost of GET requests are 0.01$ per 10000 requests. Similarly,
the cost of data transfer in EC2 is 0.12$ per GB, for up to
10 TB in a month, but since the AHs actively push chunks,
there is no GET requests cost. The cost of a large instance of
EC2 is 0.34$ per hour. Considering the chunk size of 20kb
(0.02mb) in our settings, we can measure the cost of PH in
Amazon S3 per round (second) according to the Formula 4:

Cph ≈ r · (Cchunk + Creq)

≈ r × 0.02× 0.12

1000
+
r × 0.01

10000
(6)

where r is the the number of received requests by PH in one
round (second). The cost of storage is negligible. Given that
each AH pushes chunks to 20 peers with the rate of 500kbps
(0.5mbps), then the cost of running one AHs in Amazon EC2
per second according to Formula 3 is:

Cah = Cvm +m · Cchunk

=
0.34

3600
+

20× 0.5× 0.12

1000
(7)

Figure 11 shows the cumulative total cost for different slot
distribution settings. It is clear from these figures that adding
AHs to the system reduces the total cost, while keeping the
QoS as promised. For example, in the high churn scenario
(1% churn rate) and the real trace slot distribution the total
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Fig. 11. The cumulative total cost for different setting and scenarios.

cost of system after 600 seconds is 24$ in the absence of AHs
(baseline model), while it is close to 13$ if AHs are added
(enhanced model), which saves around 45% of the cost.

VI. RELATED WORK

A. Content distribution

Although P2P algorithms are emerging as promising so-
lutions for large scale content distribution, they are still
subject to a number of challenges [19]. The bottleneck in the
aggregated upload bandwidth in the overlay is one of the main
problems [8]. One possible approach to increase the upload
capacity is to use helpers [35], [36]. The helper role can be
played by idle [37] or restricted [38] users. Idle users are peers
with spare upload capacity not interested in any particular
data, while restricted users are users with limited rights in
the network service.

Another approach suggests to exploit dedicated servers as
helpers to accelerate content distribution [9], where the servers
cache and forward content to other peers. Montresor and
Abeni [10] introduced an alternative way to use dedicated
servers. They proposed to merge P2P and cloud storage to
support information diffusion, such that the cloud storage
participates in the communication as a passive node.

In addition to these solutions, Wu et al. proposed a queuing
model in [39] to predict the dynamic demands of the users
of a P2P video on demand (VoD) system and provide elastic
amounts of computing and bandwidth resources on the fly with
a minimum cost. Similarly, Jin et al. present a cloud assisted
system architecture for P2P media streaming among mobile
peers to minimize energy consumption [40].

Unlike all the described approaches, our work proposes to
use the cloud computing and storage resources as a collection
of active and passive helpers. The combination of both types
of helpers together with an effective resource management,
distinguishes our approach from previous work.

B. Self-monitoring and self-configuration systems

Self-monitoring and self-configuration mechanisms are es-
sential to manage large, complex and dynamic systems in an
effective way. Self-monitoring detects the current states of
system components, while self-configuration is aimed to adapt
system configuration according to the received information.

Self-monitoring allows the system to have a view on its
current use and state. One of the popular approaches for
monitoring P2P overlays is decentralized aggregation [14].
For example, ADAM2 [29] presents a gossip-based aggrega-
tion protocol to estimate the distribution of attributes across
peers. Similarly, Van Renesse and Haridasan [41] propose a
distribution estimation mechanism, which can be used when
peers are not aware of the extreme value of the distribution.

Self-configuration is the process that autonomously config-
ures components and protocols according to specified target
goals, e.g., reliability and availability. To self-tune according
to on-going state, the system can use an external component
that controls the system either via control loops [42] or in
a decentralized way [43], [44], [45]. A relevant example of
a self-configuration mechanism is TMAN [43], an overlay
topology management that uses a ranking function exploited
locally by each peer to choose its neighbors.

Another system, proposed by Kavalionak and Montre-
sor [44], considers a replicated service on top of a mixed
P2P and cloud system. This protocol is able to self-regulate
the amount of cloud storage resources utilization according
to available P2P resources. However, the main goal of the
proposed approach is to support a given level of reliability,
while in our work we are interested in an effective data
dissemination that allows to self-configure the amount of
active and passive cloud resources utilization.

VII. CONCLUSIONS

The main contribution of this paper is CLIVE, a P2P live
streaming system that integrates cloud resources (helpers),
whenever the peer resources are not enough to guarantee a
predefined QoS with a low cost. Two types of helpers are
used in CLIVE, (i) active helper, which is an autonomous
virtual machine, e.g., Amazon EC2, that participates in the
streaming protocol, and (ii) passive helper, which is a storage
service, e.g., Amazon S3, that provides content on demand.
CLIVE estimates the available capacity in the system through a
gossip-based aggregation protocol and provisions the required
resources (passive/active helpers) from the cloud provider w.r.t
the dynamic behavior of the users.

We are currently implementing a prototype CLIVE system
based on Amazon’s services like EC2, S3 and Cloudfront.



In particular, Cloudfront extends S3 by replicating read-only
content to a number of edge locations, in order to put clients
closer to the data and reduce the communication latency.
Altogether, these edge locations (currently there are 34 of them
around the world) can be seen as a unique PH, from where
chunks can be pulled. From the point of view of the source, the
interface remain the same: content is originally pushed to S3
and from there is replicated across geographically-dispersed
data centers.
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