
Filling the gap between Requirements Engineering and
Public Key/Trust Management Infrastructures?

Paolo Giorgini1, Fabio Massacci1, John Mylopoulos1,2, and Nicola Zannone1

1 Department of Information and Communication Technology
University of Trento - Italy

{massacci,giorgini,zannone}@dit.unitn.it
2 Department of Computer Science

University of Toronto - Canada
jm@cs.toronto.edu

Abstract. The last years have seen a major interest in designing and deploying
trust management and public key infrastructures. Yet, it is still far from clear
how one can pass from the organization and system requirements to the actual
credentials and attribution of permissions in the PKI infrastructure.
Our goal in this paper is filling this gap. We propose a formal framework for
modeling and analyzing security and trust requirements, that extends the Tro-
pos methodology for early requirements modeling. The key intuition that un-
derlies our work is the identification of distinct roles for actors that manipulate
resources, accomplish goals or execute tasks, and actors that own or permit usage
of resources or goals. The paper also presents a simple case study and a PKI/trust
management implementation.

Keywords: Security Engineering, Modelling and Architecture, Verification, Priv-
ilege Management, PKI and eHealth applications, PKI Requirements Anal-
ysis, Trust.

1 Introduction

Trust Management and PKIs are hot topics in security research [5, 4, 7, 10, 13, 17].
There are a number of sophisticated policy languages (e.g., [8]), algorithms, and system
for managing security credentials. The trust-management approach has a number of ad-
vantages over other mechanisms for specifying and controlling authorization, especially
when security policy is distributed over a network or is otherwise decentralized.

Solutions based on public-key cryptography and credential have been shown to be
well suited in satisfying the security requirements of distributed systems and becoming
the foundation for those applications that require security authentication. The reason is
that it is impractical and unrealistic to expect that each user in a large scale system has
a previously established relationship with all other users.

? This work has been partially funded by the IST programme of the EU Commission, FET
under the IST-2001-37004 WASP project and by the FIRB programme of MIUR under the
RBNE0195K5 ASTRO Project. We would like to thank the anonymous reviewers for useful
comments.



However, if we look at the connection between these credential-based systems and
the requirements of the entire IT system we find a large gap. There are no methodolo-
gies for linking security policy to the mainstream requirements analysis process. This
might be an instance of the general problem of security engineering. The usual approach
towards the inclusion of security within a system is to identify security requirements af-
ter system design. This is a critical problem [2], mainly because security mechanisms
have to be fitted into a pre-existing design which may not be able to accommodate them
[25]. Late analysis of security requirements can also generate conflicts between secu-
rity needs and functional requirements of the system. Even with the growing interest in
secure engineering, current methodologies for information system development do not
meet the needs for resolving the security related IS problem [26].

In the literature there are proposals improving on secure engineering (see [24, 14,
20, 22]) or architectures for trust management (see [5, 4, 13, 17, 21]), but nobody has
proposed a methodology that considers together both these approaches. Our goal is
to introduce a trust management system into the requirements engineering framework.
Essentially, we would like to avoid designing an entire IT system and then retrofitting a
PKI on its top, when it is already to late to make it fits snugly.

In this paper we introduce a process that integrates trust, security and system en-
gineering, using the same concepts and notations used for requirements specification.
To devise the PKI/trust management structure, we propose to proceed in three steps.
First, we build a functional requirements model where we show functional dependen-
cies among actors, then we give a trust requirements model, where we study whether
trust relationships among actors correspond to security requirements. Finally, we built
a PKI/trust management implementation where the designer can define credentials and
delegations certificates confronting them with the relationships captured in the other
models and checking whether an actor that offers a service is authorized to have it.

The paper is organized as follows. Next (§2) we provide an brief description of Tro-
pos methodology and describe the basic concepts and diagrams that we use for mod-
eling security. We introduce a simple Health Care Information System (§3) that will
be used as case study throughout the paper. Then we present in the formalization of the
security notions (§4) and define axioms and properties of our framework (§5). Next (§6)
we introduce negative authorizations. Then (§7) we define the trust implementation of
our framework into the RT framework. Finally, we conclude the paper with some direc-
tions for future work (§8).

2 Security-Aware Tropos

The first step towards security engineering is to model the entire organization and pro-
cedures. Security failures often are organizational or procedural failures [2]. Thus, we
have chosen a requirement framework that allows for the modeling of the entire orga-
nization: Tropos [6].

Tropos is an agent-oriented software development methodology, tailored to describe
both the organization and the system. One of the main feature of Tropos is the crucial
role given to the early requirements analysis that precedes the prescriptive requirements
specification. The main advantage of this is that, by doing an earlier analysis, one can

2



capture not only thewhator thehow, but also thewhya piece of software is developed.
This, in turn, supports a more refined analysis of the system dependencies and, in par-
ticular, for a much better and uniform treatment, not only of the system’s functional
requirements, but also of the non-functional requirements (the latter being usually very
hard to deal with).

Tropos uses the concepts of actor, goal, soft goal, task, resource and social depen-
dency for defining the obligations of actors (dependees) to other actors (dependers).
Actors have strategic goals and intentions within the system or the organization and
represent (social) agents (organizational, human or software), roles or positions (that
represent a set of roles). A goal represents the strategic interests of an actor. A task
specifies a particular course of action that produces a desired effect, and can be exe-
cuted in order to satisfy a goal. A resource represents a physical or an informational
entity. Finally, a dependency between two actors indicates that one actor depends on
another to accomplish a goal, execute a task, or deliver a resource. In the rest of the
paper, we say service for goal, task, or resource. For example, Yu et al. [19] have used
the Tropos framework to model strategic goal concerning privacy and security of agents
and have used formal tools for some reachability and goal analysis.

Although Tropos is based on the agent paradigm, it can be also combined with non-
agent (e.g., object-oriented) software development paradigms. For example, one may
want to use Tropos for early development phases and then use UML-based approaches
(e.g., the Rational Unified Process). Tropos can be also combined with more formal
approaches, like for instance [3], allowing so for the description of the dynamic aspects
and the verification of requirements specification. There is a considerable amount of
work in this direction within the Formal Tropos project [11].

After the Tropos formalization we are still for behind capturing security require-
ments, because Tropos has been designed with cooperative information systems in
mind. Thus a dependency between two actors means that the dependee will take respon-
sability for fulfilling the functional goal of a depender, but we have no way to specify
or check that it is actually authorized to do so. Thus, we identify four relationships:

– trust, among two agents and a service,
– delegation, among two agents and a service,
– ownership, between an agent and a service, and
– offer, between an agent and a service.

Note the difference between owning a service and offering a service. For example,
a patient is the legitimate owner of his personal data. However, the data may be stored
on a medical information system that offers access to the data. This distinction explains
clearly why IS managers need the consent of the patient for data processing. Also note
the difference between trust and delegation. Delegation marks a formal passage in the
requirements modeling. In contrast, trust marks simply a social relationship that is not
formalized by a “contract” (such as digital credential).

Moreover, we do not assume that a delegation implies a trust. Using this extension
of the modeling framework, we can now refine the process:

1. define functional dependencies of services among agents;
2. design a trust model among the actors of the systems;
3. identify who owns services and who is able to fulfill them.

3



3 An Illustrative Case Study

We present a simple case of health care IS to illustrate our approach. This example
derives from EU privacy legislation: a citizen’s personal data is processed by an infor-
mation system (which offer a data access service) but it is owned by the citizen himself
whose consent is necessary for the service to be delivered to 3rd parties3.

We consider the following actors:

– Patient, that depends on the hospital for receiving appropriate health care. Further,
patients will refuse to share their data if they do not trust the system or do not have
sufficient control over the use of their data;

– Hospital, that provides medical treatment and depends on the patients for having
their personal information.

– Clinician, physician of the hospital that provides medical health advice and, when-
ever needed, provide accurate medical treatment;

– Health Care Authority(HCA) that control and guarantee the fair resources alloca-
tion and a good quality of the delivered services.

– Medical Information System(MIS), that, according the current privacy legislation,
can share the patients medical data if and only if consent is obtained. TheMIS
manages patients information, including information about the medical treatments
they have received.

In order to provide rapid and accurate medical treatments, clinicians need a fast
access to their patient’ medical data. Similarly, HCA needs a fast and reliable access
to the data in order to allocate effectively the available resources, and guaranteeing
then that each patient can receive a good quality of medical care. Furthermore, HCA
wants to be sure that the system cannot be defrauded in any way and that clinicians
and patients behave within the limits of their roles. To the other hand, the obvious right
of the patient to restrict access on his/her medical data and moreover, to be able to use
some safeguards on the privacy of these data, should be taken into serious consideration.
The patient’s consent must be requested, and he must be notified when its data is shared.

Figure 1 shows the functional requirement model. In the functional requirement
model we represent a (Tropos) dependence as an edge labelled byD. For every actor
we show the goals that they have to aim (A) and the services they can offer (S). Then
we built the trust requirement model. The basic idea is that the owner of an object has
full authority concerning access and disposition of his object, and he can also delegate
it to other actors. We represent this relationship as an edge labelled byO. Further, we
want separate the concept of authority from the concept of permission. This allows to
use the notion of authority as a prerequisite for creating permissions. By expressing
constraints on future delegations one defines the scope of future management structure
in an organization. To this end, we introduce the notion of trust and delegation. The
basic meaning of trust is to determine whether a actor is authorized to have the object.
Thus, we use trust (T) to model the basic trust relationship between agents. In the trust
management implementation we use delegation to model the actual transfer of rights
in some form (e.g. a digital certificate, a signed paper, etc.etc.). We consider two kind

3 Of course, this is not true for most countries in the world.

4



information
personal

Authority
Health Care

information
personal

distribution
resource

check equity

Patient

information
personal

Clinician
information
personal

Hospital

consulting
requestmedical

treatment consulting
provide

medical
treatment

A

A

A

A

A

A

access
patient
record

update
patient
record

Medical

System
Information

S

S

S

S

S

S

D D

D

D

D

D D

D

D

D

DD

D

D

D

D

D

D

D

D

D D

Fig. 1.Health Care System functional requirement model

Medical

System
Information

information
personal

Authority
Health Care

information
personal

distribution
resource

check equity

Patient

information
personal

Clinician
information

personal

Hospital

medical
treatment

update
patient
record

access
patient
record

O

O

O

O

O

consultancy
request

consultancy
provide

T

T T

T

T

T

T

T
T

T

T T T

TTT

Fig. 2.Health Care System trust requirement model

of delegation: delegation for use, or permission (P), and delegation for grant (G). We
believe that both types of delegation should be offered by an information system since
a choice would then result in greater flexibility. Essentially we assume that if an actor is
a delegatee for a certain service it must have appropriate permission from the owner of
the service. ThePatientaims to get medical treatments.Hospitalaims to check equity
resource distribution. To the other hand,Clinician can offer medical treatments and
HCA can check equity resource distribution. So,Patientsdepend on theHospital for
receiving medical treatments, and in turn,Hospitaldepends onClinician for providing
such treatments.Clinician depends on thePatientsfor their personal information and
on theHospital for specific professional consultancies. TheHospitaldepends on other
Clinicians for providing professional consultancies and onHCA for checking equity
resource distribution and for patient personal information.HCA depends onPatientfor
personal information. Finally, we also consider the dependencies betweenClinician and
MIS to access patient record and to update patient record.

5



Medical

System
Information

information
personal

Authority
Health Care

information
personal

distribution
resource

check equity

Patient

information
personal

Clinician
information
personal

Hospital

medical
treatment

medical
treatment

update
patient
record

access
patient
record

request
consultancy consultancy

provide

PP

P,G

P,G

G

G

GG

PP

G

G

Fig. 3.Health Care System trust management implementation

Figure 2 shows the trust requirement model. ThePatientowns his personal infor-
mation andClinician owns medical treatments.Patient trustsHCA andClinician for
his personal information, andHCA trustsHospital for it. Further,Hospital trustsHCA
for checking equity resource distribution.Clinician trustsHospital for medical treat-
ment and for requesting specific professional consulting, andHospital trustsClinician
for providing such consulting. Notice on top of Fig. 2 that there is a trust relationship
between two actors (HCA and Hospital) on a resource that is owned by neither of them.

Figure 3 shows the trust management implementation.Clinician delegates for grant
medical treatments toHospitalandHospitaldelegates for use the goal to check equity
resource distribution toHCA. Clinician and HCA need patient personal information
to fullfill their service. Thus,Patientdelegates them his personal information. Further,
HCAdelegates for grant these data toHospital, and in turn,Hospitaldelegates for grant
them toMIS.

4 Formalization

To built the formal semantics of the requirements model, we use a form of delega-
tion logics to model security requirements. Particularly, we follow Li et al. [15, 16]
that provides a logical framework for representing security policies and credentials for
authorization in large-scale, open, distributed systems.

We start by presenting the set of predicates for the functional requirement model.
When an actor has the capabilities to fulfill a service, he offers it. The intuition is that
offers(a, s) holds if instancea offers the corresponding instance ofs. We assume that
a can offer the service if he has it. The predicateaims(a, s) holds if actora has the
objective of reaching to fulfill the goals. The predicatedepends(a, b, s1, s2) holds if
actora depends from actorb for services1 for the fulfillment of services2.

Next we have predicates for the trust requirement model. The predicateowns(a, s)
holds if the instancea owns the services. The owner of a service has full authority
concerning access and usage of his services, and he can also delegate this authority
to other actors. The predicatetrust(a, b, s1, s2, n) holds is actora trusts actorb for

6



Functional Requirement Model
offers(Actor : a, Service : s)
aims(Actor : a, Service : s)
depends(Actor : a, Actor : b, Service : s1, Service : s2)

Trust Requirement Model
owns(Actor : a, Service : s)

trust
(
Actor : a, Actor : b, Service : s1, Service : s2,N+ ∪ {∗} : n

)
Trust Management Implementation
has(Actor : a, Service : s)
fulfills(Actor : a, Service : s)

delGrant
(
id : idC, Actor : a, Actor : b, Service : s1, Service : s2,N+ ∪ {∗} : n

)
permission(id : idC, Actor : a, Actor : b, Service : s1, Service : s2)

Table 1.Predicates

services1 to fulfill service s2; n is called trust depth. As suggest by Li at al. [15]
for their delegation logics, trust has depth, which is either a positive integer or “*” for
unbounded depth.

Finally, we use the following predicates to model the trust management implemen-
tation. The basic idea ofhas is that who has a service, has authority concerning access
and disposition of the service, and he can also delegate this authority to other actors pro-
vided the owner of the service agree. The predicatesfulfills is true when the service is
fulfilled by an actor. Particularly,fulfills(a, s) holds if actora fulfills the services. Every
trust management framework is based on credentials and delegation. We distinguish two
predicates:delGrant andpermission. The intuition is thatdelGrant(idC, a, b, s1, s2, n)
holds if actora delegates the permission to grant the services1 to fulfill the goals2 to
actorb. The intuition is thatpermission(idC, a, b, s1, s2) holds if actora delegates the
permission to use the services1 to reach the goals2 to actorb. The actora is called the
delegater; the actorb is called thedelegatee; idC is the certificate identify;n is called
thedelegation depth. A delegation has depth as for trust. One way to view depth is the
number of re-delegation steps that are allowed; depth 1 means that no re-delegation is
allowed, depthN means thatN − 1 further step are allowed, and depth “*” means that
unbounded re-delegation is allowed. We abbreviate delegation and permission chain as
follows

delGChain(A, B, S1, S2) ≡
{

∃k s.t. ∃a1 . . . ak ∃n1 . . . nk−1 ∀i ∈ [1 . . . k − 1]
delGrant(idi, ai, ai+1, S1, S2, ni) ∧ a1 = A ∧ ak = B

permissionChain(A, C, S1, S2) ≡

{
(permission(idC, A, C, S1, S2)) ∨
(∃B delGChain(A, B, S1, S2) ∧
permission(idC, B, C, S1, S2))

5 Axioms and Properties

In order to illustrate our approach we formalize the case study and check-model it in
Datalog [1]. A datalog program is a set of rules of the formL:- L1 ∧ ... ∧ Ln where

7



Functional Requirement Model
Ax1: aims(B, S1) :- depends(A, B, S1, S2)

Trust Requirement Model
Ax2: trust(A, B, S1, S2, N − 1) :- trust(A, B, S1, S2, N) ∧N > 2
Ax3: trust(A, C, S1, S2, P ) :- trust(A, B, S1, S2, N)∧ trust(B, C, S1, S2, M)∧

P = min{N − 1, M} ∧N > 2

Trust Management Implementation
Ax4: has(A, S) :- owns(A, S)
Ax5: has(B, S1) :- delGrant(ID , A, B, S1, S2, N)
Ax6: has(B, S1) :- permission(ID , A, B, S1, S2)
Ax7: fulfills(A, S) :- has(A, S) ∧ offers(A, S)
Ax8: fulfills(A, S1) :- depends(A, B, S1, S2) ∧ fulfills(B, S1)
Ax9: fulfills(A, S) :- ∀S′ v S , fulfills(A, S′)

Table 2.Axioms

L, called head, is a positive literal andL1, ..., Ln are literals and they are called body.
Intuitively, if L1, ..., Ln are true in the model thenL must be true in the model. In
Datalog, negation is treated as negation as failure. In other words, if there is no evidence
that an atom is true, it is considered to be false, and hence if an atom is not true in some
model, then its negation should be considered to be true in that model. In this way, if a
subgoal is not fulfilled, also the correspondent main goal is not fulfilled.

The intuitive descriptions of systems are often incomplete, and need to be completed
for a correct analysis. To draw the right conclusions from an intuitive model, we need
to complete the model using a systematic method. To this end we useaxioms.

In Table 2 we present the axioms for our framework. Ax1 says that if an actor
depends to other actors to fulfill a service the last has as objective the service. Ax2 states
that if someone trust with depthN , then he trust with smaller depth. Ax3 completes the
trust relationship between actors. As we say before, the owner of a service has full
authority concerning access and disposition of it. Thus, Ax4 states that if an actor owns
a service, he has it. Ax5 and Ax6 say that the delegatee has the service. Ax7 states that if
an actor has a service and offers it, then he fulfills the service. Ax8 says that if an actor
depends to another and the second fulfills the service, also the first fulfill the service.
Ax9 is for and-decomposition and states that an actor fulfills the main service if he has
fulfilled all its subservices. For or-decomposition the main goal is fulfilled if one of its
subgoals is fulfilled. Note thatS′ v S means thatS′ is subgoal ofS.

Propertiesare different from axioms: they are design feature that must be checked.
If the set of features is not consistent, i.e. they cannot all be simultaneously satisfied,
the system is inconsistent, and hence it is not secure. In Table 3 we use theA ⇒? B to
mean that one must check that each timeA holds it is desirable thatB also holds. In
Datalog this can be rapresented as the constraint :-A, notB.

Table 3 shows a number of properties. Pro1 wants to check if an actor fulfills the
services that he has as objective. Pro2 and Prop3 state that if an actor has or fulfills a
service and it belongs to another actor, the last has to trust first one. Pro4 and Prop5
state that if an actor has or fulfills a service and it belongs to another actor, there is a
delegation chain from the first to the second. Pro6, Pro7, and Pro8 state that if an agent

8



Pro1: aims(A, S) ⇒? fulfills(A, S)
Pro2: has(B, S1) ∧ owns(A, S1) ∧A 6= B ⇒? ∃N trust(A, B, S1, S2, N)
Pro3: fulfills(B, S1) ∧ owns(A, S1) ∧A 6= B ⇒? ∃N trust(A, B, S1, S2, N)

Pro4: has(B, S1)∧owns(A, S1)∧A 6= B ⇒?

{
delGChain(A, B, S1, S2)∨

permissionChain(A, B, S1, S2)

Pro5: fulfills(B, S1)∧owns(A, S1)∧A 6= B ⇒? permissionChain(A, B, S1, S2)
Pro6: fulfills(A, S) ⇒? has(A, S)
Pro7: permission(ID , A, B, S1, S2) ⇒? has(A, S1)
Pro8: delGrant(ID , A, B, S1, S2, N) ⇒? has(A, S1)
Pro9: permission(ID , A, B, S1, S2) ⇒? ∃N trust(A, B, S1, S2, N)
Pro10: delGrant(ID , A, B, S1, S2, N) ⇒? ∃M ≥ N trust(A, B, S1, S2, M)
Pro11: permissionChain(A, B, S1, S2) ⇒? ∃N trust(A, B, S1, S2, N)
Pro12: delGChain(A, B, S1, S2) ⇒? ∃N trust(A, B, S1, S2, N)

Pro13: delGChain(A, B, S1, S2) ⇒?


∃M ∃A1 . . . AM ∃N1 . . . NM−1

∀i ∈ [1 . . . M − 1]
delGrant(ID i, Ai, Ai+1, S1, S2, Ni)∧
A1 = A ∧ AM = B ∧ Ni > Ni+1

Table 3.Desirable Properties of a Design

fulfills or delegates a service, he should have it. Pro9, Pro10, Pro11, and Pro12 state that
an actor who delegates something to other or there is a delegation chain, the delegater
has to trust the delegatee. Rights or privileges can be given to trusted agents that are then
responsible for agents they may delegate this right to. So the agents will only delegate
to agents that they trust. This forms a delegation chain. If any agent along this chain
fails to meet the requirements associated with a delegated right, the chain is broken and
all agents following the failure are not permitted to perform the action associated with
the right. Thus, Prop13 is used to verify whether the delegate chain is valid.

As already proposed in [12], our framework supports automatic verification of secu-
rity requirements. Particularly, we use the DLV system [9] to check system consistency.

6 Negative Authorizations

In all practical example of policies and requirements for e-health we found the need
for negative authorization (for non-functional requirements) and negative goals or goal
whose fulfillment obstacles the fulfillment of other goals (for functional requirements).
Tropos already accommodates the notion of positive or negative contribution of goals to
the fulfillment of other goals. We only need to lift the framework to permission and trust.
Notice that having negative authorization in the requirements model doesnotmean that
we must use “negative” certificates. Even if some form of negative certificates are often
used in real life4 we can use negative authorization to help the designer in shaping
the perimeter of positive trust, i.e. positive certificates, to avoid incautious delegation
certificates that may give more powers than desired.

4 E.g., A certificate issued by the government that you have no pending criminal trials

9



Trust Management Implementation
delDenial

(
id : idC, Actor : a, Actor : b, Service : s,N+ ∪ {∗} : n

)
prohibition(id : idC, Actor : a, Actor : b, Service : s)

Table 4.Negative Authorization Predicates

We use aclosed worldpolicy. Under this policy, the lack of an authorization is
interpreted as a negative authorization. Therefore, whenever a actor tries to access an
object, if a positive authorization is not found in the system, the actor is denied the
access. This approach has a major problem in the lack of a given authorization for a
given actor does not prevent this user from receiving this authorization later on.

Suppose that an actor should not be given access to a service. In situations where
authorization administration is decentralized, an actor possessing the right to use the
service, can delegate the authorization on that service to the wrong actor. Since many
actors may have the right to use a service, it is not always possible to enforce with
certainty the constraint that a actor cannot access a particular service. We propose an
explicit negativeauthorization as an approach for handling this type of constraint.

An explicit negative authorization express adenial for an actor to access a service.
In our approach negative authorizations are stronger than positive authorizations. That
is, whenever a user has both a positive and a negative authorization on the same ob-
ject, the user is prevented from accessing the object. Negative authorizations in our
model are handled as blocking authorizations. Whenever a user receives a negative au-
thorization, his positive authorizations become blocked. We distinguish two predicates:
delDenial andprohibition . The intuition is thatdelDenial(idC, a, b, s, n) holds if ac-
tor a delegates the permission to denial the services to actorb. The intuition is that
prohibition(idC, a, b, s) holds if actora forbids to use the services to actorb. Actor a
says that services cannot be assigned to actorb We assume that if an actora denial an
actorb to have services there is not a delegation chain froma to b. So, ifa is the owner
of s thenb cannot haves. Otherwiseb could haves if there exists a delegation chain
from owner ofs andb without a. As done for positive authorization, we can define an
abbreviation for a denial chain as

delDChain(A, B, S) ≡
{
∃k s.t. ∃a1 . . . ak ∃n1 . . . nk−1 ∀i ∈ [1 . . . k − 1]
delDenial(idi, ai, ai+1, S, ni) ∧ a1 = A ∧ ak = B

and an abbreviation for a prohibition chain as

prohibitionChain(A, C, S) ≡
{

(prohibition(idC, A, C, S)) ∨
(∃B delDChain(A, B, S) ∧ prohibition(idC, B, C, S))

As we say for positive authorization, the intuitive description of systems are often
incomplete, and need to be completed for providing correct analysis. To this end we use
axioms to complete the model. In Table 5 we show how. Ax5 and Ax6 are modified to
account for the possibility of negative authorizations: we have to add in the body of the
rules that there is not a prohibition chain from the delegater to the delegatee.

10



Trust Management Implementation
Ax5: has(B, S1) :- delGrant(ID , A, B, S1, S2, N)∧notprohibitionChain(A, B, S1)
Ax6: has(B, S1) :- permission(ID , A, B, S1, S2) ∧ notprohibitionChain(A, B, S1)

Table 5.Negative Authorization Axioms

Pro14: prohibition(ID , A, B, S) ∧ owns(A, S) ⇒? nothas(B, S)
Pro15: prohibition(ID , A, B, S) ∧ owns(A, S) ⇒? not fulfills(B, S)

Pro16: delDChain(A, B, S) ⇒?


∃M ∃A1 . . . AM ∃N1 . . . NM−1

∀i ∈ [1 . . . M − 1]
delDenial(ID i, Ai, Ai+1, S, Ni)∧

A1 = A ∧ AM = B ∧ Ni > Ni+1

Table 6.Negative Authorization Desirable Properties

System designer should check that the system is secure. Table 6 presents properties
for negative authorization to verify if the model respects security features. Pro14 and
Pro15 check that if the owner of a service forbids to use it to another actor, the last one
cannot have and fulfill the service. Pro16 is used to verify if a denial chain is valid.

7 Trust Management Implementation

Several trust management systems [5, 4, 15] have been proposed to address authoriza-
tion in decentralized environments. In this section we present the implementation of our
approach using the RT (Role-based Trust-management) framework [16–18].

The RT framework provides policy language, semantics, deduction engine, and
pragmatic features such as application domain specification documents that help dis-
tributed users maintain consistent use of policy terms. In comparison with systems like
SPKI/SDSI [10, 23] and KeyNote [4], the advantage of RT includes a declarative, logic-
based semantic foundation also based on Datalog, support for vocabulary agreement,
strongly-typed credential and policies, and more flexible delegation structures.

An entity in RT is a uniquely identified individual or process. They can issue cre-
dentials and make requests and we assume that one can determine which entity issued
a particular credential or request. RT uses the notion of roles to represents attributes: an
entity is a member of a role if and only if it has the attribute identified by the role.

In RT, a role is denoted by an entity followed by a role name, separated by a dot.
Only the entityA has the authority to define the members of the roleA.R, andA
does so by issuing role-definition credentials. An entityA can defineA.R to contain
A.R1, another role defined byA. Such a credential readsA.R ←− A.R1; it means
thatA defines thatR1 dominatesR. At the same time, a credentialA.R ←− B.R is
a delegation fromA to B of authority overR. This can be used to decentralize the
user-role assignment. A credential of the formA.R ←− B.R1 can be used to define
role-mapping across multiple organizations when they collaborate; it also represents a
delegation fromA to B. Using a linked role in a credential enables the issuer to delegate

11



to each member of a role. The credentialA.R ←− A.R1.R2 states that:A.R contains
anyB.R2 if A.R1 containsB.

To model permissions on objects and services one also uses roles. A permission
typically consists of an access mode and an object. It is often useful to group logically
related objects and access modes together and to give permission about them together.
These groups are called o-set and are defined in ways similar to roles. The difference is
that the members of o-set are objects that are not entities.

A o-set-definition credential is similar to a role-definition credential.

– A.o(h1, ..., hn)←− B.o1(s1, ..., sm)
whereo(h1, ..., hn) is an o-set name of base typeτ , andB.o1(s1, ..., sm) another
o-set of base typeτ .

– A.o(h1, ..., hn)←− A.r1(t1, ..., tl).o1(s1, ..., sm)
whereo(h1, ..., hn) is an o-set name of base typeτ , andA.r1(t1, ..., tl).o1(s1, ..., sm)
is a linked o-set in whichr1(t1, ..., tl) is a role name ando1(s1, ..., sm) is an o-set
name of base typeτ .

At present we do not have roles in our framework (through roles are present in the
Tropos framework), and so, we do not translate role-definition credentials. The intuition
is thatpermission(ID , A, B, S1, S2) can be rewritten in RT framework asA.S1 ←−
B.S2, anddelGrant(ID , A, B, S1, S2, N) asA.S1 ←− B.r.S2, whereB allows to
use the serviceS1 to actors in the roleB.r.

The user of the system - patients, clinicians and administrative staff - are modeled
as entity whose policies consists only of credentials they acquire over time.

Example 1.A patient allows his clinician to read his personal/medical data to provide
accurate medical treatment. We express the trust relationship in our framework as
permission(id ,Pat ,Cli ,Rec,MedTre) :- isClinicianOf(Pat ,Cli) ∧ owns(Pat ,Rec)
The intuition is thatisClinicianOf(a, b) holds if the instancea is the clinician of the
instanceb. Now, we translate the relationship into the RT framework as

Pat.recordAc(read, ?F : Pat.record)←− Pat.clinician.provide(?E : medTre)

Given “Pat.record←− Rec” and “Pat.clinician←− Cli”, one can conclude that
“Pat.recordAc(read,Rec)←− Cli.provide(?E : medTre)”.

Example 2.The Medical Information System allows the clinician to write on his pa-
tient records to upgrade them. We express the trust relationship as
permission(id ,MIS ,Cli ,Rec, upgrade(Rec)) :- isClinicianOf(Pat ,Cli)∧owns(Pat ,Rec)

Now, we translate the relationship into the RT framework as

MIS.recordAc(write, ?F : Pat.record)←− Pat.clinician.upgrade(?F : Pat.record)

Given “Pat.record←− Rec” and “Pat.clinician←− Cli”, one can conclude that
“MIS.recordAc(write,Rec)←− Cli.upgrade(Rec)”.

12



8 Conclusion

The main contribution of this paper is the introduction of a framework that integrates
security and requirements engineering. We have proposed a PKI/trust management re-
quirements specification and analysis framework based on the clear separation of trust
and delegation relationship. This distinction makes possible to capture the high-level se-
curity requirements without being immediately bogged down into considerations about
cryptographic algorithms or security implementation. This should be similar to what
happens when discussing functional system requirements: one doesn’t get immediately
trapped into discussions about programming languages or Java patterns and coding
techniques.

Further, the framework we proposed supports the automatic verification of security
requirements specified in a formal modeling language. Particularly, we have used the
DLV system to check system consistency. Finally, we have defined the trust manage-
ment implementation of our framework into the RT framework.

The research developed here is still in progress. Much remains to be done to further
refine the proposed framework and validate its usefulness with real case studies. We are
currently working in the direction of incorporating explicitly roles adding time features
and the integration with the Formal Tropos tool [11]. Also we are investigating the
effects of supporting hierarchies of objects and hierarchies of actors.

References

1. S. Abiteboul, R. Hull, and V. Vianu.Foundations of Databases. Addison-Wesley, 1995.
2. R. Anderson.Security Engineering: A Guide to Building Dependable Distributed Systems.

Wiley Computer Publishing, 2001.
3. A. Bandara, E. Lupu, and A. Russo. Using Event Calculus to Formalise Policy Specification

and Analysis. InProc. of the 4th Int. Workshop on Policies for Distributed Sys. and Networks
(POLICY’03), 2003.

4. M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The Role of Trust Management
in Distributed Systems Security.Secure Internet Programming, 1603:185–210, 1999.

5. M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust Management. InProc. of 1996
IEEE Symp. on Sec. and Privacy, pages 164–173, 1996.

6. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. TROPOS: An Agent-
Oriented Software Development Methodology.JAAMAS, 8(3):203–236, 2004.

7. Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and M. Strauss. REFEREE: Trust
management for Web applications.Computer Networks and ISDN Systems, 29(8–13):953–
964, 1997.

8. N. Damianou. A Policy Framework for Management of Distributed Systems. PhD thesis,
University of London, 2002.

9. T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. Aggregate Functions in Disjunc-
tive Logic Programming: Semantics, Complexity, and Implementation in DLV. InProc. of
IJCAI’03. Morgan Kaufmann Publishers, 2003.

10. C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. Simple Public Key
Certificates. Internet Draft (work in progress), 1999.

11. A. Fuxman, L. Liu, M. Pistore, M. Roveri, and J. Mylopoulos. Specifying and analyzing
early requirements: Some experimental results. InProc. of RE’03, page 105. IEEE Press,
2003.

13



12. P. Giorgini, F. Massacci, J. Mylopoulous, and N. Zannone. Requirements Engineering meets
Trust Management: Model, Methodology, and Reasoning. InProc. of iTrust 2004, volume
2995 ofLNCS, pages 176–190. Springer-Verlag Heidelberg, 2004.

13. T. Jim. SD3: a trust management system with certified evaluation. InProc. of 2001 IEEE
Symp. on Sec. and Privacy, pages 106 – 115. IEEE Press, 2001.

14. J. J̈urjens. Towards Secure Systems Development with UMLsec. InProc. of FASE’01, 2001.
15. N. Li, B. N. Grosof, and J. Feigenbaum. Delegation logic: A logic-based approach to dis-

tributed authorization.TISSEC, 6(1):128–171, 2003.
16. N. Li and J. C. Mitchell. Datalog with Constraints: A Foundation for Trust-management

Languages. InProc. of PADL’03, 2003.
17. N. Li, J. C. Mitchell, and W. H. Winsborough. Design of A Role-based Trust-management

Framework. InProc. of 2002 IEEE Symp. on Sec. and Privacy, 2002.
18. N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed Credential Chain Discovery in

Trust Management.J. of Comp. Sec., 11(1):35–86, 2003.
19. L. Liu, E. S. K. Yu, and J. Mylopoulos. Security and Privacy Requirements Analysis within

a Social Setting. InProc. of RE’03, pages 151–161, 2003.
20. T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-Based Modeling Language

for Model-Driven Security. In J.-M. Jezequel, H. Hussmann, and S. Cook, editors,Proc. of
UML’02, volume 2460, pages 426–441. Springer-Verlag Heidelberg, 2002.

21. J. Lopez, A. Mana, J. A. Montenegro, and J. J. Ortega. PKI design based on the use of on-line
certification authorities.Int. J. of Information Sec., 2(2):91 – 102, 2004.

22. J. McDermott and C. Fox. Using Abuse Case Models for Security Requirements Analysis.
In Proc. of ACSAC’99, 1999.

23. R. L. Rivest and B. Lampson. SDSI – A Simple Distributed Security Infrastructure, 1996.
24. G. Sindre and A. L. Opdahl. Eliciting Security Requirements by Misuse Cases. InProc. of

TOOLS Pacific 2000, pages 120–131, 2000.
25. W. Stallings. Cryptography and Network Security: Principles and Practice. Prentice-Hall,

Englewood Cliffs, New Jersey, 1999.
26. T. Tryfonas, E. Kiountouzis, and A. Poulymenakou. Embedding security practices in con-

temporary information systems development approaches.Inform. Management and Comp.
Sec., 9:183–197, 2001.

14


