
Group Communication in Partitionable Systems:
Specification and Algorithms

Özalp Babaoğlu, Renzo Davoli, and Alberto Montresor

Università di Bologna, Mura Anteo Zamboni 7, I-40127 Bologna (Italy)
{babaoglu,davoli,montresor}@cs.unibo.it,

WWW home page: http://www.cs.unibo.it/projects/relacs.html

Abstract. We give a formal specification and an implementation for a
partitionable group communication service in asynchronous distributed
systems. Our specification is motivated by the requirements for build-
ing “partition-aware” applications that can continue operating without
blocking in multiple concurrent partitions and reconfigure themselves dy-
namically when partitions merge. The specified service guarantees live-
ness and excludes trivial solutions; it constitutes a useful basis for build-
ing realistic partition-aware applications; and it is implementable in prac-
tical asynchronous distributed systems where certain stability conditions
hold.

1 Introduction

Functional requirements, which define how output values are related to input
values, are usually sufficient for specifying traditional applications. For mod-
ern network applications, however, non-functional requirements can be just as
important as their functional counterparts: the services that these applications
provide must not only be correct with respect to input-output relations, they
must also be delivered with acceptable “quality” levels. Reliability, timeliness
and configurability are examples of non-functional requirements that are of par-
ticular interest to network applications.

A correct application satisfies its functional requirements in all possible op-
erating environments: it just may take more or less time to do so depending on
the characteristics of the environment. On the other hand, there may be operat-
ing environments in which it is impossible to achieve non-functional properties
beyond certain levels. For this reason, non-functional requirements of network
applications define acceptable quality intervals rather than exact values. In order
to deliver quality levels that are both feasible and acceptable, network applica-
tions need to be environment aware such that they can dynamically modify their
behavior depending on the properties of their operating environment.

By their nature, network applications for mobile computing, data sharing
or collaborative work involve cooperation among multiple sites. For these appli-
cations, which are characterized by reliability and configurability requirements,
possible partitionings of the communication network is an extremely importan-
t aspect of the environment. In addition to accidental partitionings caused by

failures, mobile computing systems typically support “disconnected operation”
which is nothing more than a voluntary partitioning caused by deliberately un-
plugging units from the network. The nature of a partitioning will determine
the quality for the application in terms of which of its services are available
where, and at what performance levels. In other words, partitionings may re-
sult in service reduction or service degradation but need not necessarily render
application services completely unavailable. Informally, we define the class of
partition-aware applications as those that are able to make progress in multiple
concurrent partitions without blocking.

Service reduction and degradation that are unavoidable during partitionings
depend heavily on the application semantics and establishing them for arbitrary
applications is beyond the scope of this chapter. For certain application classes
with strong consistency requirements, it may be the case that all services have to
be suspended completely in all but one partition. This situation corresponds to
the so-called primary-partition model [32, 22] that has traditionally character-
ized partitioned operation of network applications. In this chapter we focus on
the specification and implementation of system services for supporting partition
awareness such that continued operation of network applications is not restrict-
ed to a single partition but may span multiple concurrent partitions. Our goal
is for the system to provide only the necessary mechanisms without imposing
any policies that govern partitioned operation. In this manner, each application
itself can decide which of its services will be available in each partition and at
what quality levels.

Our methodology for partition-aware application development is based on
the process group paradigm [22, 8] suitably extended to partitionable systems.
In this methodology, processes that cooperate in order to implement a given net-
work application join a named group as members. All events that are relevant
for partition awareness (process crashes and recoveries, network partitionings
and merges) are unified in a single abstraction: the group’s current membership.
At each process, a partitionable group membership service installs views that
correspond to the process’s local perception of the group’s current membership.
Partition-aware applications are programmed so as to reconfigure themselves and
adjust their behavior based on the composition of installed views. In a partition-
able system, a group membership service has to guarantee that processes within
the same partition install identical views and that their composition correspond-
s to the partition itself. Otherwise, inconsistencies may compromise functional
correctness or may result in quality levels that are lower than what is feasible.

Specifying properties for fault-tolerant distributed services in asynchronous
systems requires a delicate balance between two conflicting goals. The specifi-
cation must be strong enough to exclude degenerate or trivial solutions, yet it
must be weak enough to be implementable [3]. Formal specification of a par-
titionable group membership service in an asynchronous system has proven to
be elusive and numerous prior attempts have been unsatisfactory [29, 1, 14–17, 5,
33]. Anceaume et al. discuss at length the shortcomings of previous attempts [3].
In summary, existing specifications admit solutions that suffer from one or all of

the following problems: (i) they are informal or ambiguous [33, 5, 16], (ii) they
cease to install new views even in cases where the group membership continues to
change [17], (iii) they capriciously split the group into several concurrent views,
possibly down to singleton sets [29, 1, 14, 15, 17], (iv) they capriciously instal-
l views without any justification from the operating environment [14, 15]. The
lack of a satisfactory formal specification also makes it impossible to argue the
correctness of various partitionable group membership service implementations
that have been proposed.

In this chapter, we give a formal specification for partitionable group mem-
bership services that has the following desirable properties: (i) it does not suffer
from any of the problems that have been observed for previous solutions, (i-
i) it is implementable in asynchronous distributed systems that exhibit certain
stability conditions which we formally characterize, (iii) it is useful in that it
constitutes the basis for system abstractions that can significantly simplify the
task of developing realistic partition-aware applications. To “prove” the useful-
ness of a collection of new system abstractions, one would need to program the
same set of applications twice: once using the proposed abstractions and a sec-
ond time without them, and compare their relative difficulty and complexity. In
another paper, we have pursued this exercise by programming a set of practical
partition-aware applications on top of a group communication service based on
our group membership specification extended with a reliable multicast service
with view synchrony semantics [7]. For this reason, the current paper is limited
to the specification of these services and their implementability.

The rest of the chapter is organized as follows. In the next section, we in-
troduce the system model and define basic properties of communication in the
presence of partitions. In Sect. 3 we give a formal specification for partition-
able group membership services that guarantees liveness and excludes useless
solutions. In Sect. 4 we extend the failure detector abstraction of Chandra and
Toueg [11] to partitionable systems and show how it can be implemented in prac-
tical asynchronous systems where certain stability conditions hold. In Sect. 5 we
prove that our specification is implementable on top of an unreliable datagram
communication service in systems that admit failure detectors. In Section 6 we
briefly illustrate how our partitionable group membership service may be ex-
tended to a group communication service based on view synchrony. Section 7
relates our specification to numerous other proposals for group communication
and Sect. 8 concludes the work.

2 System Model

We adopt notation and terminology similar to that of Chandra and Toueg [11].
The system comprises a set Π of processes that can communicate by exchanging
messages through a network. Processes are associated unique names that they
maintain throughout their life. The communication network implements channels
connecting pairs of processes and the primitives send() and recv() for sending
and receiving messages over them. The system is asynchronous in the sense

that neither communication delays nor relative process speeds can be bounded.
Practical distributed systems often have to be considered as being asynchronous
since transient failures, unknown scheduling strategies and variable loads on the
computing and communication resources make it impossible to bound delays.

To simplify the presentation, we make reference to a discrete global clock
whose ticks coincide with the natural numbers in some unbounded range T . This
simplification is not in conflict with the asynchrony assumption since processes
are never allowed to access the global clock.

2.1 Global Histories

The execution of a distributed program results in each process performing an
event (possibly null), chosen from a set S, at each clock tick. Set S includes at
least the events send() and recv() corresponding to their respective communica-
tion primitives. In Sect. 3 we extend this set with other events related to group
membership. The global history of an execution is a function σ from Π × T to
S ∪ {ε}, where ε denotes the null event. If process p executes an event e ∈ S at
time t, then σ(p, t) = e. Otherwise, σ(p, t) = ε indicating that process p performs
no event at time t. Given some interval I of T , we write e ∈ σ(p, I) if p executes
event e sometime during interval I of global history σ (i.e, ∃t ∈ I : σ(p, t) = e).

2.2 Communication Model

In the absence of failures, the network is logically connected and each process
can communicate with every other process. A process p sends a message m to a
process q by executing send(m, q), and receives a message m that has been sent
to it by executing recv(m). Communication is unreliable (as described below)
and sequencing among multiple messages sent to the same destination need
not be preserved (i.e., channels are not FIFO). Without loss of generality, we
assume that (i) all messages sent are globally unique, and (ii) a message is
received only if it has been previously sent. Note that this communication model
is extremely faithful to practical distributed systems built on top of typical
unreliable datagram transport services such as IP and UDP.

2.3 Failure Model

Processes may fail by crashing whereby they halt prematurely. For simplicity,
we do not consider process recovery after a crash. The evolution of process
failures during an execution is captured through the crash pattern function C
from T to 2Π where C(t) denotes the set of processes that have crashed by
time t. Since crashed processes do not recover, we have C(t) ⊆ C(t + 1). With
Correct(C) = {p | ∀t : p 6∈ C(t)} we denote those processes that never crash,
and thus, are correct in C.

A variety of events, including link crashes, buffer overflows, incorrect or incon-
sistent routing tables, may disable communication between processes. We refer

to them generically as communication failures. Unlike process crashes, which
are permanent, communication failures may be temporary due to subsequent re-
pairs. The evolution of communication failures and repairs during an execution
is captured through the unreachability pattern function U from Π × T to 2Π

where U(p, t) denotes the set of processes with which p cannot communicate at
time t. If q ∈ U(p, t), we say that process q is unreachable from p at time t,
and write p 6;t q as a shorthand; otherwise we say that process q is reachable
from p at time t, and write p ;t q. As noted above, communication failures are
not necessarily permanent but may appear and disappear dynamically. This is
reflected by the fact that the sets U(p, t) and U(p, t+ 1) may differ arbitrarily.

Note that the unreachability pattern is an abstract characterization of the
communication state of a system, just as the crash pattern is an abstract charac-
terization of its computational state. Only an omnipotent external observer can
construct the unreachability and crash patterns that occur during an execution
and neither can be inferred from within an asynchronous system. Nevertheless,
they are useful in stating desired properties for a group membership service. Any
implementation of the specified service in an asynchronous system will have to
be based on approximations of unreachability and crashes provided by failure
detectors [11] as we discuss in Sect. 4.

Reachable/unreachable are attributes of individual communication channels
(identified as ordered process pairs), just as correct/crashed are attributes of
individual processes. In the rest of the chapter, we also refer to communication
failure scenarios called partitionings that involve multiple sets of processes. A
partitioning disables communication among different partitions, each containing
a set of processes. Processes within a given partition can communicate among
themselves, but cannot communicate with processes outside the partition. When
communication between several partitions is reestablished, we say that they
merge.

Process and communication failures that occur during an execution are not
totally independent, but must satisfy certain constraints that are captured thr-
ough the notion of a failure history :

Definition 1 (Failure History). A failure history F is a pair (C,U), where
C is a crash pattern and U is an unreachability pattern, such that (i) a process
that has crashed by time t is unreachable from every other process at time t, and
(ii) a process that has not crashed by time t is reachable from itself at time t.
Formally,1

(i) p ∈ C(t) ⇒ q 6;t p

(ii) p 6∈ C(t) ⇒ p ;t p .

By definition, the unreachability pattern subsumes the crash pattern in every
failure history. We nevertheless choose to model crash and unreachability pat-
1 In these formulas and all others that follow, free variables are assumed to be univer-

sally quantified over their respective domains (process events, time, messages, views,
etc.), which can be inferred from context.

terns separately so that specifications can be made in terms of properties that
need to hold for correct processes only.

Finally, we need to relate crash and unreachability patterns to the events of
the execution itself. In other words, we need to formalize notions such as “crashed
processes halt prematurely” and “unreachable processes cannot communicate
directly”. We do this by requiring that the global and failure histories of the
same execution conform to constraints defining a run.

Definition 2 (Run). A run R is a pair (σ, F), where σ is a global history and
F = (C,U) is the corresponding failure history, such that (i) a crashed process
stops executing events, and (ii) a message that is sent will be received if and only
if its destination is reachable from the sender at the time of sending. Formally,

(i) p ∈ C(t) ⇒ ∀t′ ≥ t : σ(p, t′) = ε

(ii) σ(p, t) = send(m, q) ⇒ (recv(m) ∈ σ(q, T)⇔ p ;t q) .

Note that by Definition 1(ii), the reachable relation for correct processes is
perpetually reflexive — a correct process is always reachable from itself. Tran-
sitivity of reachability, on the other hand, need not hold in general. We make
this choice so as to render our model realistic by admitting scenarios that are
common in wide-area networks, including the Internet, where a site B may be
reachable from site A, and site C reachable from B, at a time when C is un-
reachable from A directly. Yet the three sites A, B and C should be considered
as belonging to the same partition since they can communicate with each other
(perhaps indirectly) using communication services more sophisticated than the
send/receive primitives offered by the network. As we shall see in Sect. 5.1, such
services can indeed be built in our system model so that two processes will be
able to communicate with each other whenever it is possible. And our notion of
a partition as the set of processes that can mutually communicate will be based
on these services.

We do not assume perpetual symmetry for the reachable relation. In other
words, at a given time, it is possible that some process p be reachable from
process q but not vice versa. This is again motivated by observed behavior in
real wide-area networks. Yet, to make the model tractable, we require a form
eventual symmetry as stated below:

Property 1 (Eventual Symmetry). If, after some initial period, process q becomes
and remains reachable (unreachable) from p, then eventually p will become and
remain reachable (unreachable) from q as well. Formally,

∃t0,∀t ≥ t0 : p ;t q ⇒ ∃t1,∀t ≥ t1 : q ;t p

∃t0,∀t ≥ t0 : p 6;t q ⇒ ∃t1,∀t ≥ t1 : q 6;t p .

This is a reasonable behavior to expect of practical asynchronous distributed
systems. Typically, communication channels are bidirectional and rely on the
same physical and logical resources in both directions. As a result, the ability or

inability to communicate in one direction usually implies that a similar property
will eventually be observed also in the other direction.

To conclude the system model, we impose a fairness condition on the commu-
nication network so as to exclude degenerate scenarios where two processes are
unable to communicate despite the fact that they become reachable infinitely of-
ten. In other words, the communication system cannot behave maliciously such
that two processes that are normally reachable become unreachable precisely at
those times when they attempt to communicate.

Property 2 (Fair Channels). Let p and q be two processes that are not perma-
nently unreachable from each other. If p sends an unbounded number of messages
to q, then q will receive an unbounded number of these messages. Formally,

(∀t,∃t1 ≥ t : p ;t1 q) ∧ (∀t, ∃t2 ≥ t : σ(p, t2) = send(m, q)) ⇒
(∀t, ∃t3 ≥ t : σ(q, t3) = recv(m′) ∧ send(m′, q) ∈ σ(p, T)) .

3 Partitionable Group Membership Service: Specification

Our methodology for partition-aware application development is based on the
process group paradigm with suitable extensions to partitionable systems. In this
methodology, processes cooperate towards a given network application by joining
a group as members. Later on, a process may decide to terminate its collabora-
tion by explicitly leaving the group. In the absence of failures, the membership of
a group comprises those processes that have joined but have not left the group.
In addition to these voluntary events, membership of a group may also change
due to involuntary events corresponding to process and communication failures
or repairs.

At each process, a partitionable group membership service (PGMS) track-
s the changes in the group’s membership and installs them as views through
vchg() events. Installed views correspond to the process’s local perception of the
group’s current membership. Partition-aware applications are programmed so as
to reconfigure themselves and adjust their behavior based on the composition
of installed views. In the absence of partitionings, every correct process should
install the same view, and this view should include exactly those members that
have not crashed. This goal is clearly not feasible in a partitionable system, where
processes in different partitions will have different perceptions of the membership
for a given group. For these reasons, a partitionable group membership service
should guarantee that under certain stability conditions, correct processes within
the same partition install identical views and that their composition correspond
to the composition of the partition itself.

In the next section, we translate these informal ideas in a formal specification
for our partitionable group membership service. The specification is given as a
set of properties on view compositions and view installations, stated in terms
of the unreachability pattern that occurs during an execution. The specification
we give below has benefited from extensive reflection based on actual experience

with programming realistic applications and has gone through numerous refine-
ments over the last several years. We believe that it represents a minimal set of
properties for a service that is both useful and implementable.

3.1 Formal Specification

For sake of brevity, we assume a single process group and do not consider changes
to its membership due to voluntary join and leave events. Thus, the group’s
membership will vary only due to failures and repairs. We start out by defining
some terms and introducing notation. Views are labeled in order to be globally
unique. Given a view v, we write v to denote its composition as a set of process
names. The set of possible events for an execution, S, is augmented to include
vchg(v) denoting a view change that installs view v. The current view of process
p at time t is v, denoted view(p, t) = v, if v is the last view to have been installed
at p before time t. Events are said to occur in the view that is current. View w
is called immediate successor of v at p, denoted v ≺p w, if p installs w in view v.
View w is called immediate successor of v, denoted v ≺ w, if there exists some
process p such that v ≺p w. The successor relation ≺∗ denotes the transitive
closure of ≺. Two views that are not related through ≺∗ are called concurrent.
Given two immediate successor views v ≺ w, we say that a process survives the
view change if it belongs to both v and w.

The composition of installed views cannot be arbitrary but should reflect
reality through the unreachability pattern that occurs during an execution. In
other words, processes should be aware of other processes with which they can
and cannot communicate directly in order to adapt their behaviors consistently.
Informally, each process should install views that include all processes reachable
from it and exclude those that are unreachable from it. Requiring that the current
view of a process perpetually reflect the actual unreachability pattern would be
impossible to achieve in an asynchronous system. Thus, we state the requirement
as two eventual properties that must hold in stable conditions where reachability
and unreachability relations are persistent.

GM1 (View Accuracy). If there is a time after which process q remains
reachable from some correct process p, then eventually the current view of p will
always include q. Formally,

∃t0, ∀t ≥ t0 : p ∈ Correct(C) ∧ p ;t q ⇒ ∃t1,∀t ≥ t1 : q ∈ view(p, t) .

GM2 (View Completeness). If there is a time after which all processes in
some partition Θ remain unreachable from the rest of the group, then eventually
the current view of every correct process not in Θ will never include any process
in Θ. Formally,

∃t0,∀t ≥ t0,∀q ∈ Θ,∀p 6∈ Θ : p 6;t q ⇒
∃t1,∀t ≥ t1,∀r ∈ Correct(C)−Θ : view(r, t) ∩Θ = ∅ .

View Accuracy and View Completeness are of fundamental importance for
every PGMS. They state that the composition of installed views cannot be ar-
bitrary but must be a function of the actual unreachability pattern occurring
during a run. Any specification that lacked a property similar to View Accuracy
could be trivially satisfied by installing at every process either an empty view
or a singleton view consisting of the process itself. The resulting service would
exhibit what has been called capricious view splitting [3] and would not be very
useful. View Accuracy prevents capricious view splitting by requiring that even-
tually, all views installed by two permanently-reachable processes contain each
other. On the other hand, the absence of View Completeness would admit imple-
mentations in which processes always install views containing the entire group,
again rendering the service not very useful.

Note that View Accuracy and View Completeness are stated slightly differ-
ently. This is because the reachable relation between processes is not transitive.
While q being reachable directly from p is justification for requiring p to in-
clude q in its view, the converse is not necessarily true. The fact that a process
p cannot communicate directly with another process q does not imply that p
cannot communicate indirectly with q through a sequence of pairwise-reachable
intermediate processes. For this reason, View Completeness has to be stated in
terms of complementary sets of processes rather than process pairs. Doing so as-
sures that a process is excluded from a view only if communication is impossible
because there exists no path, directly or indirectly, for reaching it.

View Accuracy and View Completeness state requirements for views installed
by individual processes. A group membership service that is to be useful must
also place constraints on views installed by different processes. Without such co-
herency guarantees for views, two processes could behave differently even though
they belong to the same partition but have different perceptions of its compo-
sition. For example, consider a system with two processes p and q that are
permanently reachable from each other. By View Accuracy, after some time t,
both p and q will install the same view v containing themselves. Now suppose
that at some time after t, a third process r becomes and remains reachable from
q alone. Again by View Accuracy, q will eventually install a new view w that
includes r in addition to itself and p. Presence of process r is unknown to p since
they are not directly reachable. Thus, p continues believing that it shares the
same view with q since its current view v continues to include q, when in fact
process q has gone on to install view w different from v. The resulting differences
in perception of the environment could lead processes p and q to behave differ-
ently even though they belong to the same partition. The following property has
been formulated to avoid such undesirable scenarios.

GM3 (View Coherency).
(i) If a correct process p installs view v, then either all processes in v also install
v, or p eventually installs an immediate successor to v. Formally,

p ∈ Correct(C) ∧ vchg(v) ∈ σ(p, T) ∧ q ∈ v ⇒
(vchg(v) ∈ σ(q, T)) ∨ (∃w : v ≺p w) .

(ii) If two processes p and q initially install the same view v and p later on
installs an immediate successor to v, then eventually either q also installs an
immediate successor to v, or q crashes. Formally,

vchg(v) ∈ σ(p, T) ∧ vchg(v) ∈ σ(q, T) ∧ v ≺p w1 ∧ q ∈ Correct(C) ⇒
∃w2 : v ≺q w2 .

(iii) When process p installs a view w as the immediate successor to view v, all
processes that survive from view v to w along with p have previously installed v.
Formally,

σ(p, t0) = vchg(w) ∧ v ≺p w ∧ q ∈ v ∩ w ∧ q 6= p ⇒ vchg(v) ∈ σ(q, [0, t0[) .

Returning to the above example, the current view of process p cannot re-
main v indefinitely as GM3(ii) requires p to eventually install a new view. By
assumption, q never installs another view after w. Thus, by GM3(i), the new
installed by p must be w as well and include r. As a result, processes p and q
that belong to the same partition return to sharing the same view. In fact, we
can generalize the above example to argue that View Coherency together with
View Accuracy guarantee that every view installed by a correct process is also
installed by all other processes that are permanently reachable from it. Note
that the composition of the final view installed by p and q includes process r as
belonging to their partition. This is reasonable since p and r can communicate
(using q as a relay) even though they are not reachable directly.

View Coherency is important even when reachability and unreachability re-
lations are not persistent. In these situations where View Accuracy and View
Completeness are not applicable, View Coherency serves to inform a process that
it no longer shares the same view with another process. Consider two processes p
and q that are initially mutually reachable. Suppose that p has installed a view v
containing the two of them by some time t. The current view of process q could
be different from v at time t either because it never installs v (e.g., it crashes) or
because it installs another view after having installed v (e.g., there is a network
partitioning or merge). In both cases, GM3(i) and GM3(ii), respectively, ensure
that process p will eventually become aware of this fact because it will install a
new view after v.

When a process installs a new view, it cannot be sure which other processes
have also installed the same view. This is an inherent limitation due to asyn-
chrony and possibility of failures. GM3(iii) allows a process to reason a posteriori
about other processes: At the time when process p installs view w as the immedi-
ate successor of view v, it can deduced which other processes have also installed
view v. And if some process q belonging to view v never installs it, we can be sure
that q cannot belong to view w. Note that these conclusions are based entirely
on local information (successive pairs of installed views) yet they allow a process
to reason globally about the actions of other processes.

The next property for group membership places restrictions on the order in
which views are installed. In systems where partitionings are impossible, it is

reasonable to require that all correct processes install views according to some
total order. In a partitionable system, this is not feasible due to the possibility
of concurrent partitions. Yet, for a partitionable group membership service to
be useful, the set of views must be consistently ordered by those processes that
do install them. In other words, if two views are installed by a process in a given
order, the same two views cannot be installed in the opposite order by some
other process.

GM4 (View Order). The order in which processes install views is such that
the successor relation is a partial order. Formally, v ≺∗ w ⇒ w 6≺∗ v .

When combined with View Accuracy and View Coherency, View Order allows
us to conclude that there is a time after which permanently reachable processes
not only install the same set of views, they install them in the same order.

The final property of our specification places a simple integrity restriction on
the composition of the views installed by a process. By Definition 1(ii), every
correct process is always reachable from itself. Thus, Property GM1 ensures
that eventually, all views installed by a process will include itself. However, it is
desirable that self-inclusion be a perpetual, and not only eventual, property of
installed views.

GM5 (View Integrity). Every view installed by a process includes the process
itself. Formally,

vchg(v) ∈ σ(p, T) ⇒ p ∈ v .

Properties GM1–GM5 taken together define a partitionable group member-
ship service (PGMS).

3.2 Discussion

Recall that Properties GM1 and GM2 are stated in terms of runs where reacha-
bility and unreachability relations are persistent. They are, however, sufficient to
exclude trivial solutions to PGMS also in runs where reachability and unreach-
ability among processes are continually changing due to transient failures. As
an example, consider a system composed of two processes p and q and a run R0

where they are permanently mutually reachable. By View Accuracy and View
Coherency, we know there is a time t0 by which both p and q will have installed
a view composed of themselves alone. Now, consider run R1 identical to R0 up
to time t1 > t0 when p and q become unreachable. The behavior of processes p
and q under runs R0 and R1 must be identical up to time t1 since they cannot
distinguish between the two runs. Thus, if they install views composed of p and
q by time t0 under run R0, they must install the same views also under run
R1 where reachability relations are not persistent but transient. This example
can be generalized to conclude that any implementation satisfying our specifica-
tion cannot delay arbitrarily installation of a new view including processes that
remain reachable for sufficiently long periods. Nor can it delay arbitrarily instal-
lation of a new view excluding processes that remain unreachable for sufficiently
long periods.

Asynchronous distributed systems present fundamental limitations for the
solvability of certain problems in the presence of failures. Consensus [19] and
primary-partition group membership [10] are among them. Partitionable group
membership service, as we have defined it, happens to be not solvable in an
asynchronous system as well. A proof sketch of this impossibility results can
be found in the extended version of the paper [6]. The impossibility result for
PGMS can be circumvented by requiring certain stability conditions to hold in
an asynchronous system. In the next section we formulate these conditions as
abstract properties of an unreliable failure detector [11]. Then in Sect. 5 we
show how the specified PGMS can be implemented in systems that admit the
necessary failure detector.

4 Failure Detectors for Partitionable Systems

In this section, we formalize the stability conditions that are necessary for solv-
ing our specification of partitionable group membership in asynchronous systems.
We do so indirectly by stating a set of abstract properties that need to hold for
failure detectors that have been suitably extended to partitionable systems. Sim-
ilar failure detector definitions extended for partitionable systems have appeared
in other contexts [25, 12]. The failure detector abstraction originally proposed by
Chandra and Toueg [11] is for systems with perfectly-reliable communication. In
partitionable systems, specification of failure detector properties has to be based
on reachability between pairs of processes rather than individual processes be-
ing correct or crashed. For example, it will be acceptable (and desirable) for the
failure detector of p to suspect q that happens to be correct but is unreachable
from p.

Informally, a failure detector is a distributed oracle that tries to estimate the
unreachability pattern U that occurs in an execution. Each process has access
to a local module of the failure detector that monitors a subset of the processes
and outputs those that it currently suspects as being unreachable from itself. A
failure detector history H is a function from Π × T to 2Π that describes the
outputs of the local modules at each process. If q ∈ H(p, t), we say that p suspects
q at time t in H. Formally, a failure detector D is a function that associates with
each failure history F = (C,U) a set D(F) denoting failure detector histories
that could occur in executions with failure history F .

In asynchronous systems, failure detectors are inherently unreliable in that
the information they provide may be incorrect. Despite this limitation, failure
detectors satisfying certain completeness and accuracy properties have proven
to be useful abstractions for solving practical problems in such systems [11].
Informally, completeness and accuracy state, respectively, the conditions under
which a process should and should not be suspected forH(p, t) to be a meaningful
estimate of U(p, t). We consider the following adaptations of completeness and
accuracy to partitionable systems, maintaining the same names used by Chandra
and Toueg for compatibility reasons [11]:

FD1 (Strong Completeness). If some process q remains unreachable from
correct process p, then eventually p will always suspect q. Formally, given a
failure history F = (C,U), a failure detector D satisfies Strong Completeness if
all failure detector histories H ∈ D(F) are such that:

∃t0,∀t ≥ t0 : p ∈ Correct(C) ∧ p 6;t q ⇒ ∃t1,∀t ≥ t1 : q ∈ H(p, t) .

FD2 (Eventual Strong Accuracy). If some process q remains reachable
from correct process p, then eventually p will no longer suspect q. Formally,
given a failure history F = (C,U), a failure detector D satisfies Eventual Strong
Accuracy if all failure detector histories H ∈ D(F) are such that:

∃t0,∀t ≥ t0 : p ∈ Correct(C) ∧ p ;t q ⇒ ∃t1,∀t ≥ t1 : q 6∈ H(p, t) .

Borrowing from Chandra and Toueg [11], failure detectors satisfying Strong
Completeness and Eventual Strong Accuracy are called eventually perfect, and
their class denoted �P̃. In addition to the properties stated above, we can also
formulate their weak and perpetual counterparts, thus generating a hierarchy of
failure detector classes similar to those of Chandra and Toueg [11]. Informally,
weak completeness and accuracy require the corresponding property to hold only
for some pair of processes (rather than all pairs), while their perpetual versions
require the corresponding property to hold from the very beginning (rather than
eventually).

While a detailed discussion of failure detector hierarchy for partitionable
systems and reductions between them is beyond the scope of this chapter, we
make a few brief observations. In absence of partitionings, failure detector classes
with the weak version of Completeness happen to be equivalent to those with the
strong version. 2 In such systems, it suffices for one correct process to suspect
a crashed process since it can (reliably) communicate this information to all
other correct processes. In partitionable systems, this is not possible and failure
detector classes with weak completeness are strictly weaker than those with
strong completeness.

In principle, it is impossible to implement a failure detector D ∈ �P̃ in par-
titionable asynchronous systems, just as it is impossible to implement a failure
detector belonging to any of the classes �P, �Q, �S and �W in asynchronous
systems with perfectly-reliable communication [11]. In practice, however, asyn-
chronous systems are expected to exhibit reasonable behavior and failure de-
tectors for �P̃ can indeed be implemented. For example, consider the following
algorithm, which is similar to that of Chandra and Toueg [11], but is based on
round-trip rather than one-way message time-outs. Each process p periodically
sends a p-ping message to every other process in Π. When a process q receives a
p-ping, it sends back to p a q-ack message. If process p does not receive a q-ack
within ∆p(q) local time units, p adds q to its list of suspects. If p receives a
q-ack message from some process q that it already suspects, p removes q from
the suspect list and increments its time-out period ∆p(q) for the channel (p, q).
2 These are the P ∼= Q, S ∼= W, �P ∼= �Q and �S ∼= �W results of Chandra and

Toueg [11].

Note that since processes send ack messages only in response to ping mes-
sages, a process p will continually time-out on every other process q that is
unreachable from it. Thus, the above algorithm trivially satisfies the Strong
Completeness property of �P̃ in partitionable asynchronous systems. On the
other hand, in an asynchronous system, it is possible for some process p to ob-
serve an unbounded number of premature time-outs for some other process q
even though q remains reachable from p. In this case, p would repeatedly add
and remove q from its list of suspects, thus violating the Eventual Strong Accu-
racy property of �P̃. In many practical systems, increasing the time-out period
for each communication channel after each mistake will ensure that eventually
there are no premature time-outs on any of the communication channels, thus
ensuring Eventual Strong Accuracy.

The only other scenario in which the algorithm could fail to achieve Eventual
Strong Accuracy occurs when process q is reachable from process p and continues
to receive p-ping messages but its q-ack messages sent to p are systematically
lost. In a system satisfying Eventual Symmetry, this scenario cannot last forever
and eventually p will start receiving q-ack messages, causing it to permanently
remove q from its suspect list and thus satisfy Eventual Strong Accuracy.

Given that perfectly reliable failure detectors are impossible to implement
in asynchronous systems, it is reasonable to ask: what are the consequences of
mistakenly suspecting a process that is actually reachable? As we shall see in the
next section, our use of failure detectors in solving PGMS is such that incorrect
suspicions may cause installation of views smaller than what are actually feasible.
In other words, they may compromise View Accuracy but cannot invalidate any
of the other properties. As a consequence, processes that are either very slow
or have very slow communication links may be temporarily excluded from the
current view of other processes to be merged back in when their delays become
smaller. This type of “view splitting” is reasonable since including such processes
in views would only force the entire computation to slow down to their pace.
Obviously, the notion of “slow” is completely application dependent and can
only be established on a per-group basis.

5 Partitionable Group Membership Service:
Implementation

In this section we present an algorithm that implements the service specified in
Sect. 3 in partitionable asynchronous systems augmented with a failure detector
of class �P̃. Our goal is to show the implementability of the proposed specification
for PGMS; consequently, the algorithm is designed for simplicity rather than
efficiency. The overall structure of our solution is shown in Fig. 1 and consists
of two components called the Multi-Send Layer (MSL) and View Management
Layer (VML) at each process. In the figure, FD denotes any failure detector
module satisfying the abstract properties for class �P̃ as defined in Sect. 4.

All interactions with the communication network and the failure detector
are limited to MSL which uses the unreliable, unsequenced datagram transport

Network

Application

VML

MSL FD

recv send

msendmsuspectmrecv

vchg join leave

Fig. 1. Overall structure of the partitionable group membership service.

service of the network through the primitives send() and recv(). Each MSL can
also read the suspect list of the corresponding failure detector module FD. M-
SL implements the primitives msend(), mrecv() and msuspect() as described
below, which in turn are used by VML. Recall that we consider group member-
ship changes due to failures and repairs only. Thus, the implementation we give
includes only the view change notification event vchg() but not the primitives
join() and leave() for voluntarily joining and leaving the group.

In order to distinguish between the various layers in our discussion, we say
that a process m-sends and m-receives messages when it communicates through
the MSL primitives msend() and mrecv(), respectively. We reserve send and
receive to denote communication directly through the network services without
going through MSL. Similarly, we say that a process m-suspects those process-
es that are notified through a msuspect() event while suspect is reserved for
describing the failure detector itself.

The following notation is used in the presentation of our algorithms. We use
italic font for variable and procedure names. Tags denoting message types are
written in smallcaps. The wait-for construct is used to block a process until
a mrecv() or a msuspect() event is generated by MSL. The generate construct
produces an upcall of the specified type to the next layer in the architecture.

5.1 The Multi-Send Layer

Implementing a group membership service directly on top of a point-to-point
unreliable, unsequenced datagram transport service provided by the network
would be difficult. The difficulty is aggravated by the lack of transitivity of the
reachability relation as provided by the failure detector. The task of MSL is
to hide this complexity by transforming the unreliable, point-to-point network
communication primitives to their best-effort, one-to-many counterparts. Infor-
mally, MSL tries to deliver m-sent messages to all processes in some destination
set. MSL also “filters” the raw failure detector suspect list by eliminating from

it those processes that can be reached indirectly. In other words, the notion of
reachability above the MSL corresponds to the transitive closure of reachability
at the failure detector layer. What distinguishes MSL from a typical network
routing or reliable multicast service is the integration of message delivery se-
mantics with the reachability information. In that sense, MSL is much closer to
the dynamic routing layer of Phoenix [24] and the MUTS layer of Horus [34].

Informally, properties that MSL must satisfy are:

Property 3. (a) if a process q is continuously unreachable from p, then eventually
p will continuously m-suspect q; (b) if a process q is continuously reachable from
p, then eventually every process that m-suspects q also m-suspects p; (c) each
process m-receives a message at most once and only if some process actually
m-sent it earlier; (d) messages from the same sender are m-received in FIFO
order; (e) a message that is m-sent by a correct process is eventually m-received
by all processes in the destination set that are not m-suspected; (f) a process
never m-suspects itself; (g) the reachability relation defined by the msuspect()
events is eventually symmetric.

Properties (a) and (b) are the non-triviality conditions of our communication
service. Properties (c) and (d) place simple integrity and order requirements on
m-receiving messages. Property (e) defines a liveness condition on the m-sending
of messages. Finally, property (f) prevents processes from m-suspecting them-
selves, while property (g) requires that if a correct process p stops m-suspecting
another correct process q, then eventually q will stop m-suspecting p. It is im-
portant to note that from the combination of properties (b) and (f) we conclude
that if q is continuously reachable from p, then p eventually stops m-suspecting
q. Moreover, from properties (b) and (e) we conclude that if q is continuously
reachable from p, then every message m-sent by q to p is eventually m-received.

A formal description of these properties, along with an algorithm to achieve
them can be found in the extended version of this work [6]. The proposed algo-
rithm is based on the integration of a routing algorithm and a failure detector
of class �P̃.

5.2 The View Management Layer

VML uses the services provided by MSL in order to construct and install views
as defined by the PGMS specification. At each process, let the reachable set cor-
respond to those processes that are not currently m-suspected. These reachable
sets form a good basis for constructing views since part of the PGMS specifi-
cation follows immediately from the properties of MSL that produce them. In
particular, Property GM2 is satisfied by Property 3(a) requiring that if a pro-
cess q is continuously unreachable from p, then eventually p will continuously
m-suspect q. Property GM1 is satisfied by Properties 3(b) and 3(f), as discussed
above. Finally, Property GM5 is satisfied by Property 3(f).

The main difference between reachable sets as constructed by MSL and views
as defined by PGMS is with respect to coherency. While reachable sets are

1 thread ViewManagement
2 reachable ← {p} % Set of unsuspected processes
3 version ← (0, . . . , 0) % Vector clock
4 symset ← ({p}, . . . , {p}) % Symmetry set
5 view ← (UniqueID(), {p}) % Current view id and composition
6 cview ← view % Corresponding complete view
7 generate vchg(view))
8
9 while true do
10 wait-for event % Remain idle until some event occurs
11 case event of
12
13 msuspect(P):
14 foreach r ∈ (Π − P)− reachable do symset [r]← reachable
15 msend(〈symmetry, version, reachable〉, (Π − P)− reachable)
16 reachable ← Π − P
17 AgreementPhase()
18
19 mrecv(〈synchronize, Vp, Vq, P 〉, q):
20 if (version[q] < V [q]) then
21 version[q]← V [q]
22 if (q ∈ reachable) then
23 AgreementPhase()
24 fi
25
26 esac
27 od

Fig. 2. The main algorithm for process p.

completely individualistic and lack any coordination, views of different process-
es need to be coherent among themselves as defined by Property GM3. VML
achieves this property by using reachable sets as initial estimates for new views
but installs them only after having reached agreement on their composition a-
mong mutually-reachable processes. To guarantee liveness of our solution, each
execution of the agreement algorithm must terminate by actually installing a
new view. Yet the composition of installed views cannot invalidate any of the
properties that are inherited from MSL as described above.

The main algorithm for VML, illustrated in Fig. 2, alternates between an
idle phase and an agreement phase. A process remains idle until either it is
informed by MSL that there is a change in its perception of the reachable set
(through a msuspect() event), or it m-receives a message from another process
that has observed such a change. Both of these events cause the process to enter
agreement phase. The agreement protocol, illustrated in Fig. 3, is organized as
two sub-phases called synchronization phase and estimate exchange phase (for
short, s-phase and ee-phase, respectively).

At the beginning of s-phase, each process m-sends a synchronization message
containing a version number to those processes it perceives as being reachable,
and then waits for responses. This message acts to “wake-up” processes that
have not yet entered s-phase. Furthermore, version numbers exchanged in the
s-phase are used in subsequent ee-phases to distinguish between messages of
different agreement protocol invocations. A process leaves s-phase to enter ee-
phase either when it m-receives a response to its synchronization message from
every process that has not been m-suspected during the s-phase, or when it
m-receives a message from a process that has already entered ee-phase.

Each process enters ee-phase (Fig. 4 and 5) with its own estimate for the com-
position of the next view. During this phase, a process can modify its estimate
to reflect changes in the approximation for reachability that is being reported
to it by MSL. In order to guarantee liveness, the algorithm constructs estimate
sets that are always monotone decreasing so that the agreement condition is
certain to hold eventually. Whenever the estimate changes, the process m-sends
a message containing the new estimate to every process belonging to the esti-
mate itself. When a process m-receives estimate messages, it removes from its
own estimate those processes that are excluded from the estimate of the sender.
At the same time, each change in the estimate causes a process to m-send an
agreement proposal to a process selected among the current estimate to act as
a coordinator. Note that while estimates are evolving, different processes may
select different coordinators. Or, the coordinator may crash or become unreach-
able before the agreement condition has been verified. In all these situations, the
current agreement attempt will fail and new estimates will evolve causing a new
coordinator to be selected.

When the coordinator eventually observes that proposals m-received from
some set S of processes are all equal to S, agreement is achieved and the coordi-
nator m-sends to the members of S a message containing a new view identifier
and composition equal to S. When a process m-receives such a message, there
are two possibilities: it can either install a complete view, containing all processes
indicated in the message, or it can install a partial view, containing a subset of
the processes indicated in the message. Partial views are necessary whenever the
installation of a complete view would violate Property GM3(iii). This condition
is checked by verifying whether the current views of processes composing the new
view intersect3. If they do, this could mean that a process in the intersection has
never installed one of the intersecting views, thus violating Property GM3(iii).
For this reason, the m-received view is broken in to a set of non-intersecting
partial views, each of them satisfying Property GM3(iii). If, on the other hand,
current views do not intersect, each process can install the new complete view
as m-received from the coordinator. Note that classification of views as being
complete or partial is completely internal to the implementation. An application
programmer using the provided service in unaware of the distinction and deals
with a single notion of view. Although each invocation of the agreement protocol

3 This condition can be checked locally since current views of processes composing the
new view are included in the message from the coordinator.

1 procedure AgreementPhase()
2 repeat
3 estimate ← reachable % Next view estimation
4 version[p]← version[p] + 1 % Generate new version number
5 SynchronizationPhase()
6 EstimateExchangePhase()
7 until stable % Exit when the view is stable
8
9 procedure SynchronizationPhase()
10 synchronized ← {p} % Processes syncronized with p
11 foreach r ∈ estimate − {p} do
12 msend(〈synchronize, version[r], version[p], symset [r]〉, {r})
13 while (estimate 6⊆ synchronized) do
14 wait-for event % Remain idle until some event occurs
15 case event of
16
17 msuspect(P):
18 foreach r ∈ (Π − P)− reachable) do symset [r]← reachable
19 msend(〈symmetry, version, reachable〉, (Π − P)− reachable)
20 reachable ← Π − P
21 estimate ← estimate ∩ reachable
22
23 mrecv(〈symmetry, V, P 〉, q):
24 if (version[p] = V [p]) and (q ∈ estimate) then
25 estimate ← estimate − P
26
27 mrecv(〈synchronize, Vp, Vq, P 〉, q):
28 if (version[p] = Vp) then
29 synchronized ← synchronized ∪ {q}
30 if (version[q] < Vq) then
31 version[q]← Vq
32 agreed [q]← Vq
33 msend(〈synchronize, version[q], version[p], symset [q]〉, {q})
34 fi
35
36 mrecv(〈estimate, V, P 〉, q)
37 version[q] = V [q]
38 if (q 6∈ estimate) then
39 msend(〈symmetry, version, estimate〉, {q}
40 elseif (version[p] = V [p]) and (p ∈ P) then
41 estimate ← estimate ∩ P
42 synchronized ← P
43 agreed ← V
44 fi
45
46 esac
47 od

Fig. 3. Agreement and synchronization phases for process p.

terminates with the installation of a new view, it is possible that the new view
does not correspond to the current set of processes perceived as being reachable,
or that a new synchronization message has been m-received during the previous
ee-phase. In both cases a new agreement phase is started.

In the extended version of this work [6], we give a proof that our algorithm
satisfies the properties of PGMS. Here, we discuss in high-level terms the tech-
niques used by the algorithm in order to satisfy the specification. Leaving out
the more trivial properties such as View Completeness, View Integrity and View
Order, we focus our attention on View Coherency, View Accuracy and liveness of
the solution. Property GM3 consists of three parts. GM3(iii) is satisfied through
the installation of partial views, as explained above. As for GM3(i) and GM3(ii),
each process is eventually informed if another process belonging to its current
view has not installed it, or if it has changed views after having installed it, re-
spectively. The process is kept informed either through a message, or through an
m-suspect event. In both cases, it reenters the agreement phase. As for liveness,
each invocation of the agreement protocol terminates with the installation of a
new view, even in situations where the reachability relation is highly unstable.
This is guaranteed by the fact that successive estimates of each process for the
composition of the next view are monotone decreasing sets. This is achieved
through two actions. First, new m-suspect lists reported by MSL never result in
a process being added to the initial estimate. Second, processes exchange their
estimates with each other and remove those processes that have been removed
by others. In this manner, each process continues to reduce its estimate until
it coincides exactly with those processes that agree on the composition of the
next view. In the limit, the estimate set will eventually reduce to the process
itself and a singleton view will be installed. This approach may seem in conflict
with View Accuracy: if process p m-receives from process r a message inviting
it to remove a process q, it cannot refuse it. But if p and q are permanently
reachable, non-triviality properties of MSL guarantee that after some time, r
cannot remove q from its view estimate without removing p as well. So, after
some time, r cannot m-send a message to p inviting it to exclude q, because p
cannot belong to the current estimate of r. Moreover, s-phase of view agreement
constitutes a “barrier” against the propagation of old “remove q” messages. In
this way, it is possible to show that there is a time after which all views installed
by p contain q.

A more detailed description of the VML algorithm can be found in the ex-
tended version of this work [6].

6 Reliable Multicast Service: Specification

The class of partition-aware applications that can be programmed using group
membership alone is limited [7]. In general, network applications require closer
cooperation that is facilitated through communication among group members.
In this section, we briefly illustrate how the group membership service of Sect. 3
may constitute the basis of more complex group communication services. The

1 procedure EstimateExchangePhase()
2 installed ← false % True when a new view is installed
3 InitializeEstimatePhase()
4 repeat
5 wait-for event % Remain idle until some event occurs
6 case event of
7
8 msuspect(P):
9 foreach r ∈ (Π − P)− reachable do symset [r]← reachable
10 msend(〈symmetry, version, reachable〉, (Π − P)− reachable)
11 msend(〈estimate, agreed , estimate〉, (Π − P)− reachable)
12 reachable ← Π − P
13 if (estimate ∩ P 6= ∅) then
14 SendEstimate(estimate ∩ P)
15
16 mrecv(〈symmetry, V, P 〉, q):
17 if (agreed [p] = V [p] or agreed [q] ≤ V [q]) and (q ∈ estimate) then
18 SendEstimate(estimate ∩ P)
19
20 mrecv(〈synchronize, Vp, Vq, P 〉, q):
21 version[q]← Vq
22 if (agreed [q] < Vq) and (q ∈ estimate) then
23 SendEstimate(estimate ∩ P)
24
25 mrecv(〈estimate, V, P 〉, q):
26 if (q ∈ estimate) then
27 if (p 6∈ P) and (agreed [p] = V [p] or agreed [q] ≤ V [q]) then
28 SendEstimate(estimate ∩ P)
29 elseif (p ∈ P) and (∀r ∈ estimate ∩ P : agreed [r] = V [r]) then
30 SendEstimate(estimate − P)
31 fi
32
33 mrecv(〈propose, S〉, q):
34 ctbl [q]← S
35 if (q ∈ estimate) and CheckAgreement(ctbl) then
36 InstallView(UniqueID(), ctbl)
37 installed ← true
38 fi
39
40 mrecv(〈view, w, C〉, q):
41 if (C[p].cview .id = cview .id) and (q ∈ estimate)) then
42 InstallView(w,C)
43 installed ← true
44 fi
45
46 esac
47 until installed

Fig. 4. Estimate exchange phase for process p: Part (a).

1 procedure InitializeEstimatePhase()
2 SendEstimate(∅)
3
4 procedure SendEstimate(P)
5 estimate ← estimate − P
6 msend(〈estimate, agreed , estimate〉, reachable − {p})
7 msend(〈propose, (cview , agreed , estimate)〉,Min(estimate))
8
9 function CheckAgreement(C)
10 return (∀q ∈ C[p].estimate : C[p].estimate = C[q].estimate)
11 and (∀q, r ∈ C[p].estimate : C[p].agreed [r] = C[q].agreed [r])
12
13 procedure InstallView(w,C)
14 msend(〈view, w, C〉, C[p].estimate − {p})
15 if (∃q, r ∈ C[p].estimate :
16 q ∈ C[r].cview .comp ∧ C[q].cview .id 6= C[r].cview .id) then
17 view ← ((w, view .id), {r|r ∈ C[p].estimate ∧ C[r].cview .id = cview .id})
18 else
19 view ← ((w,⊥), C[p].estimate)
20 generate vchg(view)
21 cview ← (w,C[p].estimate)
22 stable ← (view .comp = reachable) and
23 (∀q, r ∈ C[p].estimate : C[p].agreed [r] = agreed [r])

Fig. 5. Estimate exchange phase for process p: Part (b).

proposed extension is based on a reliable multicast service with view synchrony
semantics that governs the delivery of multicast messages with respect to in-
stallation of views. After having introduced the reliable multicast specification,
we illustrate how our solution for PGMS may be easily extended in order to
implement view synchrony.

Group members communicate through reliable multicasts by invoking the
primitive mcast(m) that attempts to deliver message m to each of the processes
in the current view through a dlvr() upcall. Multicast messages are labeled in
order to be globally unique. To simplify the presentation, we use Mv

p to denote
the set of messages that have been delivered by process p in view v.

Ideally, all correct processes belonging to a given view should deliver the same
set of messages in that view. In partitionable systems, this requirement could
result in the multicast to block until communication failures are repaired so that
those processes that have become unreachable since the view was installed can
deliver the message. Thus, we relax this condition on the delivery of messages as
follows: a process q may be exempt from delivering the same set of messages as
some other correct process p in a view v if q crashes or if it becomes unreachable
from p. In other words, agreement on the set of delivered messages in a view v
is limited to those processes that survive a view change from view v to the same
next view.

1
1

2

3

2

4

4

(b)(a)

p
q
r

p
q q

p
q
r

p

p
q

p
v

v

v v

v

v
v

Fig. 6. Merging scenarios. Ovals depict view compositions as sets of process names.
Directed edges depict immediate successor relations between views.

RM1 (Message Agreement). Given two views v and w such that w is an
immediate successor of v, all processes belonging to both views deliver the same
set of multicast messages in view v. Formally,

v ≺p w ∧ q ∈ v ∩ w ⇒ Mv
p = Mv

q .

The importance of Message Agreement can be better understood when con-
sidered together the properties offered by the group membership service specified
in Sect. 3. Given two permanently reachable processes, there is a time after which
they install the same sequence of views and deliver the same set of messages be-
tween every pair of successive views.

Note that Property RM1 places no restrictions on the set of messages deliv-
ered by a process q that belonged to view v along with p but that subsequently
ends up in a different partition and is excluded from w. In this case, process q
may or may not deliver some message m that was delivered by p in view v. If,
however, q indeed delivers message m, it must do it in the same view v as p.
This observation leads to the next property.

RM2 (Uniqueness). Each multicast message, if delivered at all, is delivered
in exactly one view. Formally,

(m ∈Mv
p) ∧ (m ∈Mw

q) ⇒ v = w .

Properties RM1 and RM2 together define what has been called view syn-
chrony in group communication systems. In distributed application development,
view synchrony is extremely valuable since it admits global reasoning using lo-
cal information only: Process p knows that all other processes surviving a view
change along with it have delivered the same set of messages in the same view
as p itself. And if two processes share some global state in a view and this state
depends only on the set of delivered messages regardless of their order, then they
will continue to share the same state in the next view if they both survive the
view change4.
4 For applications where the shared state is sensitive to the order in which messages

are delivered, specific order properties can be enforced by additional system layers.

Unfortunately, the group communication service specified so far does not
allow global reasoning based on local information in partitionable systems. Con-
sider the scenario depicted in Fig. 6(a) where three processes p, q, r have all
installed view v1. At some point process r crashes and p becomes temporarily
unreachable from q. Process p reacts to both events by installing view v2 con-
taining only itself before merging back with q and installing view v3. Process q,
on other hand, reacts only to the crash of r and installs view v3 excluding r.
Suppose that p and q share the same state in view v1 and that p modifies its state
during v2. When p and q install v3, p knows immediately that their states may
have diverged, while q cannot infer this fact based on local information alone.
Therefore, q could behave inconsistently with respect to p. In an effort to avoid
this situation, p could collaborate by sending q a warning message as soon as
it installs view v3, but q could perform inconsistent operations before receiving
such a message. The problem stems from the fact that views v1 and v2, that
merge to form view v3, have at least one common member (p). The scenario of
the above example can be easily generalized to any run where two overlapping
views merge to form a common view. We rule out these runs with the following
property.

RM3 (Merging Rule). Two views merging into a common view must have
disjoint compositions. Formally,

(v ≺ u) ∧ (w ≺ u) ∧ (v 6= w) ⇒ v ∩ w = ∅ .

The sequence of view installations in a run respecting this property is shown
in Fig. 6(b): Before installing v3, process q has to first install view v4. Thus
the two views that merge to form v3 have empty intersection. As a result, when
p and q install view v3, they both knows immediately that their states could
have diverged during the partitioning. Note that Property RM3 may appear
to be part of the group membership specification since it is concerned with
view installations alone. Nevertheless, we choose to include it as part of the
reliable multicast service specification since RM3 becomes relevant only in the
context of multicast message deliveries. In other words, applications that need
no guarantees for multicast messages but rely on PGMS alone would not be
interested in RM3.

The next property places simple integrity requirements on delivery of mes-
sages to prevent the same message from being delivered multiple times by the
same process or a message from being delivered “out of thin air” without first
being multicast.

RM4 (Message Integrity). Each process delivers a message at most once
and only if some process actually multicast it earlier. Formally,

σ(p, t) = dlvr(m) ⇒
(dlvr(m) 6∈ σ(p, T − {t})) ∧ (∃q,∃t′ < t : σ(q, t′) = mcast(m)) .

Note that a specification consisting of Properties RM1–RM4 alone can be
trivially satisfied by not delivering any messages at all. We exclude such useless
solutions by including the following property.

RM5 (Liveness).
(i) A correct process always delivers its own multicast messages. Formally,

p ∈ Correct(C) ∧ σ(p, t) = mcast(m) ⇒ (∃t′ > t : σ(p, t′) = dlvr(m)) .

(ii) Let p be a correct process that delivers message m in view v that includes
some other process q. If q never delivers m, then p will eventually install a new
view w as the immediate successor to v. Formally,

p ∈ Correct(C) ∧ σ(p, t) = dlvr(m) ∧ q ∈ v ∧
view(p, t) = v ∧ dlvr(m) 6∈ σ(q, T) ⇒

∃t′ > t : σ(p, t′) = vchg(w) . .

The second part of Property RM5 is the liveness counterpart of Property
RM1: If a process p delivers a message m in view v containing some other process
q, then either q also delivers m, or p eventually excludes q from its current view.

Properties RM1–RM5 that define our Reliable Multicast Service can be com-
bined with Properties GM1–GM5 of group membership to obtain what we call
a Partitionable Group Communication Service with view synchrony semantics.
In the extended version of this work [6] we show how our solution to PGMS can
be extended to satisfy this specification.

7 Related Work and Discussion

The process group paradigm has been the focus of extensive experimental work
in recent years and group communication services are gradually finding their
way into systems for supporting fault-tolerant distributed applications. Exam-
ples of experimental group communication services include Isis [9], Transis [13],
Totem [28], Newtop [17], Horus [35], Ensemble [21], Spread [2], Moshe [4] and
Jgroup [27]. There have also been several specifications for group membership
and group communication not related to any specific experimental system [30,
18, 31].

Despite this intense activity, the distributed systems community has yet to
agree on a formal definition of the group membership problem, especially for
partitionable systems. The fact that many attempts have been show to either
admit trivial solutions or to exhibit undesirable behavior is partially responsible
for this situation [3]. Since the work of Anceaume et al., several other group
membership specifications have appeared [20, 18, 4].

Friedman and Van Renesse [20] give a specification for the Horus group com-
munication system that has many similarities to our proposal, particularly with
respect to safety properties such as View Coherency and Message Agreement.
There are, however, important differences with respect to non-triviality proper-
ties: The Horus specification is conditional on the outputs produced by a failure
detector present in the system. This approach is also suggested by Anceaume
et al. [3] and adopted in the work of Neiger [30]. We feel that a specification

for group membership should be formulated based on properties of runs charac-
terizing actual executions and not in terms of suspicions that a failure detector
produces. Otherwise, the validity of the specification itself would be conditional
on the properties of the failure detector producing the suspicions. For example,
referring to a failure that never suspects anyone or one that always suspect-
s everyone would lead to specifications that are useless. Thus, it is reasonable
for the correctness of a group membership service implementation, but not its
specification, to rely on the properties of the failure detector that it is based on.

Congress and Moshe [4] are two membership protocols that have been de-
signed by the Transis group. Congress provides a simple group membership pro-
tocol, while Moshe extends Congress to provide a full group communication
service. The specification of Moshe has many similarities with our proposal and
includes properties such as View Identifier Local Monotony, Self Inclusion and
View Synchrony, that can be compared to GM4, GM5 and RM1 of our proposal.
Property RM5 is implied by Properties Self Delivery and Termination of Deliv-
ery of Moshe. On the other hand, the specification of Moshe does not guarantee
Properties RM3 and RM4, thus undesirable scenarios similar to those described
in Sect. 6 are possible. The main differences between Moshe and our proposal
are with respect to non-triviality requirements. Moshe includes a property called
Agreement on Views that may be compared to our Properties GM1, GM2 and
GM3. The Agreement on Views property forces a set of processes, say S, to in-
stall the same sequence of views only if there is a time after which every process
in S (i) is correct, (ii) is mutually reachable from all other processes in S, (iii)
is mutually unreachable from all processes not in S, and (iv) is not suspected
by any process in S. As in our proposal, this requirement may be relaxed by
requiring that the condition hold only for a sufficiently long period of time, and
not forever. Despite these similarities, the non-triviality requirements of Moshe
and our proposal have rather different implications. For example, Moshe does
not guarantee that two processes will install a common sequence of views even
if they are mutually and permanently reachable but there are other processes
in the system that become alternately reachable and unreachable from them. In
our proposal, however, processes that are mutually and permanently reachable
always install the same sequence of views, regardless of the state of the rest of
the system. And this is desirable since a common sequence of installed views
which is the basis for consistent collaboration in our partition-aware application
development methodology.

Fekete et al. present a formal specification for a partitionable group com-
munication service [18]. In the same work, the service is used to construct an
ordered broadcast application and, in a subsequent work, to construct replicated
data services [23]. The specification separates safety requirements from perfor-
mance and fault-tolerance requirements, which are shown to hold in executions
that stabilize to a situation where the failure status stops changing. The ba-
sic premise of Fekete et al. is that existing specifications for partitionable group
communication services are too complex, thus, unusable by application program-

mers. And they set out to devise a much simpler formal specification, crafted to
support the specific application they have in mind.

Simple specifications for partitionable group communication are possible on-
ly if services based on them are to support simple applications. Unfortunately,
system services that are indeed useful for a wide range of applications are inher-
ently more complex and do not admit simple specifications. Our experience in
developing actual realistic partition-aware applications supports this claim [7].

The specification and implementation presented in this work form the basis
of Jgroup [27], a group-enhanced extension to the Java RMI distributed object
model. Jgroup enables the creation of object groups that collaborate using the
facilities offered by our partitionable group communication service. Clients access
an object group using the standard Java remote method invocation semantics
and remotely invoking its methods as if it were a single, non-replicated remote
object. The Jgroup system includes a dependable registry service, which itself is
a partition-aware application built using Jgroup services [26]. The dependable
registry is a distributed object repository used by object groups to advertise their
services under a symbolic name (register operation), and by clients to locate
object groups by name (lookup operation). Each registry replica maintains a
database of bindings from symbolic group names to group object composition.
Replicas are kept consistent using group communication primitives offered by
Jgroup. During a partitioning, different replicas of the dependable registry may
diverge. Register operations from within a partition can be serviced as long as
at least one replica is included inside the partition. A lookup, on the other hand,
will not be able to retrieve bindings that have been registered outside the current
partition. Nevertheless, all replicas contained within a given partition are kept
consistent in the sense that they maintain the same set of bindings and behave
as a non-replicated object. When partitions merge, a reconciliation protocol is
executed to bring replicas that may have been updated in different partitions
back to a consistent state. This behavior of the dependable registry is perfectly
reasonable in a partitionable system where clients asking for remote services
would be interested only in servers running in the same partition as themselves.

8 Conclusions

Partition-aware applications are characterized by their ability to continue oper-
ating in multiple concurrent partitions as long as they can reconfigure themselves
consistently [7]. A group membership service provides the necessary properties
so that this reconfiguration is possible and applications can dynamically estab-
lish which services and at what performance levels they can offer in each of the
partitions. The primary partition version of group membership is not suitable
for supporting partition-aware applications since progress would be limited to at
most one network partition. In this paper we have given a formal specification
for a partitionable group communication service that is suitable for supporting
partition-aware applications. Our specification excludes trivial solutions and is
free from undesirable behaviors exhibited by previous attempts. Moreover, it

requires services based on it to be live in the sense that view installations and
message deliveries cannot be delayed arbitrarily when conditions require them.

We have shown that our specification can be implemented in any asyn-
chronous distributed system that admits a failure detector satisfying Strong
Completeness and Eventual Strong Accuracy properties. The correctness of the
implementation depends solely on these abstract properties of the failure de-
tector and not on the operating characteristics of the system. Any practical
failure detector implementation presents a trade-off between accuracy and re-
sponsiveness to failures. By increasing acceptable message delays after each false
suspicion, accuracy can be improved but responsiveness will suffer. In practice,
to guarantee reasonable responsiveness, finite bounds will have to be placed on
acceptable message delays, perhaps established dynamically on a per channel or
per application basis. Doing so will guarantee that new views will be installed
within bounded delays after failures. This in turn may cause some reachable pro-
cesses to be excluded from installed views. Such processes, however, have to be
either very slow themselves or have very slow communication links, and thus, it
is reasonable to exclude them from views until their delays return to acceptable
levels.

Each property included in our specification has been carefully studied and its
contribution evaluated. We have argued that excluding any one of the properties
makes the resulting service either trivial, or subject to undesirable behaviors, or
less useful as a basis for developing large classes of partition-aware applications.
Specification of new system services is mostly a social process and “proving”
the usefulness of any of the included properties is impossible. The best one can
do is program a wide range of applications twice: once using a service with the
proposed property, and a second time without it, and compare their relative
difficulty and complexity. We have pursued this exercise for our specification
by programming a set of practical partition-aware applications [7]. In fact, the
specification was developed by iterating the exercise after modifying properties
based on feedback from the development step. As additional empirical evidence
in support of our specification, we point to the Jgroup system based entirely on
the specification and implementation given in this paper. As discussed in Sect. 7,
the dependable registry service that is an integral part of Jgroup has been pro-
grammed using services offered by Jgroup itself. Work is currently underway in
using Jgroup to develop other partition-aware financial applications and a par-
titionable distributed version of the Sun tuple space system called Javaspaces.

References

1. Y. Amir, L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal, and P. Ciarfella. The
Totem Single-Ring Ordering and Membership Protocol. ACM Transactions on
Computer Systems, 13(4):311–342, November 1995.

2. Y. Amir and J. Stanton. The Spread Wide-Aread Group Communication System.
Technical report, Center of Networking and Distributed Systems, Johns Hopkins
University, Baltimore, Mariland, April 1998.

3. E. Anceaume, B. Charron-Bost, P. Minet, and S. Toueg. On the Formal Specifi-
cation of Group Membership Services. Technical Report TR95-1534, Department
of Computer Science, Cornell University, August 1995.

4. T. Anker, G. Chockler, D. Dolev, and I. Keidar. Scalable Group Membership
Services for Novel Applications. In Proceedings of the DIMACS Workshop on
Networks in Distributed Computing, pages 23–42. American Mathematical Society,
1998.

5. Ö. Babaoğlu, R. Davoli, L.A. Giachini, and M.G. Baker. RELACS: A Communi-
cations Infrastructure for Constructing Reliable Applications in Large-Scale Dis-
tributed Systems. In Proceedings of the 28th Hawaii International Conference on
System Sciences (HICS), pages 612–621, Maui, Hawaii, January 1995.

6. Ö. Babaoğlu, R. Davoli, and A. Montresor. Group Communication in Partition-
able Systems: Specification and Algorithms. Technical Report UBLCS-98-1, De-
partment of Computer Science, University of Bologna, April 1998.

7. Ö. Babaoğlu, R. Davoli, A. Montresor, and R. Segala. System Support for
Partition-Aware Network Applications. In Proceedings of the 18th International
Conference on Distributed Computing Systems (ICDCS), pages 184–191, Amster-
dam, The Netherlands, May 1998.

8. K. Birman. The Process Group Approach to Reliable Distributed Computing.
Communications of the ACM, 36(12):36–53, December 1993.

9. K. Birman and R. van Renesse. Reliable Distributed Computing with the ISIS
Toolkit. IEEE Computer Society Press, 1994.

10. T. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On the Impossibility
of Group Membership. In Proceedings of the 15th ACM Symposium on Principles
of Distributed Computing (PODC), pages 322–330, May 1996. Also available as
technical report TR95-1533, Department of Computer Science, Cornell University.

11. T.D. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable Distributed
Systems. Journal of the ACM, 43(1):225–267, March 1996.

12. D. Dolev, R. Friedman, I. Keidar, and D. Malki. Failure Detectors in Omission
Failure Environments. In Proceedings of the 16th ACM Symposium on Principles
of Distributed Computing (PODC), Santa Barbara, California, August 1997. Also
available as Technical Report TR96-1608.

13. D. Dolev and D. Malki. The Transis Approach to High Availability Cluster Com-
munication. Communications of the ACM, 39(4), April 1996.

14. D. Dolev, D. Malki, and R. Strong. An Asynchronous Membership Protocol that
Tolerates Partitions. Technical Report CS94-6, Institute of Computer Science, The
Hebrew University of Jerusalem, 1994.

15. D. Dolev, D. Malki, and R. Strong. A Framework for Partitionable Membership
Service. Technical Report CS95-4, Institute of Computer Science, The Hebrew
University of Jerusalem, 1995.

16. D. Dolev, D. Malki, and R. Strong. A Framework for Partitionable Membership
Service. In Proceedings of the 15th ACM Symposium on Principles of Distributed
Computing (PODC), May 1996.

17. P.E. Ezhilchelvan, R.A. Macêdo, and S.K. Shrivastava. Newtop: A Fault-Tolerant
Group Communication Protocol. In Proceedings of the 15th International Confer-
ence on Distributed Computing Systems (ICDCS), Vancouver, BC, Canada, June
1995.

18. A. Fekete, N. Lynch, and A. Shvartsman. Specifying and Using a Partitionable
Group Communication Service. In Proceedings of the 16th ACM Symposium on
Principles of Distributed Computing (PODC), Santa Barbara, California, August
1997.

19. M.J. Fischer, N.A. Lynch, and M.S. Patterson. Impossibility of Distributed Con-
sensus with one Faulty Process. Journal of the ACM, 32(2):374–382, April 1985.

20. R. Friedman and R. Van Renesse. Strong and Weak Virtual Synchrony in Horus.
Technical Report TR95-1537, Department of Computer Science, Cornell Universi-
ty, March 1995.

21. M. Hayden. The Ensenble System. PhD thesis, Department of Computer Science,
Cornell University, January 1998.

22. F. Kaashoek and A. Tanenbaum. Group Communication in the Amoeba Dis-
tributed Operating System. In Proceedings of the 12th IEEE Symp. on Reliable
Distributed Systems, pages 222–230, Arlington, TX, May 1991.

23. R. Khazan, A. Fekete, and N. Lynch. Multicast Group Communication as a Base
for a Load-Balancing Replicated Data Service. In Proceedings of the 12th Sympo-
sium on Distributed Computing, August 1998.

24. C. Malloth. Conception and Implementation of a Toolkit for Building Fault-
Tolerant Distributed Applications in Large-Scale Networks. PhD thesis, Ecole Poly-
technique Fédérale de Lausanne, 1996.

25. C. Malloth and A. Schiper. View Synchronous Communication in Large Scale Net-
works. In Proceedings of the 2nd Open Workshop of the ESPRIT Project Broadcast,
Grenoble, France, July 1995.

26. A. Montresor. A Dependable Registry Service for the Jgroup Distributed Object
Model. In Proceedings of the 3rd European Reasearch Seminar on Advances in
Distributed Systems (ERSADS), Madeira, Portugal, April 1999.

27. A. Montresor. The Jgroup Reliable Distributed Object Model. In Proceedings of
the 2nd IFIP International Working Conference on Distributed Applications and
Systems (DAIS), Helsinki, Finland, June 1999.

28. L. Moser, P. Melliar-Smith, D. Agarwal, R. Budhia, and C. Lingley-Papadopoulos.
Totem: A Fault-Tolerant Group Communication System. Communications of the
ACM, 39(4), April 1996.

29. L.E. Moser, Y. Amir, P.M. Melliar-Smith, and D.A. Agarwal. Extended Virtual
Synchrony. In Proceedings of the 14th International Conference on Distributed
Computing Systems (ICDCS), Poznan, Poland, June 1994.

30. G. Neiger. A New Look at Membership Services. In Proceedings of the 15th ACM
Symposium on Principles of Distributed Computing (PODC), May 1996.

31. R. De Prisco, A. Fekete, N. Lynch, and A. Shvartsman. A Dynamic View-Oriented
Group Communication Service. In Proceedings of the 17th ACM Symposium on
Principles of Distributed Computing (PODC), June 1998.

32. A. Ricciardi and K. Birman. Using Process Groups to Implement Failure Detection
in Asynchronous Environments. In Proceedings of the 10th ACM Symposium on
Principles of Distributed Computing (PODC), pages 341–352, August 1991.

33. A. Schiper and A. Ricciardi. Virtually-synchronous Communication Based on a
Weak Failure Suspector. In Proceedings of the 23rd International Symposium on
Fault-Tolerant Computing (FTCS), pages 534–543, June 1993.

34. R. van Renesse, K. Birman, R. Cooper, B. Glade, and P. Stephenson. The Horus
System. In K. Birman and R. van Renesse, editors, Reliable Distributed Computing
with the Isis Toolkit, pages 133–147. IEEE Computer Society Press, 1993.

35. R. van Renesse, K.P. Birman, and S. Maffeis. Horus: A Flexible Group Commu-
nication System. Communications of the ACM, 39(4):76–83, April 1996.

