
Simulation and Performance Evaluation

Basic R Usage
Michele Segata, Renato Lo Cigno

Original version taken from the Network Simulation course held at the University of Paderborn, Germany
Special thanks to Falko Dressler and Christoph Sommer

Motivation

• How to analyze large amounts of data?
– SAS
– SPSS
– Stata
– Matlab
– SciPy (or Pandas, or …)
– SQL
– Excel
– …
– R

SPE - Basic R Usage 2

Motivation

• Why R?
– Oldest

• Implementation of S, designed at Bell Labs starting 1975
– Newest

• Actively maintained by international team
• Version 3.4.4 released in March 2018
• Version 3.5.3 available since March 2019

– Open Source
• Available for every major OS

– Popular
• Consistently ranks among top 3 software tools for data analysis

0

10

20

30

40

SPE - Basic R Usage 3

About

• What is R?
– the computer language R
– an interpreter of code written in R
– a execution environment that contains the R interpreter

• From Wikipedia:
– “R is an implementation of the S programming language combined with lexical scoping

semantics inspired by Scheme. S was created by John Chambers while at Bell Labs. R was
created by Ross Ihaka and Robert Gentleman at the University of Auckland, New Zealand, and is
currently developed by the R Development Core Team, of which Chambers is a member. R is
named partly after the first names of the first two R authors and partly as a play on the name of
S.”

• R is a (kind of) scripting language
– Automatic variables, garbage collection
– Lots of “smart” shortcuts (for better or worse)

> 1 + 2
[1] 3
> exp(2i*pi)

[1] 1-0i
> mean(c(0, 2, 3))

[1] 1.666667

> round(2.5)
[1] 2
> round(3.5)
[1] 4

SPE - Basic R Usage 4

Installing R

• To install R, you can do the following depending on your OS:
– Linux: Just open your terminal and type

• sudo apt-get install r-base
– Mac OS X: If you have MacPorts installed, open your terminal and type

• sudo port install R

– Mac OS X: If you don't have MacPorts, you can download R binaries from the
official R website (http://www.r-project.org/)

– Windows: Download the binaries from the official R website

SPE - Basic R Usage 5

Running R

• Frontend
– Official frontend: www.r-project.org

• R
• Rscript (to run R scripts from command line)

– Or any of
• RStudio, Revolutions, Tinn-R, Deducer, RKward, R Commander, Vim R, …

• Packages
– Extend R functionality
– Written in C, Java, Fortran, or R
– Official repository: cran.r-project.org

• Comprehensive R Archive Network (CRAN)
– Or any of

• Bioconductor, Crantastic, R-Forge, …

SPE - Basic R Usage 6

R Frontends – Standard R Console

SPE - Basic R Usage 7

For your own health:
PLEASE NO!

R Frontends - RStudio

SPE - Basic R Usage 8

MORE FREE TIME!

R Frontends – Vim R Plugin

SPE - Basic R Usage 9

Data in R

• Assigning data
– x <- 1
– x = 1 also works (not always)
– x <- (1+2)*NA*3 ⇨ x <- NA

• Creating data of specific type and class
– v <- c(10, 20, 30, 40, 50, 60)
– l <- list(a="apple", b="balloon", c="crayons")
– m <- matrix(v, nrow=3)
– d <- data.frame(student=c("alice", "bob", "carol"), grade=c(1,2,3))

SPE - Basic R Usage 10

Data in R

• Printing
– print(v) ⇨ [1] 10 20 30 40 50 60
– summary(v) ⇨ Minimum: 10.0 1st Quartile: 32.5 Median: 45.0 …
– …

SPE - Basic R Usage 11

Data in R

• At its core, an R object is defined by three properties
– Type

• homogeneous vector types (logical, integer, double, …)
• heterogeneous list type (list)
• miscellaneous types (function, expression, …)

– Length
• Only really sensible for vectors and lists

– Attributes
• class (matrix, factor, data.frame, …)

– determines how generic functions interoperate
• dim (dimensions of matrix)
• levels (possible values of factor)
• names, dimnames, rownames, colnames, …
• comment
• …

SPE - Basic R Usage 12

Interacting with Data

• Subset operator (attn: R is one-based, not zero-based)
– print(v[c(2, 3, 4)]) ⇨ [1] 20 30 40
– print(v[2:4]) ⇨ [1] 20 30 40
– print(v[c(T,F,F,F,F,T)]) ⇨ [1] 10 60
– print(v[-2]) ⇨ [1] 10 30 40 50 60
– v[2] <- 99; print(v) ⇨ [1] 10 99 30 40 50 60
– print(m[1,2]) ⇨ [1] 40
– print(m[1,]) ⇨ [1] 10 40
– print(m[,2]) ⇨ [1] 40 50 60

SPE - Basic R Usage 13

Interacting with Data

• Element operator
– print(l[["a"]]) ⇨ [1] "apple"
– print(d[["grade"]]) ⇨ [1] 1 2 3

• CAREFUL: d[[”grade”]] IS DIFFERENT FROM d[”grade”]

• Name operator
– print(l$a) ⇨ [1] "apple"
– print(d$grade) ⇨ [1] 1 2 3

SPE - Basic R Usage 14

Functions

• Defining functions
– f <- function(x, y=1, offset=0) { offset + x * y }
– print(f) ⇨ function (x, y = 1, offset = 0) { offset + x * y }

• Calling functions
– f(3, 7, 1000) ⇨ [1] 1021
– f(3, 7) ⇨ [1] 21
– f(offset=1000, x=3, y=7) ⇨ [1] 1021
– f(3, offset=1000) ⇨ [1] 1003

SPE - Basic R Usage 15

Built-ins

• Basic statistics
– X <- c(5, 20, 40, 50, 55, 70, 80, 80, 900)
– Y <- c(10, 20, 30, 40, 50, 60, 70, 80, 90)

– mean(X) ⇨ 144.4444
– median(X) ⇨ 55
– quantile(X, 0.25) ⇨ 40
– glm.fit(1:9, Y, intercept=F)$coefficients ⇨ 10
– wilcox.test(X, Y)$p.value ⇨ 0.72

• Help and more information
– help('mean')
– ?mean
– citation('vioplot')

SPE - Basic R Usage 16

Working with Data Frames

• Creating
– d <- data.frame(

student=rep(c("alice", "bob", "carol"),4),
points=rep(c(90,30,70,50,40,10), 2)

)

• Grouping averages
– a <- aggregate(

d$points,
by=list(who=d$student),
FUN=mean

)

– or use ddply by plyr (see example)

• Adding a new column
– a$grade <- ifelse(a$x >= 50, "pass", "fail")

SPE - Basic R Usage 17

Installing External Packages

• Syntax:
– install.packages(“package name”) or
– install.packages(vector of packages names)
– e.g.: install.packages(c(“plyr”, “moments”))

You don't need to manually download, compile, and install packages!

• R will ask you which mirror to use, download, and install the
packages
– with dependencies

• To load your library:
– library(“plyr”) or require(“plyr”)

SPE - Basic R Usage 18

Getting Data into R

• Read data frame from text file
– d <- read.csv('data.csv’)
– d will be a data.frame where column names matches csv column names

SPE - Basic R Usage 19

Plotting Data

• R can do plots, too
• Low level plotting commands

– plot.new()
– plot.window(xlim=c(0,1), ylim=c(0,1))
– points(c(0.2, 0.7), c(0.4, 0.9))
– box()
– axis(1)
– axis(2)
– title(xlab="abscissa", ylab="ordinate")

SPE - Basic R Usage 20

Plotting Data

• High level plotting commands
– generic “plot” command guesses good plot type

– plot(c(0.2, 0.7), c(0.4, 0.9), xlab="abscissa", ylab="ordinate")

• Can mix high level and low level plotting commands
– e.g., annotations, lines, points, abline, …

SPE - Basic R Usage 21

Add-on Packages

• Tons of packages for basically EVERYTHING
• Lattice

– Good for conditioning types of plots (a vs. b depending on c…)
– Good for assembling many plots into one

• ggplot2
– Grammar-based approach
– Good for data exploration

ggplot(d, aes(x=wt, y=mpg, colour=cyl))
+ geom_line()
+ geom_point(…)
+ geom_smooth(…)
+ facet_grid(model ~ make)
+ …

SPE - Basic R Usage 22

Histogram

• Illustrates frequencies of discrete intervals (bins)
• Used to plot density of data
• Bin size important

– May hide data when using inappropriate bin sizes
• data <- c(25, 11, 2, 13, 1, 22, 15, 3, 1, 7, 8, 10, 32, 7, 4, 9, 18, 21, 7, 7, 16, 6, 4, 12,

5, 27, 7, 9, 10, 7)

– hist(data, breaks=c(0,6,13,20,27,34)) hist(data, breaks=c(0,7,14,21,28,35))

SPE - Basic R Usage 23

Boxplot

• Give a quick overview of the following values:
– Min, 1st quantile, median, 3rd quantile, max
– Whiskers:

• extend to the most extreme data point which is no more than 1.5 times the
interquartile range from the box

• absolute minimum and maximum

• Outliers are displayed separately
– if the minimum or maximum are not within the 1.5 IQR

• Advantages:
– Allows to compare different result sets quickly

by using multiple box plots

• Disadvantages:
– Bimodal distributions cannot be spotted

SPE - Basic R Usage 24

Plotting with R

• Barplot
– barplot(a$x, names.arg=a$who)

• Boxplot
– boxplot(d$points ~ d$student)

SPE - Basic R Usage 25

Plotting with R

• eCDF
– plot(ecdf(runif(25, min=0, max=1)))
– plot(ecdf(rnorm(1e5)))

• Kernel Density Estimate
– plot(density(runif(1e5, min=0, max=1)))
– plot(density(rnorm(1e5)))

SPE - Basic R Usage 26

SPE - Basic R Usage 27

a
b
c
d
e
f

Plotting Data – Bad graphs

• Pie charts are almost never a good idea
– Humans cannot perceive area, angle or perimeter properly
– Hence comparison of quantities is difficult

SPE - Basic R Usage 28

a
b
c
d
e
f

Plotting Data – Bad graphs

• Compare to bar charts:

0 10 20 30 40

a

b

c

d

e

f

SPE - Basic R Usage 29

Plotting Data – Bad graphs

• Spot the differences!

http://blog.revolutionanalytics.com/2009/08/how-pie-charts-fail.html

SPE - Basic R Usage 30

Bad Graphs

http://www.forbes.com/sites/naomirobbins/2012/05/30/winner-of-the-bad-graph-contest-announced-2/

SPE - Basic R Usage 31

Bad Graphs

http://www.forbes.com/sites/naomirobbins/2012/05/30/winner-of-the-bad-graph-contest-announced-2/

SPE - Basic R Usage 32

Bad Graphs

http://www.forbes.com/sites/naomirobbins/2012/06/07/trellis-plot-alternative-to-three-dimensional-bar-charts/

SPE - Basic R Usage 33

Bad Graphs

http://www.forbes.com/sites/naomirobbins/2012/05/30/winner-of-the-bad-graph-contest-announced-2/

SPE - Basic R Usage 34

Bad Graphs

http://junkcharts.typepad.com/junk_charts/2012/10/can-information-be-beautiful-when-information-doesnt-exist.html

SPE - Basic R Usage 35

Bad Graphs

• Global Warming!!!

SPE - Basic R Usage 36

Bad Graphs

• For a total of… ???

SPE - Basic R Usage 37

Bad Graphs

SPE - Basic R Usage 38

Saving you plots

• With R you can quickly plot a graph: good

• Result is satisfying, how do I save it?
– Open a graphic driver with pdf(), png(), svg(), jpeg(), …, even LaTeX

– n <- rnorm(1000)
– pdf(‘myplot.pdf’)
– plot(n, type=‘l’)
– dev.off()

SPE - Basic R Usage 39

Plotting hints

• CHECKLIST FOR PLOTS BEFORE HANDING IN THE ASSIGNMENT
• Make plots readable by

– Not showing too much data, plot should be readable in seconds!

– Using the “right” plot for visualization purpose

– Do not rely on COLOR alone

• plot *will* be printed out in greyscale, or black-and-white

– Make it easy to compare the quantities

– AXIS: what’s on abscissa? what’s on ordinate?

– UNITS: without units values makes no sense

• meters? millimeters? light years? bananas? potatoes?

– Check your plot in the final document. PRINT IT OUT
• a document on your screen might not be as good in a double column document

– Use PDF as output format!!! NO HORRIBLE RASTER GRAPHICS!!!
• BE CAREFUL: consider the data size as well. In case, go for high-res raster

SPE - Basic R Usage 40

Exercises – At your will

• Perform some simple data analysis / plotting with R
– download and install R
– download and install a front end (R Studio might be the the quickest option)
– download the meteo dataset from classroom (taken from www.soda-is.com)

• First steps
– load the dataset in R (function read.csv()) (see next slide for field

description)
– what is inside the dataset? (function names(), or head())
– which cities are included? (function unique())
– can you get min, max, quartiles, and average for the average temperatures?

(function summary())
– can you split the previous stats by city? (unique(), for loop, subset())

• for the braves: install the plyr package and to this with ddply()

SPE - Basic R Usage 41

Exercises – CSV fields

– Month: Value for each month.
– City: Guess what?
– IrradianceWm2: Monthly mean of irradiance (W/m2)
– IrradianceKLyYear: Monthly mean of daily irradiance (kLy/year)
– IrradiationJcm2: Monthly mean of daily irradiation (J/cm2)
– TempMin: Monthly mean of daily min. of air temperature (C)
– TempMax: Monthly mean of daily max. of air temperature (C)
– TempMean: Monthly mean of air temperature (C)
– RelHumMin: Monthly mean of daily min. of relative humidity (%)
– RelHumMax: Monthly mean of daily max. of relative humidity (%)
– RelHumMean: Monthly mean of relative humidity (%)

SPE - Basic R Usage 42

Exercises – Some plots

• Make some plots:
– mean temperature trend for Trento in a year (high level plot commands)
– mean temperature trend for all cities in a year (one line each: use low level plot

commands)
– add a new column to the data.frame labeling the month (JAN, FEB, MAR…). Can

you do it in a smart way? Then replot the previous graph with the name instead
of the number

– boxplots of mean temperature for different cities (look at the documentation for
boxplot(), parameter “formula”). What can you infer from this plot?

– add a column for the season (again, smart way) and plot the boxplots of mean
temperatures of Trento for the different seasons

– use ddply to compute the total irradiation for a city in a year (W/m2) and make a
barplot of such values. Would you go selling solar panels in Eureka? (assume
each month has 30 days)

– bonus: use low level plotting functions for the previous plot and make the y axis
nicer (kWh/cm2)

SPE - Basic R Usage 43

