THE FIVE GREATEST APPLICATIONS
OF
MARKOV CHAINS
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Abstract. One hundred years removed from A. A. Markov’s development of his chains, we take
stock of the field he generated and the mathematical impression he left. As a tribute to Markov, we
present what we consider to be the five greatest applications of Markov chains.
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1. Introduction. The five applications that we have selected are presented in
the boring but traditional chronological order. Of course, we agree that this ordering
scheme is a bit unfair and problematic. Because it appears first chronologically, is A.
A. Markov’s application of his chains to the poem Eugeny Onegin the most impor-
tant or the least important of our five applications? Is A. L. Scherr’s application of
Markov chains (1965) to the performance of computer systems inferior to Brin and
Page’s application to web search (1998)? For the moment, we postpone such difficult
questions. Our five applications, presented in Sections 2-6, appear in the admittedly
unjust chronological order. In Section 7, we right the wrongs of this imposed ordering
and unveil our proper ordering, ranking the applications from least important to most
important. We conclude with an explanation of this ordering. We hope you enjoy
this work, and further, hope this work is discussed, debated, and contested.

2. A. A. Markov’s Application to Eugeny Onegin. Any list claiming to
contain the five greatest applications of Markov chains must begin with Andrei A.
Markov’s own application of his chains to Alexander S. Pushkin’s poem “Eugeny One-
gin.” In 1913, for the 200th anniversary of Jakob Bernoulli’s publication [4], Markov
had the third edition of his textbook [19] published. This edition included his 1907
paper, [20], supplemented by the materials from his 1913 paper [21]. In that edition
he writes, “Let us finish the article and the whole book with a good example of de-
pendent trials, which approximately can be regarded as a simple chain.” In what has
now become the famous first application of Markov chains, A. A. Markov, studied the
sequence of 20,000 letters in A. S. Pushkin’s poem “Eugeny Onegin,” discovering that
the stationary vowel probability is p = 0.432, that the probability of a vowel following
a vowel is p; = 0.128, and that the probability of a vowel following a consonant is
p2 = 0.663. In the same article, Markov also gave the results of his other tests; he
studied the sequence of 100,000 letters in S. T. Aksakov’s novel “The Childhood of
Bagrov, the Grandson.” For that novel, the probabilities were p = 0.449, p; = 0.552,
and po = 0.365.

At first glance, Markov’s results seem to be very specific, but at the same time
his application was a novelty of great ingenuity in very general sense. Until that time,
the theory of probability ignored temporal aspects related to random events. Math-
ematically speaking, no difference was made between the following two events: a die
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Fia. 2.1. Left background: The first 800 letters of 20,000 total letters compiled by Markov
and taken from the first one and a half chapters of Pushkin’s poem “FEugeny Onegin.” Markov
omitted spaces and punctuation characters as he compiled the cyrillic letters from the poem. Right
foreground: Markov’s count of vowels in the first matriz of 40 total matrices of 10 x 10 letters. The
last row of the 6 x 6 matriz of numbers can be used to show the fraction of vowels appearing in a
sequence of 500 letters. Each column of the matriz gives more information. Specifically, it shows
how the sums of counted vowels are composed by smaller units of counted vowels. Markov argued
that if the vowels are counted in this way, then their number proved to be stochastically independent.
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thrown a thousand times versus a thousand dice thrown once each. Even dependent
random events do not necessarily imply a temporal aspect. In contrast, a temporal
aspect is fundamental in Markov’s chains. Markov’s novelty was the notion that a
random event can depend only on the most recent past. When Markov applied his
model to Pushkin’s poem, he compared the probability of different distributions of
letters taken from the book with probabilities of sequences of vowels and consonants
in term of his chains. The latter models a stochastic process of reading or writing
while the former is simply a calculation of the statistical properties of a distribution
of letters. Figure 2.1 shows Markov’s original notes in computing the probabilities
needed for his Pushkin chain. In doing so, Markov demonstrated to other scholars
a method of accounting for time dependencies. This method was later applied to
the diffusion of gas molecules, Mendel’s genetic experiments, and the random walk
behavior of certain particles.

The first response to Markov’s early application was issued by a colleague at
the Academy of Sciences in St. Petersburg, the philologist and historian Nikolai
A. Morozov. Morozov enthusiastically credited Markov’s method as a “new weapon
for the analysis of ancient scripts” [24]. To demonstrate his claim Morozov himself
provided some statistics that could help identify the style of some authors. In his
typical demanding, exacting, and critical style [3], Markov found few of Morozov’s
experiments to be convincing. Markov, however, did mention that a more advanced
model and an extended set of data might be more successful at identifying an author
solely by mathematical analysis of his writings [22].

3. C. E. Shannon’s Application to Information Theory. When Claude E.
Shannon introduced “A Mathematical Theory of Communication” [30] in 1948, his
intention was to present a general framework for communication based on the prin-
ciples of the new digital media. Shannon’s information theory gives mathematically
formulated answers to questions such as how analog signals could be transformed
into digital ones, how digital signals then could be coded in such way that noise and
interference would not do harm to the original message represented by such signals,
and how an optimal utilization of a given bandwidth of a communication channel
could be ensured. A famous entropy formula associated with Shannon’s information
theory is H = —(p1 logy p1 + p2logy po + ... + pnlogy pr), where H is the amount of
information and p; is probability of occurrence of the states in question. This formula
is the entropy of a source of discrete events. In Shannon’s words this formula “gives
values ranging from zero—when one of the two events is certain to occur (i.e., prob-
ability 1) and all others are certain not to occur (i.e., probability 0)—to a maximum
value of log, N when all events are equally probable (i.e., probability %) These sit-
uations correspond intuitively to the minimum information produced by a particular
event (when it is already certain what will occur) and the greatest information or the
greatest prior uncertainty of the event” [31].

It is evident that if something is known about a message beforehand, then the
receiver in a communication system should somehow be able to take advantage of
this fact. Shannon suggested that any source transmitting data is a Markov process.
This assumption leads to the idea of determining a priori the transition probabilities
of communication symbols, i.e., the probability of a symbol following another symbol
or group of symbols. If, for example, the information source consists of words of the
English language and excludes acronyms, then the transition probability of the letter
“u” following the letter “q” is 1.

Shannon applied Markov’s mathematical model in a manner similar to Markov’s
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own first application of “chains” to the vowels and consonants in Alexander Pushkin’s
poem. It is interesting to pause here to follow the mathematical trail from Markov to
Shannon. For further details about the theory of Markov chains, Shannon referred to
a 1938 book by Maurice Fréchet [7]. While Fréchet only mentions Markov’s own ap-
plication very briefly, he details an application of Markov chains to genetics. Beyond
Fréchet’s work, within the mathematical community Markov chains had become a
prominent subject in their own right since the early 1920s, especially in Russia. Most
likely Fréchet was introduced to Markov chains by the great Russian mathematician
Andrei Kolmogorov. In 1931 Kolmogorov met Fréchet in France. At this time Kol-
mogorov came to France after he had visited Gottingen, where he had achieved fame
particularly due to his axiomatization of probability theory [14].

Kolmogorov speculated that if physics in Russia had reached the same high level
as it had in some Western European countries, where advanced theories of probability
tackled distributions of gas and fluids, Markov would not have picked Pushkin’s book
from the shelf for his own experiments [33]. Markov’s famous linguistic experiment
might have been a physics experiment instead. It is significant that Kolmogorov
himself contributed an extension to the theory of Markov chains by showing that “it
is a matter of indifference which of the two following assumptions is made: either
the time variable ¢ runs through all real values, or only through the integers” [15].}
In other words, Kolmogorov made the theory suitable not only for discrete cases,
but also for all kinds of physical applications that includes continuous cases. In fact,
he explicitly mentioned Erwin Schrodinger’s wave mechanics as an application for
Markov chains.

With this pattern of prior applications of Markov theory to physical problems,
it is somewhat ironic that Shannon turned away from physics and made great use of
Markov chains in the new domain of communication systems, processing “symbol by
symbol” [30] as Markov was the first to do. However, Shannon went beyond Markov’s
work with his information theory application. Shannon used Markov chains not solely
as a method for analyzing stochastic events but also to generate such events.

Shannon demonstrated that a sequence of letters, which are generated by an in-
creasing order of overlapping groups of letters, is able to reflect properties of a natural
language. For example, as a first-order approximation to an English text, an arbitrary
letter is added to its predecessor, with the condition that this specific letter be gen-
erated according to its relative frequency in the written English language in general.
The probability distribution of each specific letter can, of course, be acquired only by
empirical means. A second-order approximation considers not only the distribution
of a single letter but a bigram of two letters. Each subsequent letter becomes the sec-
ond part of the next bigram. Again, the transition probabilities of these overlapping
bigrams are chosen to match a probability distribution that has been observed em-
pirically. By applying such a procedure Shannon generated a sequence of order 3 by
using trigrams. Shannon’s first attempt at using Mar! kov chains to produce English
sentences resulted in “IN NO IST LAT WHEY CRATICT FOURE BIRS GROCID”
[30]. Although this line makes no sense, nevertheless, some similarities with written
English are evident. With this start, Shannon felt that communication systems could
be viewed as Markov processes, and their messages analyzed by means of Markov

1 Kolmogorov saw the potential of Markov theory in the physical domain. And later, he was
among the first to promote information theory and further develop it into an algorithmic information
theory. In addition, due to translation issues, Kolmogorov’s contribution to the mathematization of
poetry is scarcely known outside of Russia.
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theory. In studying artificial languages Shannon distinguished between ergodic and
non-ergodic processes. Shannon used the phrase “ergodic process” to refer to the
property that all processes originating from the same source have the same statistical
properties.

While Shannon introduced his generative model for technical reasons, other schol-
ars became convinced that Markov models could even play a far more general role in
the sciences and arts. In fact, Shannon, himself helped popularize information theory
in other diverse fields. For instance, Shannon and his colleague David W. Hagelbarger
created a device that could play the game of “Even and Odd.” It is reported that
Shannon’s so-called “Mind-Reading Machine” won most of the games against visitors
at the Bell Labs who dared to challenge the machine to a match. Despite the whimsi-
cal nature of Shannon’s machine, it deserves credit as being the first computer to have
implemented a Markov model [32]. At this same time, the ever well-informed French
psychoanalyst Jacques Lacan introduced Markov chains as the underlying mechanism
for explaining the process by which unconscious choices are made. Lacan hints that
Shannon’s machine was the model for his theory [16, 17].

Later researchers continued Shannon’s trend of using computers and Markov
chains to generate objects from text to music to pictures. Artists such as musician
Tannis Xenakis developed “Free Stochastic Music” based on Markov chains, and early
media artists and computer experts such as Frieder Nake plotted pictures generated
by Markov models. In fact, a group of influential linguists claimed that the modus
operandi of language is a Markov process [12]. Such a general assumption provoked a
controversial debate between Roman Jakobson and Noam Chomsky. Chomsky argued
that language models based on Markov chains do not capture some nested structures
of sentences, which are quite common in many languages such as English [10]. We now
recognize that Chomsky’s account of the limitations of Markovian language models
was too harsh. The early 1980s saw a resurgence of the success of Markovian language
models in speech recognition. Section 5 treats this era briefly.

4. A. L. Scherr’s Application to Computer Performance Evaluation. In
1965 Allan L. Scherr completed his thesis, “An Analysis of Time-Shared Computer
Systems,” and received his Ph.D. in electrical engineering from M.I.T. At the time,
the Compatible Time-Sharing System was new to the M.I.T. campus and allowed 300
users to interactively access the computer and its software. The goal of Scherr’s thesis
was to characterize the system’s usage. He conducted simulation studies to predict
the system’s usage and wanted to compare this with real user data from similar
systems. He found that no such data existed, so he conducted his own comprehensive
measurements of system performance. Scherr declared his analysis of time-shared
systems complete after he obtained his own real data and compared this with his
simulation results.

At this point in the story, many of us can thank one of Scherr’s thesis advisors
for our current careers and research field. This particular advisor complained that
Scherr’s thesis was not yet complete as it wasn’t quite academic enough. Scherr
recalls that “there weren’t enough mathematical formulas in it” [8]. So in response
to this complaint, Scherr hobbled together a “very quick and dirty” mathematical
analysis by applying a method from a recent operations research course he had taken.
He used a continuous-time Markov chain to model M.I.T’s Compatible Time-Sharing
System. The chain not only added enough mathematics, it also led Scherr to a
surprising result. Scherr’s quick and dirty measure gave a very good approximation
to system performance. According to Scherr, this was surprising because “this very
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simple, analytic model that ignored 99 percent of the details of the system was just as
accurate in predicting performance and capacity as the very e! laborate, very accurate
simulation model” [8].

Scherr’s single-server, single-queue Markov chain captured the dominating aspects
of the system. The tridiagonal transition rate matrix A appearing in Scherr’s thesis
is below. The states of the chain are the number of users interacting with the system,
and thus, are labeled {0,1,...,n}.
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Scherr defined n as the number of users in the system. When a user interacted with
the time-shared computer system, Scherr defined T' as the mean time for the console
portion of the interaction and P as the mean processor time per interaction. Scherr
then solved the system w7 A = 0 for the stationary probability vector . Using
standard queuing theory techniques, Scherr reported my, the long-run probability
that the M.L.T. shared processor was idle, Q) = Yo, im;, the average number of users
waiting for service, and W, the mean response time of the system. Scherr concluded
that “the think times of the users and the service times of the equipment were really
all you needed to know to do a pretty accurate characterization of the response time
and capacity of the system” [8].

In the years after his dissertation, researchers argued over the validity of Scherr’s
simple Markov analysis. Were Scherr’s results—that a simple Markov model came
to within 4-5 percent accuracy of the very detailed simulation—merely one atypical
study or was simple analysis preferable to detailed simulation? A few decades after
his dissertation, Scherr, then at IBM, had an answer to that question, an answer
arrived at through practice. Scherr discovered that system updates and upgrades are
the primary reason for the superiority of the simplified analytical model over detailed
simulation. The simple analytical models give a better return on investment. By the
time a detailed simulation is finally complete, the system is usually updated, and a
new simulation required. Also, Scherr found that the simple Markov models force
designers to get to the heart of the system, because only the essential information can
be modeled; all extraneous information must be identified and omitted.

By the way, ten years later the performance evaluation community, which evolved
as a result of Scherr’s 1965 thesis [29], noted Scherr’s ground-breaking contribution.
In 1975, his thesis was awarded the Grace Murray Hopper Award by the Association
for Computing Machinery. Each year this award is presented to a young computer
professional, aged 35 or less, who has made a “single significant technical or service
contribution” to the computer field. At present, there are dozens of journals and
conferences devoted to computer performance evaluation. Papers from these journals
and proceedings demonstrate the advancement achieved since Scherr’s development
of this new field. These papers describe Markov models for computer performance
evaluation that have expanded far beyond Scherr’s famous single-server, single queue
model.
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5. L. E. Baum’s Application to Hidden Markov Models. When Lawrence
R. Rabiner introduced Hidden Markov Models (HMMs) in the widely read proceedings
of the IEEE in 1989, he stated that even though most of their principles had been
known for twenty years, engineers had failed to read mathematical journals to grasp
their potential and mathematicians had failed to “provide sufficient tutorial material
for most readers to understand the theory and to be able to apply it to their own
research” [28]. The purpose of Rabiner’s paper was to rectify this under-appreciation
of an important tool.

Rabiner might have overstated the case a bit as HMMs were receiving some ap-
preciation prior to 1989. In 1980 a symposium “On the application of Hidden Markov
Models to Text and Speech” was held in Princeton for the reason that it “was thought
fitting to gather researchers from across the country” for one day [9]. It was at this
gathering, that Lee P. Neuwirth coined the phrase “Hidden Markov Model,” instead
of calling it the bit unwieldy alternative of “probabilistic functions of Markov chains”
[25, 26]. Tt is worth mentioning that Lee P. Neuwirth was the longtime director of the
Communications Research Division within the Institute for Defense Analysis (IDA-
CRD) in Princeton, New Jersey. Some called this institute “the most secret of the
major think tanks” of the day [1].

Today, now that speech recognition software is available off the shelf, it is no
longer a secret that, thanks to HMMs, “word spotting” in stream of spoken language
is done by a computer—even in the presence of noise. In addition, speech cannot only
be recognized algorithmically with great accuracy, but the individual voice of the
speaker can be identified as well. It stands to reason that such features are of great
interest, especially for intelligence services, in order to scan communication channels
for key words. Moreover, HMMSs enable the extraction of significant information from
the acoustical pattern of a spoken language without requiring any semantic knowledge
of the language in question.

John D. Ferguson, also a mathematician at the IDA, specified the theoretical
impact of HMMs by solving three fundamental problems in the proceedings of that
1980 IDA symposium.

1. Compute the probability of an observed sequence based on a given model.

2. Maximize the probability of an observed sequence by adjusting the parameters
using, for instance, the “Baum-Welsh” algorithm.

3. Select the most likely hidden states, given the observation, and the model.

By listing these problems Ferguson provided a building block for later tutorials on
HMMs [9, 26, 28]. The meaning of these rather abstract instructions might become
clearer with an example taken from Alan B. Poritz’s instructive paper “Hidden Markov
Models: A Guided Tour” [26]. This example is illustrated in Figure 5.1. Imagine three
mugs, each containing its own mixture of stones. The stones are marked either “state
1”7 or “state 2.” Somebody randomly draws a stone from mug “0.” If the stone is
marked “state 1,” as shown in the illustrated example, a ball is drawn from urn “1.”
Otherwise, a ball is drawn from the other urn. The two urns are filled with a different
mixture of black and white balls. After every draw, the ball will be replaced in the
urn from which it was selected. An observer only gets to know the outcome of the
drawing in terms of a sequence of symbols: “BWBWWDB”, where“B” stands for a
black ball and “W” for a white ball.? Notice that the particular urn from which a ball

21t is interesting that Ferguson and Neuwirth were not the first scientists to consider urn problems
in the Markov context. Markov and his colleague A. A. Chuprov had a heated debate over the notion
of “double probability,” the phrase Markov gave to a random selection between two or more urns for
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is drawn is not available to the observer, only the color is. Hence the label “hidden”
in the HMM acronym. An HMM is valuable because it helps uncover this hidden
information, or at least gives a reasonable approximation to it.

Let’s start with most difficult problem, recovering a mixture model from the ob-
served tokens, thereby solving the second problem. In the given example, the mixture
model corresponds to guessing each urn’s mixture. In the late 1960s and particu-
larly the early 1970s, Leonard E. Baum, supported by the work of other scholars,
demonstrated that the underlying model can be recovered from a sufficiently long
observation sequence by an iterative procedure, which maximizes the probability of
the observation sequence. This procedure is called Baum-Welsh algorithm. It is based
on the auxiliary Q-function, which is denoted Q(A, A) =5 PA(0,5)log P (O, s),
where s is a element out of set of states S and A is an exstimated model of A. In an
iterative procdure A becomes A until there is no further improvement in terms of a
measurement of increased probabiltiy. Baum and his collegues proved that maximiza-
tion of Q(A, \) increased likelihood of the estimated A and a hidden true model, i.e.
mazy[Q(\,N)] = P(Q|\ > P(Q|\) [2, 26, 28]. Second, from this model the hidden
state sequence can then be estimated, thereby solving the third problem. A technique
for doing this is called the Viterbi Algorithm. This algorithm estimates the best state
sequence, Q@ = (q1g2 - - - qr), for the given observation sequence O = (0103 - - - Or) by
defining the quantity 6(i) = mazq, o, 1 Pl@1g2 - @ = 1,0102---O|A]. In our
example, the outcome of the unobserved draws of stones from the mug generated the
hidden state sequence. Eventually, once the parameters of the hidden model denoted
by the vector A = (A, B, 7) are known, the probability of the observed sequence can
be computed, thereby solving the first problem. Instead of calculating the probability
of the observed sequence by finding each possible sequence of the hidden states and
summing these probabilities, a short cut exists. It is called the forward algorithm
and minimizes computational efforts from exponential growth to linear growth by
calculating partial probabilities at every time step in a recursive manner [26].

To summarize, hidden Markov models require the solution of some fundamental,
interrelated problems of modeling and analyzing stochastic events. Several math-
ematicians (only a few are mentioned in this brief survey) defined the main prob-
lems and developed different techniques to solve them. Once tutorial material spread
among scholars from other fields, HMMs quickly demonstrated their potential through
real-life applications. For instance, in 1989 Gary A. Churchill used HMMs to separate
genomic sequences into segments [11]. Since then, HMMs have become an off-the-shelf
technology in biological sequence analysis.

We close this section by returning once again to Andrei A. Markov. Even though
Markov died in St. Petersburg in 1922, his work on his famous chains played a
prominent role in 1980 in Princeton’s secret think tank. This prominence is apparent
in the bibliographies of the proceedings of the IDA symposium that year. In fact, the
proceedings open with an article by Lee P. Neuwirth and Robert L. Cave that states
explicitly their intention to examine the relation of HMMs to the English language “in
the spirit of Markov’s application”[25], referring to Eugeny Onegin. The first result
of their experiment showed that the most simple model of English text provides only
two states: vowel and consonant. The HMM’s ability to distinguish vowels from
consonants was their main result. In this experiment, Neuwirth and Cave analyzed
the letters of an English text without letting the HMM know which were vowels and

the drawing of lots. Markov was more skeptical than Chuprov that such a scheme could lead to new
results [27].
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FiG. 5.1. Sampling of the Urns veils the sampling of a sequence of Mugs.

I. Let agy be the fraction of stones with the state 1 marking in the
first mug, and ag2 the fraction of stones with the state 2 marking
so that ag1 +ag2 = 1. Similarly, the fraction of stones in the other
two mugs are denoted a1, a22 in one case and a3y, asz in the other.

II. At each time ¢t = 1,2,...,7T, a stone is selected. The
number of selections in the example above is T= 6, while the
outcome of these unobserved random selections determines the
sequence of states s=(1,1,2,1,2,1).

III. Say b;(B) is the fration of white balls, b;(W) the frac-
tion of black balls in one of the two urns and analog by (B),bs (W)
in case of the other urn so that for each state s, the vector
b = (bs(1),b5(2),---bs(K)) is the output probability vector of
a HMM with finite output alphabet with K elements. In this
example the number of elements in the alphabet is K = 2.

VI. The T-long observation sequence is O=(B,W,B;W,W),
while |B| = 3 is the number of drawn balls that are black and
|W| = 3 is the number of drawn balls that are white.

The parameter vector which describes the HMM is

X = (ao1,a02,a21, a22,a31, a32,b1(B), b1 (W), ba(B),ba(W)). Py
stands for probability density associated with the model. It also
has become common to denote the parameter model in general
by the vector A\ = (A, B, ), where 7 is the vector of the initial
state probabilities, and thus, is equivalent to ag1, ags.
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which were consonants. In hindsight, Markov has to be admired for his intuition to
focus on the vowel-consonant distinction, which proved to be very significant four
score later. Markov was forced to stop his letter-counting experiments, when he had
nearly completely lost his sight due to glaucoma. Even if Markov had had more time
and better eyesight to carry his experiments further, such extensions would have been
very difficult to complete, given the precomputer era he lived in, when computational
efforts had to be paid in man-years.

6. S. Brin and L. Page’s Application to Web Search. In the late 1990s,
Sergey Brin and Larry Page, then graduate students at Stanford University, were
working on their PageRank project to organize the World Wide Web’s information.
Their 1998 paper, “PageRank: Bringing Order to the Web” [6], contributed to the or-
der Google brought to web search. Brin and Page saw the potential of their PageRank
idea, took a leave of absence from Stanford, and formed Google in 1998.

By Brin and Page’s own admission, PageRank, which is the stationary vector of
an enormous Markov chain, is the driving force behind Google’s success in ranking
webpages. In the PageRank context, the web and its hyperlinks create an enormous
directed graph. Brin and Page’s vision of a web surfer taking a random walk on this
graph led to the formulation of the world’s largest Markov chain [23]. The Google
Markov chain G is defined as a convex combination of two other chains: H, a reducible
Markov matrix defined by the web’s hyperlinks, and E, a completely dense rank-one
Markov matrix. Specifically,

G=aH+ (1 -a)E,

where 0 < o < 1 is a parameter that Brin and Page originally set to .85, H;; = 1/0;
if page i links to page j, and 0, otherwise, and O; is the number of outlinks from
page i. E = ev’, where v’ > 0 is the so-called personalization vector. The idea is
that for a = .85, 85% of the time surfers follow the hyperlink structure of the web
and 15% of the time they jump to a new page according to the distribution in the
personalization vector v?'. For the 6-node web example in Figure 6.1, using a = .85
and vI' = 1/6e”, the H and G matrices are below.
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F1G. 6.1. 6-node web graph
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0 1/2 12 0 0 0
/2 0 1/2 0 0 0
o 12 0 172 0 o
H=10% 0 o 0 12 12| ™d
0 0 1/2 1/2 0 0
0o 0 0 0 1 0
0.025 0.450 0.450 0.025 0.025 0.025
0.450 0.025 0.450 0.025 0.025 0.025
G | 0025 0450 0.025 0.450 0.025 0.025

0.025 0.025 0.025 0.025 0.450 0.450
0.025 0.025 0.450 0.450 0.025 0.025
0.025 0.025 0.025 0.025 0.875 0.025

G has been carefully formed so that it is an aperiodic, irreducible Markov chain,
which means that its stationary vector 77 exists and is unique. Element 7; represents
the long-run proportion of the time that the random surfer spends in page i. A page
with a large stationary probability must be important as it means other important
pages point to it, causing the random surer to return there often. The webpages
returned in response to a user query are ranked in large part by their m; values [5].
In the above example, the pages would be ordered from most important to least im-
portant as {3,5,4,2,6,1} since w7 = (0.092 0.158 0.220 0.208 0.209 0.113).
This ranking idea is so successful that nearly all search engines use some hyperlink
analysis to augment their retrieval systems.

7l was originally computed using the simple power method [6], but since then a
variety of methods for accelerating this computation have been proposed [18]. Judging
by the hundreds of papers produced in the last few years on PageRank computation,
without doubt PageRank presents a fun computational challenge for our community.

7. Ranked List. It’s now time to present these five great Markov applications in
their proper order. Employing a common trick among late night television hosts, we
present the list in reverse order of importance, as this serves to build the anticipation
and excitement inherent in all top k lists.

5. Scherr’s application to Computer Performance Evaluation
4. Brin and Page’s application to PageRank and Web Search
3. Baum’s application to Hidden Markov Models®

2. Shannon’s application to Information Theory

1. Markov’s application to Eugeny Onegin

How did we arrive at this ordering? Good question. We considered several popular
schemes for ordering elements in a set. We’ve already discussed the drawbacks of the
chronological system. For similar reasons, the alphabetical system seemed equally un-
fair and unjustified. For instance, should we alphabetize by author of the application
or name of the application? And what if an application was produced by two authors,
as in the PageRank case? Do we order by Brin or by Page?

Having ruled out such elementary systems, we moved on to more advanced sys-
tems, such as the “Markov number” system and the “impact factor” system. The
Markov number system is an analogy to the Erdos number system. In this system,

3 Actually, there was a tie between Shannon and Baum for second place. See the next page for
details.
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A. A. Markov has a Markov number of 0. Markov applications produced by Markov’s
coauthors would receive a Markov number of 1, coauthors of coauthors, a 2, and so
on. This means that Markov’s own Eugeny Onegin application would be the most im-
portant of our five chosen applications, because Markov numbers are like golf scores,
the lower, the better. This ranking system seemed reasonable, but it wasn’t without
its faults. For instance, could we find a coauthor of Scherr’s who coauthored a paper
with Markov? Maybe, but we admit that we didn’t try very hard. This left us with a
Markov number for only Markov and no Markov numbers for Shannon, Scherr, Baum,
Brin, or Page.

So we proceeded to the “impact factor” system of ranking our five applications.
The idea here is to rank each application according to its perceived impact on society.
A laudable goal, but practically difficult. Should applications that created entire
new fields, such as Shannon’s information theory and Scherr’s computer performance
evaluation receive the highest impact factor? If so, where does that leave PageRank?
While the PageRank application hasn’t created a new field (yet), it does affect billions
of people each day as they access Google to surf the web.

Then inspiration came to us. The proper ranking system should have been self-
evident. PageRank is the most famous system for ranking items, so why not use
PageRank to rank our five applications? However, this idea gave cause for caution.
Could PageRank be used to rank items, one of which is PageRank itself? The idea
sounded dangerous, and worth avoiding. So we sidestepped the problem by employing
a PageRank-like system, called HITS [13], to rank our five applications. In order to
apply the HITS system for ranking items we needed to create a graph that represented
the relationships between our five Markov applications. We produced the graph in
Figure 7.1. We created a link between applications if we perceived some connection
between the two topics. For instance, there is a link between Information Theory
and Eugeny Onegin because Information Theory uses Markov chains to capture the
stochastic relationship between letters and words and Eugeny Onegin uses chains to
capture the stochastic relationship between vowels and consonants. Similarly, the link
from PageRank to Performance Evaluation represents the fact that Scherr’s models
can be used to evaluate the massive parallel machines used to compute PageRank.

Performance
Hidden Markov Evaluation
Models (PE)
(HMM)
PageRank
(PR)
Information
Theory [ > Eugeny Onegin
(IT) 50)

Fia. 7.1. Graph of relationships between five Markov applications
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The adjacency matrix L associated with Figure 7.1 is

EFO IT PE HMM PR

EO 0 1 0 1 1

IT 1 0 0 1 0
L= PE 0 0 0 0 0 |1,

HMM 1 1 0 0 0

PR 1 0 1 0 0

and the HITS authority vector a (the dominant eigenvector of LTL) is

EO IT PE HMM PR
a= (.64 50 .17 .50  .26),

meaning that the most authoritative of our five applications is Markov’s application
to Eugeny Onegin and the least authoritative is Scherr’s application to computer
performance evaluation.

Now that the mystery behind our ranking of the five greatest applications of

Markov chains has been revealed, do you agree with us? Since you are all fellow
Markov enthusiasts, we expect little argument about A. A. Markov’s claim to the
first position. It is, after all, his 150th birthday that we are celebrating. But what
about the other four positions. We await your suggestions and complaints by email.
Regardless, Happy 150th Markov!

(1]

3]

[4]

[5]

[6]
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