
Generalized XML Security Views

Gabriel Kuper
kuper@acm.org

Fabio Massacci
Fabio.Massacci@unitn.it

Nataliya Rassadko
Nataliya.Rassadko@dit.unitn.it

Università di Trento
Via Sommarive 14, 38050 Povo, Trento, Italy

ABSTRACT
We investigate a generalization of the notion of XML security view
introduced by Stoica and Farkas [17] and later refined by Fan et
al. [8]. The model consists of access control policies specified
over DTDs with XPath expression for data-dependent access con-
trol policies. We provide the notion ofsecurity viewsfor charac-
terizing information accessible to authorized users. This is a trans-
formed (sanitized) DTD schema that can be used by users for query
formulation and optimization. Then we show an algorithm to ma-
terialize “authorized” version of the document from the view and
an algorithm to construct the view from an access control specifi-
cation. We also propose a number of generalizations for security
policies1.

Categories and Subject Descriptors
H.2.7 [Database Administration]: Security, integrity and protec-
tion—Access control

General Terms
Algorithms, Security

Keywords
XML access control, XML views, XPath

1. INTRODUCTION
XML [3] has become the prime standard for data representation

and exchange on the Web. In light of the sensitive nature of many
business data applications, this also raises the issue of security in
XML and the selective exposure of information to different classes
of users based on their access privileges.

To address this issue we need simple, powerful, fine grained au-
thorization mechanisms that

1. can control access to both content and structure;
1An extended version of this paper can be found at
http://www.dit.unitn.it/∼rassadko/publications/kupe-mass-rass-
04-long.pdf

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’05,June 1–3, 2005, Stockholm, Sweden.
Copyright 2005 ACM 1-59593-045-0/05/0006 ...$5.00.

2. can be enforced without annotating the entire document;

3. still provide a “sanitized” schema information to users.

While specifications and enforcement of access control are well
understood for traditional databases [7, 13, 15, 16], the study of
security for XML is less established. Although a number of secu-
rity models are proposed for XML [2, 4, 6, 12, 14], these mod-
els do not meet criterion 3 above and, to a lesser extent, crite-
rion 2. More specifically, these proposed models enforce secu-
rity constraints at the document level by fully annotating the entire
XML document/database [4, 2, 6]; these require expensive view
materialization, and complicate the consistency and integrity main-
tenance. To overcome this limitations, the notion of XML security
views was initially proposed by Stoica and Farkas [17] and later
refined by Fan et al. [8].

The most important limitation of the mainstream models is the
lack of support for authorized users to query the data: they either do
not provide schema information of the accessible data, or expose
the entire original DTD (or its loosened variant). In both cases,
the solution is hardly practical for large and complex documents.
Furthermore, fixing the access control policies at the instance level
without providing or computing a schema, makes it difficult for the
security officer to understand how the authorized view of a docu-
ment for a user or a class of users will actually look like.

On the other side, revelation of excessive schema information
might lead to security breaches: an unauthorized user can deduct
or infer confidential information via multiple queries (essentially
if the authorization specifications are not closed under intersection)
and analysis of the schema even if just accessible nodes are queried.

1.1 Our Contribution.
We generalize the notion of XML security views to arbitrary

DAG DTDs and to conditional constraints expressed in a very ex-
pressive XPath fragment. For each view, a security specification is
a simple extension of the document DTDD with security annota-
tions and security policies exploited to obtain full annotation from
partial one. This specification has the advantage that can be easily
implemented with little or no modification to state-of-the-art DTD
parsers and offer security officers an intuitive feeling of the actual
look of sanitized document.

From the specification, we derive a security viewV consisting
of aview DTDDv and a functionσ defined via XPath queries. The
view DTD Dv shows only the data that is accessible according to
the specification. The view is provided to the users so that they can
formulate their queries over the view. The functionσ is withheld
from the users, and is used to extract accessible data from the actual
XML documents to populate a structure conforming toDv.

Query optimization can then be performed by users (using se-
curity view) and then by the system (by expanding and optimizing

the selection function). Thus, it is no longer necessary to process
an entire document and only relevant data is retrieved. Moreover,
the users can only access data viaDv, and no information beyond
the view can be inferred from (multiple) queries posed onDv.

More specifically, the main contributions of the paper include:

• A refined version of access policies over XML documents
using conditional annotations at DTD level;

• A notion of security view that enforces the security con-
straints at the schema level and provides a view DTD char-
acterizing them;

• An efficient algorithm for materializing security views, which
ensures that views conform to view DTDs;

• An algorithm for deriving a security view from a specifica-
tion of security annotations.

1.2 Plan of the paper
The rest of the paper is organized as follows. First we present

preliminary notions on XML and XPath in Sec. 2. In Sec. 3 we
provide a motivating example. Next we introduce the notion of se-
curity specification (Sec. 4) and the notion of view (Sec. 5). We
show how to materialize a view and that using views is equivalent
to annotating directly the document (Sec. 6). In Sec. 7 we describe
classification of security policies with respect to consistency and
completeness properties. Some extensions of our model are out-
lined in Sec. 8. Next we present implementation issues (Sec. 9).
Finally we conclude the paper in Sec. 10.

2. A PRIMER ON XML AND XPATH
We first review DTDs [3] and XPath [5] queries.

Definition 2.1: A DTD D is a triple(Ele, P, root), whereEle
is a finite set ofelement types; root is a distinguished type inEle,
andP is a function defining element types such that for eachA in
Ele, P (A) is a regular expression overEle ∪ {str}, wherestr
is a special type denotingPCDATA, We useε to denote the empty
word, and “+”, “ ,”, and “∗” to denote disjunction, concatenation,
and the Kleene star, respectively. We refer toA → P (A) as the
productionof A. For all element typesB occurring inP (A), we
refer toB as asubelement type(or achild type) of A and toA as a
generator(or aparent type) of B. 2

We assume that DTD is non-recursive, i.e., that the graph has no
cycles. Sec. 8 discusses this limitation.

Definition 2.2: An XML tree T conforms toa DTDD iff
1. the root ofT is the unique node labelled withroot ;

2. each node inT is labelled either with anEle typeA, called
anA element, or with str , called atext node;

3. eachA element has a list of children of elements and text
nodes such that their labels form a word in the regular lan-
guage defined byP (A);

4. each text node carries astr value and is a leaf of the tree.

We callT an instanceof D if T conforms toD. 2

Example 2.1: An XML database consists of a list ofapplications
for PhD/MS program. Each application is initiated by a student
described viastudent-datawith an attributeid uniquely identify-
ing student and representing student’s login name.Student-data
is composed ofname, desireddegree(PhD or MS)department,
andwaiver. The latter field may take values “true” or “false” and
means that student does (does not) waive his/her right to inspect

APPLICATION

STUDENT-DATA

LETTER

NAME

DEPARTMENT DEGREE WAIVER EVALUATOR

RATING FREE-TEXTTITLE INSTITUTION

MS PhDENGLISH

APPLICATIONS

*

RECOMMENDATION-
LETTER

*

REASON

UNRELIABLE

PDF TXT

*

FAVORABLE UNFAVORABLE

ID

Figure 1: The graph representation of the document DTDD

the content of recommendation letters. Application is supported by
several letters of recommendation (recomm-letter), some of them
can be classified asunreliableunder somereason. Each letter has
letter body and is provided by a separateevaluatorhavingname,
title andinstitutionattributes. Evaluator places comments on appli-
cant’s skills infree-textfield, which is eitherPDF or TXT file, and
rates applicant’sEnglishproficiency, achievements duringMSpro-
gram and possible contribution inPhD program. Letters of recom-
mendation are reviewed by admission committee and are assigned
to a categoryfavorableor unfavorabledepending on the context.

The corresponding DTD is depicted on Fig. 1 and we show be-
low some of the rules of this DTD. 2

application → (student-data,
recomm-letter*, unreliable)

letter → (favorable|unfavorable)
unreliable → (recomm-letter, reason)

We consider a class of XPath queries, which corresponds to the
CoreXPath of Gottlob et al. [11] augmented with the union operator
and atomic tests and which is denoted by Benedict et al. [8] asX .

The XPath axes we consider as primitive arechild , parent ,
ancestor-or-self , descendant-or-self , self . We
denote byθ one of those primitive axes and byθ−1 its inverse.

Definition 2.3: An XPath expression inX is defined by the follow-
ing grammar:

〈xpath〉 ::= 〈path〉 | ‘/‘ 〈path〉
〈path〉 ::= 〈step〉 (‘/‘ 〈step〉)∗
〈step〉 ::= θ | θ‘[‘ 〈qual〉 ‘]‘ | 〈path〉 ‘ ∪ ‘ 〈path〉
〈qual〉 ::= A | ‘ ∗ ‘ | op c | 〈xpath〉 |

〈qual〉 and 〈qual〉 | 〈qual〉 or 〈qual〉 |
not 〈qual〉 | ‘(‘ 〈qual〉 ‘)‘

whereθ stands for an axis,c is a str constant,A is a label,op
stands for one of=, <, >,≤,≥. The result of thequal production
is calledqualifier and is denoted byq. We denote byXNoTest the
fragment build without theop c test. 2

We ignore the difference betweenxpath andpath and we de-
note both withp, we abbreviateself with ε, child [A]/p with
A/p, descendant-or-self [A]/p with //A/p, q[op c] with
q op c andp = p1/p2, wherep2 is //p′2, is writtenp asp1//p′2.
The ancestor axis is abbreviated as../.

S→ [|/p|] (N) = S→ [|p|] ({root })
S→ [|θ[q]|] (N) = θ(N) ∩ E [|q|]

S→ [|θ[q]/p|] (N) = θ(S→ [|p|] (N)) ∩ E [|q|]
S→ [|p1 ∪ p2|] (N) = S→ [|p1|] (N) ∪ S→ [|p2|] (N)

S→ [|(p1 ∪ p2)/p|] (N) = S→ [|p1/p|] (N) ∪ S→ [|p2/p|] (N)

S← [|/p|] =

� {n occursinT} if root ∈ S← [|/p|]
∅ otherwise

S← [|θ[q]|]N = θ−1(N ∩ E [|q|])
S← [|θ[q]/p|]N = θ−1(S← [|p|] ∩ E [|q|])
S← [|p1 ∪ p2|] = S← [|p1|] ∪ S← [|p2|]

S← [|(p1 ∪ p2)/p|] = S← [|p1/p|] ∪ S← [|p2/p|]
E [|A|] = T (A)

E [|q1andq2|] = E [|q1|] ∩ E [|q2|]
E [|q1or q2|] = E [|q1|] ∪ E [|q2|]

E [|not q|] = {n occurs inT} \ E [|q2|]
E [|p|] = S← [|p|]

Figure 2: The Semantics of Operators

The semantics of XPath is obtained by adapting to our frag-
ment theS→, S←, E operators proposed by Gottlob et al. [11]
and is identical to proposal of Benedickt et al. [1]. Intuitively
S→ [|p|] (N) gives all nodes that are reachable from a node inN
using the pathp. TheS← [|p|] functions gives all nodes from which
a pathp starts to arrive to queried node. TheE [|q|] function evalu-
ates qualifiers and returns all nodes that satisfyq.

The θ-symbol stands for both the semantics and the syntax of
axes. So given a set of nodesN of a documentT , θ(N) returns the
nodes that are reachable according the axis from a node inN . By
T (A) we denote the set of nodes that have element typeA. For
the semantics of qualifier see [11].

The semantics of the other operators is shown in Fig. 2

3. A MOTIVATING EXAMPLE
The need to provide users with a schema-level security view is

illustrated by the access control requirements in Example 3.1.

Example 3.1: The applicant can access only his/her own data lo-
cated under fieldstudent-data . Access to fieldsfavorable
andunfavorable is forbidden, while visibility ofrating and
free-text is established according to the accessibility to field
letter . The latter is accessible if thewaiver is true (data-
dependent access). Moreover, the applicant should not be aware
of reliability of the recommendation letters as the leakage of this
information to recommenders might lead to diplomatic incidents.

2

How can such constraints be enforced? Cho et al. [4] and Bertino
et al. [2] enforce these constraints directly on the XML document.
Damiani et al. [6] express their security specifications as sets of
XPath expressions. However they transform their XPath specifica-
tions into an annotation of the entire document. So we have systems
that do specify how to restrict access at thedata level.

An important question remains unanswered: what schema infor-
mation should be provided to the user? To formulate and process
queries, the user needs a schema describing the accessible data.
One solution, suggested by Damiani et al. [6], is toloosenthe orig-
inal DTD (make forbidden nodes optional). In some cases it is
unacceptable to expose even the loosened DTD to final user, since
highly confidential information, such as “unreliable” letters, can be
deduced anyway.

In traditional relational databases users access aViewof the data

and permissions are assigned to views [13, 15]. A user may be
denied the knowledge of the existence of an attribute of a rela-
tional schema. What we need here is a view of the document (at
the schema level) that the user can use for queries, but that hides
not only data but also structural information.

We borrow from Stoica and Farkas [17] the notion of access con-
trol model for XML that specifies and enforces security constraints
at theschemalevel. For the actual notation we refine and general-
ize the proposal from Fan et al. [8]: authorizations are defined on
a document DTD by annotating element types withY/N or XPath
qualifiers, indicating their accessibility.

From such a specification we can then infer aview DTDDv and a
selection functionσ defined via XPath queries. The view DTDDv

shows only the data that is accessible according to the specification.
The functionσ is withheld from the users, and is used to extract
accessible data from the actual XML documents.

4. SECURITY SPECIFICATIONS
Here we present our access-control specification language.

Definition 4.1: A authorization specificationS is a pair(D, ann),
whereD is a DTD, ann is a partial mapping such that, for each
productionA → P (A) and each child element typeB in P (A),
ann(A, B), if defined, is an annotation of the form:

ann(A, B) ::= Q[q] | Y | N

where[q] is a qualifier in our fragmentX of XPath. A special case
is the root ofD, for which we defineann(root) = Y by default.2

Intuitively, annotating production ruleP (A) of the DTD with
an unconditional annotation is a security constraint expressed at
the schema level:Y or N indicates that the correspondingB chil-
dren ofA elements in an XML document conforming to the DTD
will always be accessible (Y) or always inaccessible (N), no matter
what the actual values of these elements in the document are. If
ann(A, B) is not explicitly defined, thenB inherits the accessibil-
ity of A. On the other hand, ifann(A, B) is explicitly defined it
mayoverridethe accessibility ofB obtained via propagation.

At the data level, the intuition is the following: given an XML
documentT , the document is typed with respect to the DTD, and
the annotations of the DTD are attached to the corresponding nodes
of the document, resulting in apartially annotatedXML document.
Then we convert the documentT to a fully annotatedone by la-
belling all of the unlabelled nodes withY or N. This is done by
evaluating the qualifiers and replacing them byY or N annotations,
and then by a suitable policy for completing the annotation of the
yet labelled nodes of the tree. When everything is labelled we re-
move allN-labelled nodes fromT .

We should emphasize that semantics of qualifiers presented in
this paper isdifferentfrom that of in [8]. According to [8] a false
evaluation of the qualifier is considered as “no label” and requires
the inheritance of an access from ancestors, while we assume that
once evaluated on the document, a qualifier is mapped to eitherY
or N. This greatly simplifies the intuition of the annotation for a
security administrator.

Example 4.1: In Fig. 3(a) we show an example of security specifi-
cation: paths to unconditionally allowed (forbidden) element types
from their corresponding parents are marked withY(N), and con-
ditionally accessible element types are marked by qualifiersq1, q2

andq3 (Fig. 3(b)). $login is a dynamic variable that is assigned
at run time and depends on the student’s login name. 2

The construction of a fully annotated document depends heavily
on the overall security policy that is chosen to get completeness [7].

APPLICATION

STUDENT-DATA

LETTER

NAME

DEPARTMENT DEGREE WAIVER EVALUATOR

RATING FREE-TEXTTITLE INSTITUTION

MS PhDENGLISH

*

RECOMMENDATION-
LETTER

*

REASON

UNRELIABLE

PDF TXT

*

FAVORABLE UNFAVORABLE

N

Q2
N

APPLICATIONS

Q1

Q1

Q1

Q1

ID

Q3

Q3

Y

(a) Security annotation defined at DTD level

q1
.
= ancestor::application [./student-data [@id = $login]/waiver /text() =“true”]];

q2
.
= ./student-data [./@id = $login]]

q3
.
= ancestor::application [./student-data [@id = $login];

(b) Meaning of security annotation qualifiers

Figure 3: Security annotation for competing student

APPLICATION

STUDENT-DATA

NAME

DEPARTMENT DEGREE WAIVER EVALUATOR

RATING FREE-TEXTTITLE INSTITUTION

MS PhDENGLISH

*

RECOMMENDATION-
LETTER

*

PDF TXT

APPLICATIONS

XP1

XP2 XP3

XP4

ID

(a) Security DTD view

xp1 = ./student-data [@id = $login]
xp2 = ./letter /(favorable ∪ unfavorable)/rating [q]
xp3 = ./letter /(favorable ∪ unfavorable)/free-text [q]
xp4 = ./(ε ∪ unreliable)/recomm-letter
whereq = applications /application /student-data /waiver =“true”

(b) Meaning of XPath expressions

Figure 4: Security view for competing student

The top-down procedure that we describe next is the result ofmost-
specific-takes-precedencepolicy which simply says that an unla-
belled node takes the security label of its first labelled ancestor.
Damiani et al. [6] use aclosedpolicy as default: if a node is not
labelled then label it asN. We return to this issue in Sec. 7, where
we extend our model to allow alternate propagation techniques.

Definition 4.2: Let (D, ann) be a authorization specification and
T a XML document conforming toD. Theauthorized versionTA

of T according the authorization specification is obtained fromT

as follows:

1. TypeT with respect toD and label nodes withann values;

2. Evaluate qualifiers top down starting from the root and re-
place annotations byY or N depending on the result;

3. For each unlabelled node, label it with the annotation of its
nearest labelled ancestor;

4. Delete all nodes labelled withN from the result, making all
children of a deleted nodev into children ofv’s parent.

The annotation of the document, before deleting nodes in the last
step, is called thefull annotationof T . 2

Example 4.2:Fig. 4(a) shows the security view generated from the
security specification in Fig. 3(a). It hides confidential informa-
tion. Fig. 4(b) lists some of the XPath annotations that are used to
populate the appropriate element types form the original document
DTD. 2

SinceT is a tree (a node has only one ancestor) it is not possible
to have a conflict on labelling.

The pruning algorithm is more severe than that used by Damiani
et al. [6] who delete only subtrees that are entirely labelledN, and
delete only the data from nodes labelledN with some descendant
labelledY. As a consequence, the authorized viewTA no longer
conforms to the original DTDD, not even to its loosened variant.

Example 4.3: In example 3.1 sinceunreliable is forbidden,
the user should not even know that it exists. So he receives docu-
ments without it. 2

More sophisticated ways of annotation are presented in [10, 18].
In particular, [10] uses XQuery to define derivation access control
rules from the existing ones that are organized as XACL privilege
triples<object, subject, access-right> [14]. The proposal of [18]
is based on the conception of Role Graph Model merged with the
conception of RBAC for object-oriented databases.

5. SECURITY VIEWS
We now turn to the enforcement of an access specification. To

this end, we introduce the notion ofsecurity viewwhich consists of
two parts. The first part is a schema that is seen by the user, while
the second part is a function that is hidden from the user, which de-
scribes how the data in the new schema should be derived from the
original data. The intuition behind our approach is similar to that of
security views for relational databases in multi-level security [13]
and the notation is borrowed from [8].

Definition 5.1: Let D be a DTD. Asecurity viewfor D is a pair
(Dv, σ) whereDv is a DTD andσ is a function from pairs of el-
ement types such that for each element typeA in Dv and element
typeB occurring inP (A), σ(A, B) is an expression inX . 2

Definition 5.2: LetS = (Dv, σ) be a security view. The semantics
of S is a mapping from documentsT conforming toD to docu-
mentsTS such that

1. TS conforms toDv

2. The nodes ofTS are a subset of the nodes ofT , and their
element type is unchanged.

3. For any noden of T which is in TS , let A be the element
type of n, and letB1, . . . , Bm be the list of element types
that occur inP (A). Then the children ofn in TS are

[

1≤i≤m

S→ [|σ(A, Bi)|] ({n}) .

These nodes should be ordered according to the document
order in the original document.

TS is called thematerialized versionof T w.r.t. the viewS. 2

Definition 5.3: A valid security view is one for which the seman-
tics are always well-defined, i.e., if for every documentT , its ma-
terialized version conforms to the security view DTD. 2

Algorithm: MATERIALIZE

Input: a documentT conforming to DTD D, a DTD View
(Dv, σ)

Output: a materialized viewTS of T or⊥ (there is no such view)
1: for all nodesn of typeA in T do
2: let A → P (A) the corresponding rule inDv

3: for all B occurring inP (A) do
4: precomputeS→ [|σ (A → P (A) , B)|] ({n})
5: assign toTS the root ofT and mark it as unprocessed
6: while there are unprocessed nodes inTS do
7: select an unprocessed noden of typeA with ruleA →

P (A) in Dv

8: make the nodes in
[

B occurs inP (A)

S→ [|σ (A → P (A) , B)|] ({n})

in T as unprocessed children ofn in TS
9: if a child ofn already occurs as a processed node inTS

then
10: return⊥ (invalid view)
11: maken as processed

Figure 5: Algorithm MATERIALIZE

Not all views are valid: wrong typing, violated cardinality con-
straints, and other problems could be all causes of of a view to be
invalid. However, the views that we construct from an annotated
DTD are valid.

Security specification and views are related as follows.

Definition 5.4: Let (D, ann) be an authorization specification, and
let S = (Dv, σ) be a security view forD. S is data equivalentto
(D, ann) iff for every documentT conforming toD, the material-
ized versionTS coincides with the authorized versionTA. 2

Given a security viewS = (Dv, σ) and documentT conforming
to a DTDD, we show how to constructTS in Fig. 5.

Proposition 5.1: If S = (Dv, σ) is a valid view forD, then the
result of AlgorithmMATERIALIZE is a documentTS that is the
materialized version ofT . 2

We now study the complexity of the algorithm. Letf(n, d) be
the complexity of evaluating an XPath expression of sizen on a
document of sized. Let |σ| be the size of the largest XPath expres-
sion in the range ofσ. Gottlob et al. [11] have shown that for Cor-
eXPath (i.e.X without union and test) it isf(|σ| , |T |) = |σ|×|T |.
We extend their result toX without test and, with an increase in
complexity, to the fullX fragment.

Theorem 5.2: Algorithm MATERIALIZE computes a materialized
view in timeO(f(|σ|, |T |)× |T |). 2

Lemma 5.3: Every XPath queryp ∈ XNoTest over a documentT
can be evaluated in timeO(|p| × |T |). 2

The naive implementation of unionS→ [|p1/(p2 ∪ p3)|] (N) would
lead to an exponential blow up. To avoid it we use a query DAG
instead of a query tree.

Lemma 5.4: Every XPath queryp ∈ X over a documentT can be
evaluated in timeO(|p| × |T |2). 2

The test operation increases slightly the complexity because the
computation of theO (c) operator requires the comparison of the
str valuec with thestr value at every node of the tree.

Corollary 5.5: Every valid DTD view whose annotations are inX ,

respectively inXNoTest , can be materialized inO(|σ|×|T |3), resp.
O(|σ| × |T |2), by AlgorithmMATERIALIZE . 2

6. FROM AUTHORIZATION SPECIFICA-
TIONS TO VIEWS

Our main result is to show how to construct a security view, given
a document DTD and an authorization specification on it. The idea
behind our algorithm is to eliminate qualifiers by expanding each
qualifier into a union of two element types: one is the original el-
ement type, which is annotatedY, and the other is a new type,
essentially a copy of the original type, which is annotatedN. Since
the tag of an element uniquely determines the type, it follows that
new type names cannot match any nodes in a document that con-
forms to the original DTD. This is not a serious problem, as all of
these new type names are deleted in the final security view.

The next step expands the annotation to a “full annotation”. The
notion of a full annotation was defined on annotated documents,
and we showed that every document has a unique full annotation.
At the schema level, however, this is not the case, as there may
be several “paths” in the DTD that reach the same element type,
each of which results in a different annotation. We use a similar
technique to the way we handle qualifiers, i.e., we introduce new
element types, and label the original oneY and the “copy”N. Fi-
nally, we delete all the element types that are labelledN, modifying
the regular expressions and theσ functions correspondingly.

We show the algorithmANNOTATE V IEW in Fig. 6 and algo-
rithm BUILD V IEW in Fig. 7.

Definition 6.1: Let S = (D, ann) be an authorization specifica-
tion. The DTD constructed byANNOTATE V IEW algorithm is the
fully annotatedDTD corresponding to(D, ann). 2

Theorem 6.1:Let (D, ann) be a security specification whereD is
non-recursive. AlgorithmsANNOTATE V IEW and BUILD V IEW

terminate and produce a valid security view. 2

Theorem 6.2: Let (D, ann) be a authorization specification,D
is non-recursive, let(Dv, σ) the security view constructed by Algo-
rithmsANNOTATE V IEW and BUILD V IEW. LetT be a document,
TA the authorized version ofT andTS the materialized version of
T with respect to(Dv, σ). ThenTA is isomorphic toTS . 2

The proof is done by a top-down induction onT . The root ofT
is clearly in bothTA andTS . By induction, assume thatn is of type
A, and is in bothTA andTS . We must show that each childn in TA

is also a child ofn in TS , and vice versa. The result then follows,
as the order of the children ofn is the same in both documents.
Note, that it is essential that nodes inA should be ordered with the
document order.

Let, therefore,m be a child ofn in TA, of typeB. Assume, first,
that m is a child ofn in the original documentT . Consider the
fully annotated DTD(DF , ann′). Sincen is in TS , ann′(A) = Y.
Sincem is in TA, it follows thatann(B) cannot be equal toN, and
henceann′(B) = Y, and so element typeB is in Dv. Furthermore,
if ann(B) = Q[q], thenq must hold atm.

We must show thatm is in S→ [|σ (A → P (A) , B)|] ({n}).
Let p = σ(A, B). The algorithmANNOTATE V IEW initially sets
p = B (step 2), may replacep by B[q] in step 12, and may add ad-
ditional disjuncts in step 2 of algorithmBUILD V IEW. In all cases
m is clearly in the result.

Finally we consider the case whenm is a descendant (not a child)
of n in T and show thatm is in S→ [|σ(A, B)|] ({n}). For the
converse, we consider the case thatm is a child ofn in TS and
show thatm is a child of n in TA. The tricky bit is that at an

Algorithm: ANNOTATE V IEW

Input: A authorization specification(D, ann)
Output: Fully annotated DTDD
1: Initialize Dv := D whereann is defined onDv as onD;
2: for all production rulesA → P (A) in Dv do
3: for all element typesB occurring inP (A) do
4: initialize σ (A → P (A) , B) := B[ε]
5: //Below we will eliminate qualifier annotation
6: for all element typesB with ann(B) = Q[q] do
7: add toDv a new element typeB′ and a production rule

B′ → P (B′)
8: setP (B′) := P (B)
9: for all element typesC occurring inP (B′) do

10: σ (B′ → P (B′) , C) := σ (B → P (B) , C)
11: setann(B) = Y andann(B′) = N
12: for all production rulesA → P (A) do
13: if B occurs inP (A) then
14: σ (A → P (A) , B) := B[q];
15: σ (A → P (A) , B′) := B[¬q];
16: replaceB by B + B′ in P (A)
17: //Below we will get fully annotated DTDD
18: while ann(B) of some element typesB is undefineddo
19: if all generatorsA of B have definedann(A) then
20: if all ann(A) = Y then
21: setann(B) := Y;
22: else ifall ann(A) = N then
23: setann(B) := N;
24: else
25: add toDv a new element typeB′ and a production

ruleB′ → P (B′)
26: setP (B′) := P (B)
27: for all element typesC occurring inP (B′) do
28: σ (B′ → P (B′) , C) := σ (B → P (B) , C)
29: setann(B) = Y, ann(B′) = N,
30: for all generatorsA of B do
31: if ann(A) = N then
32: replaceB with B′ in P (A)

Figure 6: Algorithm ANNOTATE V IEW

Algorithm: BUILD V IEW

Input: Fully annotated DTDD
Output: A security view (Dv, σ)
1: for all element typesB with ann(B) = N do
2: for all production rulesA → P (A) do
3: if B occurs inP (A) then
4: for all C that occurs inP (B) do
5: set

σ (A → P (A) , C):=
σ (A → P (A) , B) /σ (B → P (B) , C)∪
σ (A → P (A) , C)

6: replaceB by P (B) in P (A) if B → P (B) exists
and byε otherwise

7: Dv consists of all the element typesA for whichann(A) = Y,
with theσ function restricted to these types.

Figure 7: Algorithm BUILD V IEW

intermediate step we introduce types (the one annotated withN)
that have no correspondence with the document. To have them
typed appropriately, we extend the notion of typing so that the new
types will also match the corresponding old type from which they
are generated.

The complexity of the algorithm follows from Theorem 6.3:

Theorem 6.3: Let (D, ann) be a authorization specification for a
non-recursive DTD, letP be size of the largest production rule in
D. Let nY be the number of element types annotated withY, and
let nother the number of element types otherwise annotated or not
annotated. Then the size of the select functionσ generated by the
algorithm is bounded byO(nother ×|ann|) and the size of the View
DTD Dv is bounded byO(nY × P nother+1). 2

The above upper bound is tight as the following example shows:

Example 6.1:Consider DTD with the productionroot → A0 and
Ai → Ai+1Ai+1 for i = 0 . . . n − 1 and whereann(A0) = N,
ann(An) = Y. Then the DTD ViewDv has only one rule

root →
2ntimesz }| {

An . . . An ,

and the select function isσ(root , An) = A0/ · · · /An. 2

7. OTHER SECURITY POLICIES
Our model is based on a specific policy, used for determining a

complete authorization specification of a document based on a par-
tial specification. This is themost-specific-takes-precedencepol-
icy [7]. Different applications may have different requirements,
and we now look at alternative approaches:

Local Propagation Policy: “open”, “closed”, or “none”;

Hierarchy Propagation Policy: “topDown”, “bottomUp”, or “none”;

Structural Conflict Resolution: “localFirst”, “hierarchyFirst”, or
“none”;

Value Conflict Resolution: “denialTakesPrecedence”, “permission-
TakesPrecedence”, or “none”.

The Local Propagation Policy is similar to traditional policies
for access control: in the case of “open”, if a node is not labelledN
then it is labelled byY; in the case of “closed”, a node not labelled
Y is labelled byN.

The Hierarchy Propagation Policy specifies node annotation in-
heritance in the tree. In the case of “topDown”, an unlabelled node
with a labelled parent inherits the label of its parent. In the case of
“bottomUp” an unlabelled node inherits the label from a labelled
children. Note that the “bottomUp” case can result in conflicts, and
they should be addressed by the Value Conflict Resolution Policy.

The Structural Conflict Resolution Policy specifies whether the
local or hierarchy rule takes precedence (“localFirst” or “hierar-
chyFirst” respectively); while “none” means that the choice de-
pends on the values and on the Value Conflict Resolution Policy.
The latter specifies how to resolve conflicts for unlabelled nodes
that are assigned different labels by the preceding rules:N always
has precedence overY (“denialTakesPrecedence”);Y always has
precedence overN (“permissionTakesPrecedence”), and no choice
(“noneTakesPrecedence”).

Definition 7.1: A policy is completeandconsistentif every par-
tially annotated tree can be extend to a fully annotated tree.2

A comprehensive analysis of all possible policy combinations
gives the theorem:

Theorem 7.1: In Table 1, where * means “any”, policies following
the conditions of lines 1–7 are sound and complete, policies follow-
ing the conditions of line 8are not complete, policies following the
conditions of lines 9–11are not consistent. 2

8. EXTENSIONS
One restriction in our current proposal is related to nonrecur-

sive DTDs. For authorization specification of recursive DTD it is
possible to derive a fully annotated DTD by modifying step 18 of
the algorithmANNOTATE V IEW, but one cannot construct a select
function in XPath, because XPath lacks the full Kleene-star oper-
ator. Using the present algorithm, we can obtain an approximate
solution: by stopping the modifiedANNOTATE V IEW after a finite
number of iterations of step 1 ofBUILD V IEW we have asecrecy
preservingview.

The second extension is related to policies over XML documents
expressed as XPath queries [6] tagged to principals. If the principal
in the specification is matched to the actual requester then XPath
queries are used to select the subset of nodes that are labelled with
some security attribute. It is possible to translate that security spec-
ification into our framework.

9. IMPLEMENTATION
We have implemented a preliminary version of a Java tool that

outputs a “sanitized” XML document, i.e. document that contains
only permitted nodes and the DTD view.

Firstly, we use Xerces Java DOM parser2 and Wutka DTD parser3.
The latter we modified to distinguish security policy attributes lo-
cated at root element and security annotations over the rest of DTD.

Then partially annotated DTD is extended to a full annotated
one according to the algorithmANNOTATE V IEW. Next we apply
BUILD V IEW to produceDv which is used to materialize view of
XML documentTS according to the algorithmMATERIALIZE .

10. RELATED WORK AND CONCLUSIONS
A number of security models have been proposed for XML (see

[9] for a recent survey). Specifying security constraints with XPath
on top of document DTDs was discussed in [6]. The semantics of
access control to a user is a specific view of the document deter-
mined by the XPath access-control rules. A view derivation algo-
rithm is based on tree labelling. Issues like granularity of access,
access-control inheritance, overriding, and conflict resolution are
studied in [2, 6].

A different approach is explored in [4]. In a nutshell, access
annotations are explicitly included in the actual element nodes in
XML, whereas DTD nodes specify “coarse” conditions on the exis-
tence of security specifications in corresponding XML nodes. Only
elements with accessible annotations appear in the result of a query.

Stoica and Farkas [17] proposed to produce single-level views
of XML when conforming DTD is annotated by labels of different
confidentiality level. The key idea lies in analyzing semantic cor-
relation between element types, modification of initial structure of
DTD and using cover stories. Altered DTD then undergoes “filter-
ing” when only element types of the confidentiality lever no higher
that the requester’s one are extracted. However, the proposal re-
quires expert’s analysis of semantic meaning of production rules,
and this can be unacceptable if database contains a large amount of
schemas which are changed occasionally.

This paper elaborates on certain issues left open in [8]. In partic-
ular, we studied access control and security specifications defined
over general DTDs in terms of regular expressions rather than nor-
malized DTDs of [8]. Furthermore, we developed a new algorithm
for deriving a security view definition from more intuitive access
control specification (w.r.t. a non-recursive DTD) without introduc-

2http://xml.apache.org/xerces2-j/
3http://www.wutka.com/dtdparser.html

Table 1: Policy conditions
hierarchy local structural conflict value conflict condition

1 topDown 6=none hierarchyFirst ∗ ∗
2 topDown none ∗ ∗ root is annotated
3 bottomUp 6=none hierarchyFirst 6=none ∗
4 bottomUp none ∗ 6=none leaves are annotated
5 ∗ 6=none localFirst ∗ ∗
6 none 6=none ∗ ∗ ∗
7 6=none 6=none noneFirst 6=none ∗
8 none none ∗ ∗ ∗
9 6=none 6=none none none ∗
10 bottomUp ∗ hierarchyFirst none ∗
11 bottomUp none 6=hierarchyFirst none ∗

ing dummy element types, and thus preventing inference of sensi-
tive information from the XML structure revealed by dummies.

We have presented a refined model for securing XML data, based
on the novel notion of security views. A salient feature of our
model is that it specifies and enforces access-control policies at
the schema level. This yields an effective and efficient approach
to enforcing security without materializing and maintaining views.

Acknowledgments. This project has been partially supported by
the MIUR-FIBR project ASTRO and the MIUR-COFIN “Web-
based management and representation of spatial and geographical
data”.

11. REFERENCES
[1] M. Benedikt, W. Fan, and G. M. Kuper. Structural properties

of XPath fragments. InProceedings of the International
Conference on Database Theory, 2003.

[2] E. Bertino and E. Ferrari. Secure and selective dissemination
of XML documents.ACM Transactions on Information and
System Security, 5(3):290–331, 2002.

[3] T. Bray, J. Paoli, and C. M. Sperberg-McQueen.Extensible
Markup Language (XML) 1.0. W3C, Feb. 1998.

[4] S. Cho, S. Amer-Yahia, L. Lakshmanan, and D. Srivastava.
Optimizing the secure evaluation of twig queries. In
Proceedings of the International Conference on Very Large
Data Bases, 2002.

[5] J. Clark and S. DeRose. XML Path Language (XPath)
Version 1.0. W3C Recommendation.
http://www.w3.org/TR/xpath, November 1999.

[6] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and
P. Samarati. A fine-grained access control system for XML
documents.ACM Transactions on Information and System
Security, 5(2):169–202, 2002.

[7] S. De Capitani di Vimercati and P. Samarati. Access control:
Policies, models, and mechanism. In R. Focardi and
F. Gorrieri, editors,Foundations of Security Analysis and
Design - Tutorial Lectures, volume 2171 ofLecture Notes in
Computer Science. Springer-Verlag, 2001.

[8] W. Fan, C.-Y. Chan, and M. Garofalakis. Secure XML
querying with security views. InProceedings of the 2004
ACM SIGMOD International Conference on Management of
Data, pages 587–598. ACM Press, 2004.

[9] I. Fundulaki and M. Marx. Specifying access control policies
for XML documents with XPath. InProceedings of the 9th
ACM symposium on Access control models and technologies,

pages 61–69. ACM Press, 2004.
[10] S. K. Goel, C. Clifton, and A. Rosenthal. Derived access

control specification for XML. InProceedings of the 2nd
ACM Workshop On XML Security, pages 1–14. ACM Press,
2003.

[11] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithm for
processing XPath queries. InProceedings of the
International Conference on Very Large Data Bases, 2002.

[12] S. Hada and M. Kudo. XML Access Control Language:
Provisional Authorization for XML Documents.
http://www.trl.ibm.com/projects/xml/xacl/, 2000.

[13] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, and
W. R. Shockley. The SeaView security model.IEEE
Transactions on Software Engineering, 16(6):593–607, 1990.

[14] M. Murata, A. Tozawa, M. Kudo, and S. Hada. XML access
control using static analysis. InProceedings of the 10th ACM
conference on Computer and communication security, pages
73–84. ACM Press, 2003.

[15] X. Qian. View-based access control with high assurance. In
Proceedings of the 15th IEEE Symposium on Security and
Privacy, pages 85–93. IEEE Computer Society Press, 1996.

[16] P. D. Stachour and B. Thuraisingham. Design of LDV: A
multilevel secure relational database management system.
IEEE Transactions on Knowledge and Data Engineering,
2(2):190–209, 1990.

[17] A. Stoica and C. Farkas. Secure XML views. InResearch
Directions in Data and Applications Security, IFIP WG 11.3
Sixteenth International Conference on Data and Applications
Security, volume 256, pages 133–146. Kluwer, 2003.

[18] J. Wang and S. L. Osborn. A role-based approach to access
control for XML databases. InProceedings of the 9th ACM
symposium on Access control models and technologies,
pages 70–77. ACM Press, 2004.

