
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

Supporting the Design of Socio-Technical Systems

by Exploring and Evaluating Design Alternatives

Volha Bryl

Version 3

Advisor:

Prof. Paolo Giorgini

Universit�a degli Studi di Trento

March 2009



Abstract

A challenging aspect of modern information systems is the growing involvement of hu-
mans and organizations in system structure and operation. Organizational environment
in which software operates, the software system itself, the related hardware components
and human users are often interdependent in a non trivial way, so that it is problematic to
de�ne a system boundary. We argue that an interdisciplinary notion of a Socio-Technical
System (STS) is the one that captures the above mentioned aspects. Unlike traditional
computer-based system, socio-technical systems include in their architecture and oper-
ation not only software and hardware components, but also organizational and human
actors. Such systems are regulated and constrained by internal organizational rules, ex-
ternal laws and regulations.

Among the challenging problems related to the analysis and design of a STS is the
problem of understanding the requirements of its software component and the way in
which the structure of human and organizational activities is in
uenced by introducing
technology. In particular, an important element in the design of a socio-technical system is
the identi�cation of a set of dependencies among actors which, if respected by all parties,
will ful�ll all stakeholder goals, namely, the requirements of the STS.

In this thesis, we present a framework which aims at supporting the design of socio-
technical systems, speci�cally the design of a network of inter-actor dependencies intended
to ful�ll a set of initial goals. The support comes in the form of a structured process and a
tool that is founded on an o�-the-shelf AI (Arti�cial Intelligence) planner which generates
and evaluates alternative assignments of actor dependencies to identify an optimal or
good enough design. We explore a range of measures for evaluating optimality, inspired
by AI planning, multi-agent systems, social networks and Economics. We report on the
application of the framework to the domains of secure systems design, safety critical
systems, dynamic recon�guration of an STS, as well as to the problem of instantiation of
STS designs. We are also experimenting with our prototype tool to evaluate its scalability
to realistic design problems.

Keywords
socio-technical systems, exploring design alternatives, AI planning, evaluation metrics



Contents

1 Introduction 1
1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Challenges and objectives of the thesis . . . . . . . . . . . . . . . . . . . . 3
1.3 The approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contribution of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 State of the Art 7
2.1 Evolution of systems and design tools . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Historical perspective of SE . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Growing complexity of information systems . . . . . . . . . . . . . 9

2.2 Socio-technical systems: introducing the concept . . . . . . . . . . . . . . . 10
2.2.1 Socio-technical systems: de�nition and properties . . . . . . . . . . 10
2.2.2 Designing socio-technical systems: challenges . . . . . . . . . . . . . 11

2.3 Modelling and analysis of socio-technical systems . . . . . . . . . . . . . . 13
2.3.1 Agent-oriented and goal-oriented approaches . . . . . . . . . . . . . 13
2.3.2 Enterprize modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Designing agent organizations . . . . . . . . . . . . . . . . . . . . . 18

2.4 Automation support for software design . . . . . . . . . . . . . . . . . . . . 19
2.4.1 Automatic program synthesis . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 MDA and design patterns . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.3 Software engineering as a search problem . . . . . . . . . . . . . . . 21
2.4.4 AI techniques: planning the design . . . . . . . . . . . . . . . . . . 22

2.5 Evaluating socio-technical designs . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.1 Evaluation procedures: general approaches . . . . . . . . . . . . . . 23
2.5.2 Examples of evaluation procedures . . . . . . . . . . . . . . . . . . 24
2.5.3 Game-theoretic perspective on evaluation . . . . . . . . . . . . . . . 25
2.5.4 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Requirements Analysis in Tropos: Extending the Process 27
3.1 The Tropos modelling language . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 The Tropos methodology: why to extend . . . . . . . . . . . . . . . . . . . 30
3.3 The proposed requirements engineering approach . . . . . . . . . . . . . . 32

i



4 Exploring the Space of Design Alternatives 34
4.1 Formalizing the input setting and desired properties of a solution . . . . . 34
4.2 Planning approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Desired properties of a solution . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Planning formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Evaluation of Socio-Technical Designs 43
5.1 Global evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Length of proposed plan . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.2 Overall plan cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.3 Degree of satisfaction of non-functional requirements . . . . . . . . 45

5.2 Criticality of an actor in a plan . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.1 Leaf goals satisfaction dimension . . . . . . . . . . . . . . . . . . . 47
5.2.2 Dependency dimension . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.3 Actor criticality with respect to a set of goals . . . . . . . . . . . . 48

5.3 Local evaluation: game-theoretic insights . . . . . . . . . . . . . . . . . . . 49
5.4 Supporting local evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Implementation and Validation of the Approach 54
6.1 Implementing the planning domain . . . . . . . . . . . . . . . . . . . . . . 54

6.1.1 Choosing the planner . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.2 Domain preprocessing and PDDL implementation . . . . . . . . . . 55
6.1.3 Tool support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.1 E-business case study . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.2 Other case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 Scalability experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Customizations and Applications of the Approach 70
7.1 Designing secure systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.1.1 Secure Tropos and a motivating case study . . . . . . . . . . . . . . 71
7.1.2 Planning domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.1.3 Case study: experimentations . . . . . . . . . . . . . . . . . . . . . 77

7.2 Using risk analysis to evaluate design alternatives . . . . . . . . . . . . . . 78
7.2.1 A motivating case study . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2.2 Planning domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2.3 Evaluation process . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2.4 Case study: experimentations . . . . . . . . . . . . . . . . . . . . . 86

7.3 Runtime application: self-con�guring systems . . . . . . . . . . . . . . . . 90
7.3.1 A motivating case study . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3.2 Planning domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.3.3 Recon�guration mechanism . . . . . . . . . . . . . . . . . . . . . . 95
7.3.4 Case study: experimentations . . . . . . . . . . . . . . . . . . . . . 99
7.3.5 General architecture for self-con�guring systems . . . . . . . . . . . 101

7.4 From organizational to instance level design . . . . . . . . . . . . . . . . . 104

ii



7.4.1 A motivating case study . . . . . . . . . . . . . . . . . . . . . . . . 105
7.4.2 General schema of the approach . . . . . . . . . . . . . . . . . . . . 106
7.4.3 Planning at the organizational level: example . . . . . . . . . . . . 107
7.4.4 Organizational model instantiation . . . . . . . . . . . . . . . . . . 108
7.4.5 Planning at the instance level . . . . . . . . . . . . . . . . . . . . . 111

7.5 Conclusive remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8 Conclusion 115

Bibliography 117

iii



List of Tables

4.1 Formalizing an organizational setting: predicates . . . . . . . . . . . . . . . 35
4.2 Desired plan properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Actions: preconditions and e�ects . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Compared planners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Additional actions: preconditions and e�ects . . . . . . . . . . . . . . . . . 57
6.3 E-business case study: plans and their evaluation . . . . . . . . . . . . . . 62
6.4 Experimental results: increasing the number of elementary goal trees . . . 67
6.5 Experimental results: increasing the number of goal tree levels . . . . . . . 68

7.1 Secure systems design: primitive predicates . . . . . . . . . . . . . . . . . . 75
7.2 Secure systems design: actions . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.3 Safety critical systems design: primitive predicates . . . . . . . . . . . . . . 83
7.4 ATM case study: goal criticality and sat-risk . . . . . . . . . . . . . . . . . 87
7.5 ATM case study: actor and goal properties . . . . . . . . . . . . . . . . . . 87
7.6 Self-con�guring MAS: agents of the control layer . . . . . . . . . . . . . . . 103
7.7 Formalizing the instantiated setting: predicates . . . . . . . . . . . . . . . 111
7.8 Organizational model instantiation: steps and examples . . . . . . . . . . . 112
7.9 Role assignment and satisfaction actions at the instance level . . . . . . . . 113

iv



List of Figures

1.1 Sample problem: two alternative models . . . . . . . . . . . . . . . . . . . 3

3.1 E-business case study: initial settings . . . . . . . . . . . . . . . . . . . . . 29
3.2 Requirements analysis process: a general schema. . . . . . . . . . . . . . . 32

4.1 An extract of formalization of the diagram in Figure 3.1 . . . . . . . . . . 36
4.2 A fragment of a plan corresponding to Figure 3.1 . . . . . . . . . . . . . . 38

6.1 Samples of PDDL code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 S&D tool: de�ning actor properties . . . . . . . . . . . . . . . . . . . . . . 58
6.3 S&D tool: de�ning goal properties . . . . . . . . . . . . . . . . . . . . . . . 59
6.4 S&D tool: PDDL speci�cation . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.5 S&D tool: running the planner . . . . . . . . . . . . . . . . . . . . . . . . 60
6.6 S&D tool: Tropos diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.7 E-business case study: adopted solution . . . . . . . . . . . . . . . . . . . . 63

7.1 Medical IS example: Secure Tropos model . . . . . . . . . . . . . . . . . . 73
7.2 Secure systems design: alternatives . . . . . . . . . . . . . . . . . . . . . . 74
7.3 Medical IS example: the planning problem in PDDL 2.2 . . . . . . . . . . 78
7.4 Medical IS example: the chosen design alternative . . . . . . . . . . . . . . 79
7.5 ATM case study: air space division between ACC-1 and ACC-2 . . . . . . 81
7.6 ATM case study: plan for increasing air space capacity . . . . . . . . . . . 88
7.7 ATM case study: goal model for a candidate plan of Figure 7.6(b) . . . . . 89
7.8 ATM case study: �nal problem de�nition and plan . . . . . . . . . . . . . 90
7.9 Search-and-order MAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.10 Search-and-order MAS: planning problem formalization . . . . . . . . . . . 94
7.11 Search-and-order MAS: initial con�guration . . . . . . . . . . . . . . . . . 94
7.12 Search-and-order MAS: initial con�guration . . . . . . . . . . . . . . . . . 95
7.13 Recon�guration algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.14 Replanning procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.15 Search-and-order MAS: �rst plan at t1 . . . . . . . . . . . . . . . . . . . . 99
7.16 Search-and-order MAS: second plan at t1 . . . . . . . . . . . . . . . . . . . 100
7.17 Search-and-order MAS: �rst recon�guration . . . . . . . . . . . . . . . . . 100
7.18 Search-and-order MAS: �rst plan at tk . . . . . . . . . . . . . . . . . . . . 101
7.19 Search-and-order MAS: second plan at tk . . . . . . . . . . . . . . . . . . . 101
7.20 Search-and-order MAS: third plan at tk . . . . . . . . . . . . . . . . . . . . 102

v



7.21 Search-and-order MAS: second recon�guration . . . . . . . . . . . . . . . . 102
7.22 Self-con�guring MAS: 2-layered architecture . . . . . . . . . . . . . . . . . 103
7.23 General schema of the approach . . . . . . . . . . . . . . . . . . . . . . . . 106
7.24 Banking scenario: formalization . . . . . . . . . . . . . . . . . . . . . . . . 108
7.25 Banking scenario: an organizational level plan . . . . . . . . . . . . . . . . 109
7.26 Banking scenario: organizational level model . . . . . . . . . . . . . . . . . 110
7.27 Banking scenario: instantiation input . . . . . . . . . . . . . . . . . . . . . 113
7.28 Banking scenario: (a fragment of) an instance level plan . . . . . . . . . . 114

vi



Chapter 1

Introduction

In a modern world, information systems are expected to be as complex, scalable, reliable,
secure and adaptable as to be able to support literally any aspect of human life, from
organizing our leisure activities, to managing the operation of a whole enterprize. For
many of these systems, a challenging aspect is the growing involvement of humans and
organizations in the system structure and operation. Indeed, organizational environment
in which software operates, the software system itself, the related hardware components
and human users are often interdependent in a non trivial way, so that it is problematic to
de�ne a system boundary [37]. All this calls for the new de�nition of a modern information
system, in which its social and organizational characteristics are taken into account, as well
as for methods for analysis and design of such systems. In our opinion, an interdisciplinary
notion of a Socio-Technical System (STS) [52, 119, 126] is the one that captures the above
mentioned aspects.

Unlike their traditional computer-based cousins, socio-technical systems include in
their architecture and operation not only software and hardware components, but also
organizational and human actors. Such systems are normally regulated and constrained by
internal organizational rules, business processes, external laws and regulations [126, 119].
Among the challenging problems related to the analysis and design of a socio-technical
system is the problem of understanding the requirements of its software component, the
ways technology can support human and organizational activities, and the way in which
the structure of these activities is in
uenced by introducing technology. In particular, in
a socio-technical system, human, organizational and software actors rely heavily on each
other in order to ful�ll their respective objectives. Not surprisingly, an important element
in the design of a socio-technical system is the identi�cation of a set of dependencies
among actors which, if respected by all parties, will ful�ll all stakeholder goals, and then
the requirements of the socio-technical system.

1.1 Problem formulation

Let us make the problem more concrete. KAOS [42] is a state-of-the-art requirements
elicitation technique that starts with stakeholder goals and through a systematic, tool-
supported process derives functional requirements for the system-to-be and a set of as-

1



CHAPTER 1. INTRODUCTION 2

signments of leaf-level goals (constraints, in KAOS terminology) to external actors so that
if the system-to-be can deliver the functionality it has been assigned and external actors
deliver on their respective obligations, stakeholder goals are ful�lled. However, there are
(combinatorially) many alternative assignments to external actors and the system-to-be.
How does the designer choose among these? How can we select an optimal, or \good
enough" assignment? What is an optimal assignment? The KAOS framework remains
silent on such questions.

Alternatively, consider Tropos [25], an agent-oriented software engineering method-
ology, which uses the i* modelling framework [140] to guide and support the system
development process starting from requirements analysis down to implementation. In
Tropos and i*, goals are explicitly associated with external stakeholders and can be del-
egated to other actors or the system-to-be. Or, they can be decomposed into subgoals
that are delegated to other actors. Thus, requirements in Tropos and i* are conceived as
goals associated to social actors within a network of social dependencies. In this setting,
selecting a set of assignments is more complex than in KAOS because delegations can be
transitive and iterative. \Transitive" means that actor A1 may delegate goal G to actor
A2 who in turn delegates it to actor A3. \Iterative" means that an actor A1 who has been
delegated goal G, may choose to decompose it (in terms of an AND/OR decomposition)
and delegate its subgoals to other actors.

To illustrate the problem, consider the design task in Figure 1.1 where actor A1 has to
achieve goal G, which can be re�ned into two subgoals G1 and G2. The actor can decide
to achieve the goal by itself or delegate it to actor A2. In both cases, there are a number of
alternative ways that can be adopted. For instance, A1 can decide to delegate to A2 all of
G (Figure 1.1b), or a part of it (Figure 1.1c). The diagrams follow Tropos modelling no-
tation with circles representing actors, big dashed circles representing actors' perspective,
and ovals representing goals (interconnected by AND/OR-decomposition links). Social
dependencies among actors for goals are represented by \De"-labelled directed links. Even
for such a simple example, the total number of alternative requirements models is large,
moreover, the number of alternative delegation networks grows exponentially with the
number of actors as well as with the number of goals. Thus, a systematic approach
and tool support for constructing and evaluating such networks of delegations would be
bene�cial.

However, in most software engineering methodologies the designer has tools to report
and verify the �nal choices (be it goal models in KAOS, UML classes, or Java code), but
not actually the possibility of automatically exploring design alternatives, i.e. the poten-
tial choices that the designer may adopt. At the same time, it is acknowledged that the
latter is crucial at the early stages of the development process, namely, that \exploring
alternative options is at the heart of the requirements and design processes" [96]. There-
fore, there is a need for automation support for the selection of alternatives, especially
taking into account that during the early development stages the design space is large,
and a good choice can have signi�cant impact on the whole project.



CHAPTER 1. INTRODUCTION 3

(a) Sample problem

(b) 1st alternative

(c) 2nd alternative

Figure 1.1: Sample problem: two alternative models

1.2 Challenges and objectives of the thesis

The problem of exploring the space of alternative delegation networks is central to this
thesis. With respect to this problem, we see the following challenges.

1. How can the space of alternative designs be formally represented? What techniques
should be selected to perform the search in this space? What properties should a
resulting solution have and how can they be guaranteed?

2. What are the optimality criteria in the context of socio-technical system design?
What can be called a \good enough" solution?

3. How should the above be incorporated into requirements analysis and design
processes? How can the resulting approach be evaluated?

Accordingly, the objectives of the thesis are the following:

1. Develop a framework for supporting the designer in selecting and evaluating alter-
native design options. Preferably, the framework should be based on the existing



CHAPTER 1. INTRODUCTION 4

techniques and tools, it should be scalable and easy to extend. A sub-objective here
is the formal de�nition of a design selection problem, so that the desired properties
of a solution can be guaranteed.

2. Identify a concrete set of optimality criteria for evaluating socio-technical designs.
These criteria are likely to come from a vast range of sources (e.g. software engineer-
ing, organization sciences, social networks, etc.) as the notion of a socio-technical
system is inherently interdisciplinary.

3. De�ne a requirements analysis and design process that will incorporate the above
supporting methods and tools. Preferably, this should be done starting from the
state-of-art process.

1.3 The approach

To address the above listed challenges, we take an approach based on the observations
similar to the ones reported in [39]:

...software engineers face problems which consist, not in �nding the solution,
but rather, in engineering an acceptable or near optimal solution from a large
number of alternatives. Often it is not clear how to achieve an optimal solution,
but it is more clear how to evaluate and compare candidates... [in search
spaces, which] typically arise when a number of competing constraints have to
be balanced against one another to arrive at a solution which is `good enough'.

We are interested in supporting the design of socio-technical systems, speci�cally the
design of a network of inter-actor dependencies intended to ful�ll a set of initial goals.
The support comes in the form of a tool that is founded on an o�-the-shelf AI (Arti�cial
Intelligence) planner which generates and evaluates alternative assignments of actor de-
pendencies to identify an optimal design. We explore a range of measures for evaluating
optimality, inspired by AI planning, multi-agent systems, social networks and Economics.

Our approach solves the following problem: given a set of actors, goals, capabilities,
and social dependencies, the tool generates alternative actor dependency networks on the
basis of the following two steps, possibly executed in a loop.

� Generate alternative dependency networks : generate alternatives using a planning
approach to construct an assignment of goals to actors that leads to the satisfaction
of the actor goals.

� Evaluate results and provide feedback : evaluate alternatives by assessing and com-
paring them with respect to a number of criteria, provided by the designer. In case
a solution is not satisfactory, provide feedback to the planner on how to constrain
the further search.

This two step procedure is related to objectives 1 and 2 identi�ed in the previous
section, while objective 3 is dealt with by taking the Tropos requirements analysis and
design process [25] as a starting point, and complementing it with the planning-based
automation support techniques and a set of evaluation criteria and procedures.



CHAPTER 1. INTRODUCTION 5

1.4 Contribution of the thesis

The contribution of the work reported in this thesis can be summarized as follows.

� We provide both the formalization and the implementation of the design-as-planning
task in the domain of socio-technical systems.

� We introduce a number of criteria evaluating the optimality of actor dependency
networks, and provide the methodological guidelines on how to use these criteria.

� We de�ne a structured tool-supported process for the requirements analysis of socio-
technical systems.

� We report on the customization of the approach to several important application
domains, such as secure and trusted system design, self-con�guring socio-technical
systems and some others.

� We validate the approach with the help of a number of case studies, and evaluate
the scalability of our prototype tool to realistic design problems.

1.5 Structure of the thesis

The rest of the thesis is structured as follows.

Chapter 2 overviews the state of the art of number of the related areas. The topics
include the recent trends in information system engineering; the de�nition, prop-
erties and approaches to socio-technical system analysis and design; approaches to
automated software engineering, with the emphasis on early development phases;
evaluation criteria for socio-technical systems and the associated optimization tech-
niques.

Chapter 3 presents the Tropos modelling notation and methodological process, and in-
troduces a motivating case study which is used in the following three chapters for
illustrative purposes. Then, the problem de�nition is elaborated and the general
schema of the Tropos-based requirements engineering process is presented, which
supports the designer in exploring and evaluating alternative options.

Chapter 4 presents the planning based design decision support framework; in particular,
the problem domain and the properties of a target delegation network are formalized
and the planning domain is de�ned so that to satisfy these properties by construction.

Chapter 5 presents an extended set of evaluation criteria related to the cost and critical-
ity of the obtained solution, as well as to the degree of satisfaction of non-functional
system requirements.

Chapter 6 discusses the implementation of the approach on the bases of an o�-the-shelf
planning tool, illustrates the whole approach with the help of an e-business case
study, discusses the other case studies to which the framework has been applied,



CHAPTER 1. INTRODUCTION 6

and reports on the experimental results aimed to evaluate the scalability of the
prototype tool.

Chapter 7 presents customization of the framework to the domains of secure and trusted
system design, safety critical systems, self-con�guring socio-technical system, as well
as to the problem of instantiating socio-technical designs.

Chapter 8 summarizes the thesis and the discusses the future work directions.

1.6 Publications

Part of the results presented in the thesis were published as follows.

� Volha Bryl, Fabio Massacci, John Mylopoulos, and Nicola Zannone. Designing Se-
curity Requirements Models Through Planning. In CAiSE'06, pages 33{47, 2006.

� Volha Bryl, Paolo Giorgini, and John Mylopoulos. Designing Cooperative IS: Ex-
ploring and Evaluating Alternatives. In CoopIS'06, pages 533{550, 2006.

� Volha Bryl and Paolo Giorgini. Self-Con�guring Socio-Technical Systems: Re-
design at Runtime. International Transactions on Systems Science and Applications,
2(1):31-40, 2006. Presented at SOAS'06 conference.

� Yudistira Asnar, Volha Bryl, and Paolo Giorgini. Using Risk Analysis to Evalu-
ate Design Alternatives. In Lin Padgham and Franco Zambonelli, editors, AOSE,
volume 4405 of Lecture Notes in Computer Science, pages 140{155. Springer, 2006.

� Volha Bryl, Paolo Giorgini, and John Mylopoulos. Supporting Requirements Analy-
sis in Tropos: a Planning-Based Approach. In PRIMA'07, 2007.

� Fabiano Dalpiaz, Raian Ali, Yudis Asnar, Volha Bryl, Paolo Giorgini. Applying
Tropos to Socio-Technical System Design and Runtime Con�guration. In WOA'08,
2008.

� Volha Bryl, Paolo Giorgini, and John Mylopoulos. Designing Socio-Technical Sys-
tems: From Stakeholder Goals to Social Networks. Requirement Engineering,
14(1):47{70, 2009.



Chapter 2

State of the Art

This section aims at providing an elaborated de�nition of the problem addressed in the
thesis, as well as at discussing the related approaches and solutions. Speci�cally, we
overview the historical development of software engineering approaches to understand the
resulting complexity of requirements to modern information systems. Then, we introduce
the notion of a socio-technical system, overview the related approaches and justify the
need for the automation support for the design of these systems.

2.1 Evolution of systems and design tools

Approaches and techniques for the development of computer-based systems have been
improving in response to the changing requirements for these systems. Nowadays, high
standards related to performance, security, reliability, maintainability, usability, etc. call
for appropriate tools for system design, implementation and testing.

Yet another reason for the demanding and changing requirements for the system de-
velopment process and techniques is that, since the beginning of computer age, the vision
of what a system is and for which purpose it can be applied has changed dramatically.
Compare, for example, a math computational module and autonomic (self-con�guring,
self-optimizing, self-healing, self-protecting) agent-based system for space exploration pro-
posed by NASA [130]. The requirements for the former are limited to the constraints on
the time and memory required for executing a speci�c algorithm, while the latter is ex-
pected to mimic a human behavior, namely, to be proactive and adapt to the changing
environmental conditions.

In this section, we brie
y overview the history of software systems and engineering ap-
proaches, mention a number of (relatively) recent Software Engineering (SE) trends, such
as distributed and autonomic computing, and, �nally, de�ne the scope of the following
discussion in this thesis to be related to the notion of a socio-technical system.

2.1.1 Historical perspective of SE

Let us look at the evolution of software systems, applications and development processes
and tools as presented by Barry Boehm in his keynote at ICSE (International Conference
of Software Engineering) 2006 [21].

7



CHAPTER 2. STATE OF THE ART 8

In the early days of software engineering, in 1950s, the orientation towards hardware
de�ned the way the development process was organized, and the main software appli-
cation were aircrafts, bridges, circuits and the like. In the following decade (perhaps,
unfortunately), it was realized that software is easy to modify, which led to the adoption
of \code and �x" engineering practices as opposed to scrupulous hardware-oriented de-
sign approaches. Still, the infrastructure was improving: operating systems, compilers,
utilities, high-order programming languages made the life of a software developer easier.
Among the systems developed, large mission-oriented applications should be noted, e.g.
the Apollo manned spacecraft and ground control software.

In 1968 and 1969 NATO organized two landmark Software Engineering conferences,
where, among others, the problem of de�ning an e�ective software development process
was posed [111]. As a result, in 1970s, the structured programming paradigm emerged,
and the related concepts were developed, such as cohesion and coupling of software mod-
ules, information hiding, abstract data types, etc. About the same time, the waterfall
model was proposed by Royce [118], in which requirements engineering and design phases
preceded the coding; iteration among successive development phases were introduced,
and, in the later versions, veri�cation and validation of the results of each phase were em-
phasized. The process was widely adopted in practice, as it was indeed advantageous for
the monolithic systems of the time, with little user-orientation and pre-�xed (as opposed
to changing) requirements.

In the 1980s, in Brooks' famous \No silver bullet" paper [87] the main software engi-
neering challenges were claimed to be caused by the complexity of software systems and
the need to conform to other interfaces and/or organizational practices, as well as by soft-
ware changeability and invisibility of the structure of a software system. Brooks argues
that there does not exist a single solution to ease the engineering process, but it is worth
paying attention to requirements re�nement and rapid prototyping, careful training of the
designers and, importantly, to component reuse. Indeed, in everyday activities more and
more time and e�ort started to be saved thanks to the possibilities for software reuse of-
fered by \more powerful operating systems, database management systems, GUI builders,
distributed middleware, and o�ce automation on interactive personal workstations" [21].
The above trend continued in the following decades with product lines architectures and
COTS (Commercial, O�-The-Shelf).

Also, the 1980s have seen the emergence of standards for process compliance, Ca-
pability Maturity Models (CMM), Computer-Aided Software Engineering (CASE) tools
and object-oriented paradigm in design and programming. In the 1990's the further
strengthening of object-oriented methods led to the development of UML [23] and design
patters [62].

Such phenomena as the World Wide Web, the open source software initiative, the
increasing importance of legacy software and many other factors have made the require-
ments for software engineering processes and tools much more complicated. As a result, in
the 1990s, the sequential document-driven waterfall model was replaced by the risk-driven
spiral development process [19], which was intended to support concurrent engineering ac-
tivities (requirements, design, implementation). Software usability has become of utmost
importance, which caused the expansion of human-computer interaction (HCI) research



CHAPTER 2. STATE OF THE ART 9

area.

2.1.2 Growing complexity of information systems

As follows from the previous section, during the last decades the scale and complexity of
software systems have increased dramatically, and, accordingly, several new paradigms in
information system architecture and development have emerged. Let us look at the most
prominent of them and at the respective methods and tools.

Distributed computing

Distributed computing paradigm brought new challenges for software engineering. The
motivation for the development of distributed computing is the inherent distribution of
information, applications and computer users themselves. Distributed systems allow for
improved availability and performance gains, but raise the issues of non-determinism,
contention, synchronization, partial information and partial failure. Many standardized
infrastructure solutions have been developed, such as distributed operating systems or
client-server architectures (e.g. COBRA), and also, the need for e�ective engineering
methods and tools has been recognized [94]. An important area of distributed systems
research and practice is grid computing, which emerged in early 1990s. Grid computing
is concerned with \coordinated resource sharing and problem solving in dynamic, multi-
institutional virtual organizations" [56].

Recent trends

By the beginning of the 21st century, software systems became as complicated as Enter-
prize Resource Planning (ERP) packages, data access and data mining tools, Personal
Digital Assistant (PDA) solutions, etc. [21]. As seen from these examples, an important
recent trend is the integration of software and system engineering [20], with the purpose
of building user-intensive and adaptive systems. In addition, the characteristic and chal-
lenging features of both the today's systems and engineering processes are distribution,
mobility, interoperability and globalization. To cope with the new demands, Boehm pro-
posed the updated scalable spiral process model [20], in which lightweight agile methods
(rapid, continuous delivery of software increments, simple designs, support for changing
user requirements, etc. [78]) are combined with the traditional plan-driven ones to increase
the process e�ectiveness.

Autonomic computing

Yet another response to the growing complexity of software systems, and its consequences
for the system development, integration and management, was the idea of autonomic
computing and self-managing systems proposed by IBM in 2001 [83]. The four aspects
of self-management, also referred to as \self-*" properties, are self-con�guration, self-
optimization, self-healing and self-protection [90]. These, according to [82], are inspired
by the key characteristic features of software agents : autonomy, social ability, reactivity
and proactiveness [138].



CHAPTER 2. STATE OF THE ART 10

Autonomic computing is aimed at minimizing human involvement, that is, having
systems which exhibit goal-directed proactive behavior, are able to perceive and react
to the environment, and resolve con
icting or dangerous situation via decision making
(based on the local knowledge) as well as via coordination and cooperation with other
systems. An architectural solution, proposed again by IBM [90], is based on the concept of
autonomic element, which consists of one or several managed elements and an autonomic
manager, which monitors the managed element(s), analyzes the obtained data, and then
constructs and executes the corresponding plans. There exist a number of implementation
of the above reference architecture, including agent-based solutions [18].

Social and organizational aspects

In addition to the distributed nature of contemporary software systems, their scale and
the requirement for self-management and autonomy, their indeed challenging aspect is
the growing involvement of humans and organizations in system structure and operation.
Requirements engineering roadmap of the year 2000 [108] emphasized the importance of
understanding the system environment and underlined that requirements modelling and
analysis should take into account the organizational and social context in which a new
system will have to operate.

This challenge is also related to the complex system of systems trend in modern soft-
ware engineering mentioned by Boehm at ICSE 2006 [21]. The increased reliance of
large scale integrated systems on the environment was identi�ed as a Requirements Engi-
neering research hotspot by Cheng and Atlee at the same conference the year after [37].
Environment in which software operates, the software system itself, the related hard-
ware components and human users are (not trivially) interdependent, so that it is often
problematic to de�ne a software system boundary [37].

All this calls for the new de�nition of a modern information system, in which its
social and organizational characteristics are taken into account, as well as for methods
for analysis and design of such systems. We argue that an interdisciplinary notion of a
socio-technical system (STS) is the one that captures the above mentioned aspects. We
discuss its de�nition, properties and the issues related to their analysis and design in the
subsequent sections of this chapter, and propose our own framework for the STS design
decision support in the next chapters of the thesis.

2.2 Socio-technical systems: introducing the concept

In this section, we present the key characteristics of socio-technical systems, and then
discuss the problems one is faced during their analysis and design as well as the related
approaches.

2.2.1 Socio-technical systems: de�nition and properties

Unlike their traditional computer-based cousins, socio-technical systems include in their
architecture and operation organizational and human actors along with software and
hardware ones. The operation of a socio-technical system is regulated and constrained by



CHAPTER 2. STATE OF THE ART 11

internal organizational rules, business processes, external laws and regulations [126, 119].
Some of the organizational policies and procedures, which a STS should be compliant
with, may come from the legacy systems in use in the organization.

To give an example, a conference reviewing system can be viewed as a socio-technical
system, as it consists of both human agents and software components, and has to conform
to the rules of the reviewing process. Another example is virtual communities, which are
\complex social systems enabled by a complex set of information technologies" [45]. Here
the social part of the system contains various goals, organizational structures and norms,
work
ows and processes, whereas the technical part comprises a set of supporting tools
such as mailing facilities, databases, di�erent web applications, etc.

The notion of socio-technical system was introduced almost 50 years ago by social
scientists [52]. However, it can be viewed from two di�erent complementary perspectives:
a social sciences [52, 117, 133] and a design or engineering sciences [125, 126]. Social
sciences study psychological, managerial, and organizational aspects of a socio-technical
phenomenon. For example, they are interested in relationships inside workgroups, roles,
supervision, motivation and the like.

Di�erently, the engineering perspective focuses on the design of socio-technical systems
for a given set of requirements, as well as on their system properties. The latter perspective
is the one we adopt in our work, like most of the research in software and requirements
engineering [126, 103, 73].

The basic ingredients of engineering perspective can be found in Simon's seminal vision
of a Science of Design [125], where alternative designs are derived rigorously from their
requirements (goals) and are evaluated in accordance with criteria that measure their
e�ectiveness. The methodological di�erences in research and practice between the two
perspectives are contrasted elegantly in [114].

Socio-technical systems are viewed as embedded in an organizational environment [126,
119]. Therefore, when building a STS, it is essential to understand its organizational
environment and the changes technology brings to the structure of an organization, its
work processes and procedures, to the responsibilities and the required skills of its human
actors. In the following, we discuss the challenges and the approaches to the analysis and
design of socio-technical systems.

2.2.2 Designing socio-technical systems: challenges

Developing a socio-technical system is a system engineering task: not only the software
should be taken into account but also hardware, system interactions with its human
users and various constraints coming from organizational and social policies and regu-
lations [126, 119]. System engineering is inherently interdisciplinary involving di�erent
engineering disciplines as well as, particularly in case of socio-technical systems, organi-
zational sciences.

Among the challenging problems related to the analysis and design of a socio-technical
system is the problem of understanding the requirements of its software component, the
ways technology can support human and organizational activities, and the way in which
the structure of these activities is in
uenced by introducing technology [40, 73]. In a
socio-technical system, human, organizational and software actors rely heavily on each



CHAPTER 2. STATE OF THE ART 12

other in order to ful�ll their respective objectives.
Therefore, at the early stages of a socio-technical system development, there is a

need for modelling and analysis techniques that help understand the organizational en-
vironment in terms of goals, interdependencies and mutual constraints of various types
of actors. Such techniques can be found in the literature on agent-oriented and goal-
oriented approaches as well as on organizational modelling tools for agent societies and
enterprizes [77, 132, 79], which we overview in Section 2.3. These approaches allow not
only for modelling the organizational environment in which a socio-technical system will
operate, but also provide some methodological guidelines on what models, how and in
which sequence should be created, as well as the tools to verify various model properties
(see e.g. [70]).

Also, in the �eld of requirements engineering, there exist a number of works speci�cally
dedicated to the problem of requirements analysis for socio-technical systems [76, 73, 24,
105, 86]. For instance, [73] present a method and a set of supporting tools for the analysis
of people-oriented issues, in particular, the focus is on workload analysis for the human
actors of a socio-technical system. Based on the results of this analysis, suggestions are
generated on how to partition the system requirements between automated functions,
decision support, and manual procedures. The method uses an extended i* modelling
notation, and takes as input the values of task completion times, complexity metrics used
to calculate workloads as well as domain knowledge on task allocation and automation.
Another i* -based modelling and analysis method, called CREWS-SAVRE [128], aims at
the analysis of dependencies between computer and human actors of a socio-technical
system. The authors introduce coupling metrics to assess the degree of dependencies
between the technological components of an STS and its users. In [76], a reference model
for requirements and speci�cation is used to analyze the (mis)behavior of an existing
socio-technical system; the technique is illustrated on the example of a chemical reactor.

The above approaches provide tools for representing socio-technical designs and rea-
soning about some of its properties. But how are these designs selected among the other
alternatives? How do we identify such sets of dependencies among socio-technical system
actors which, if respected by all parties, ful�ll the system requirements? This constitutes
a fundamental problem of socio-technical systems design: the problem of multi-criteria
search in the spaces of alternative design options [39]. At this point, the capacity of
the human mind is not enough to cope with the complexity of the problem [124], and
therefore, there is a high need for the tools able to automate (or at least to provide some
support for) the process of socio-technical system design.

An important question to address while working on design automation techniques,
is the one of the quality of a �nal design choice. Do we need the best, the optimal
solution, or will a \good enough" design su�ce? As noted by Simon [125], the complexity
of optimization for real-world problems is so high that even computers do not make it
possible. Moreover, it is argued that \the gap between satisfactory and best is of no great
importance" [125], and so, identifying a satis�cing design rather than an optimal one will
do. But then, what does it mean to have a \good enough" design? In [39], it is argued
that the problem of evaluating and comparing the available design alternatives is much
easier than the optimization problem. Thus, a set of evaluation criteria, speci�c to the



CHAPTER 2. STATE OF THE ART 13

system domain and its requirements, should be a basis for the selection of a satis�cing
design among the available candidates. Some of these criteria might be based on the
human experts judgment and, in general, might be di�cult to be formalized. Therefore,
the designer should remain in the loop in order to approve or re�ne the options proposed
by the automation procedure based on the above evaluation criteria.

In Section 2.4, we overview the existing design automation techniques, including AI
planning algorithms, which we adopt in this thesis to support exploring the space of design
alternatives. Then, in Section 2.5, we discuss the approaches related to the evaluation of
socio-technical system designs with respect to their structural properties, non-functional
characteristics and others.

2.3 Modelling and analysis of socio-technical systems

In this section, we discuss the agent and goal-based modelling and analysis techniques,
as well as modelling methodologies for agent societies and enterprizes.

2.3.1 Agent-oriented and goal-oriented approaches

In modelling and analyzing requirements for information systems and organizations, two
important and interconnected trends are agent [138, 77] and goal-orientation [132]. In
the following, we overview a number of related approaches, which allow for modelling and
reasoning about a socio-technical design in terms of agents and their strategic interests,
agent coordination and negotiation, commitments and obligations, institutions and norms,
etc.

i*/Tropos

The i* modelling framework [140] o�ers primitive concepts of (social) actors, goals and
actor dependencies, which allow for modelling both software systems and organizational
settings. The framework includes the strategic dependency model for describing the net-
work of inter-dependencies among actors, as well as the strategic rationale model for
describing and supporting the reasoning that each actor goes through concerning its re-
lationships with other actors.

According to [140], the strategic dependency model provides an intentional description
of a process in terms of a network of dependency relationships among actors. It aims at
capturing the underlying motivations and intents behind the modelled process. The model
helps the analyst to identify stakeholders, analyze opportunities and vulnerabilities, and
recognize patterns of relationships, such as various mechanisms for mitigating vulnera-
bility. The strategic rationale model provides an intentional description of a process in
terms of process elements and rationale behind them. Unlike strategic dependency model,
which focuses on the external dependencies among actors, the strategic rationale model
describes the intentional relationships that are \internal" to actors, such as means-end
relationships that relate process elements, providing explicit representations of \why" and
\how" and alternatives.



CHAPTER 2. STATE OF THE ART 14

Tropos [25] is an agent-oriented methodology which uses extended i* notation with
actor, goal, softgoal, task, resource, and dependency as basic modelling constructs. One
of the key ideas of Tropos is to use the same concepts throughout the whole system
development process, from early requirements analysis to implementation. This aims at
reducing the existing semantic gap between the technical (e.g., classes, objects, tables,
functions, etc.) and social, or organizational (e.g., roles, strategic goals, stakeholders,
etc.) aspects of system development.

In the Tropos modelling language, an actor represents an intentional entity that per-
forms actions to achieve goals. A goal represents an objective of an actor, while a softgoal
is a goal for which there is no explicit criteria on whether it is satis�ed or not. A task
speci�es a particular sequence of actions that should be executed for satisfying a goal,
and a resource represents a physical or an informational entity. We give more details on
the Tropos modelling notation and methodology in Chapter 3.

Tropos framework provides the designer with a set of reasoning tools for requirements
analysis, validation and veri�cation (see, e.g., goal reasoning tools [72], automatic veri�-
cation of security and trust requirements in Secure Tropos [70]). Based on organizational
theory and i* framework, a number of organizational styles and social patterns were pro-
posed [60, 92] to guide the development of a socio-technical system. Organizational styles
describe the overall structure of the organizational context of the system or system ar-
chitecture, while social patterns focus on the social structures necessary to achieve one
particular goal.

KAOS

KAOS [42] is a goal-oriented approach, which aims at formal modelling of functional
and non-functional system requirements. KAOS methodology provides a speci�cation
language for (i) capturing why, who, and when aspects in addition to the usual what
requirements; (ii) goal-driven elaboration; and (iii) providing meta-level knowledge used
for local guidance during method enactment.

The language provides a rich ontology for capturing requirements in terms of goals,
constraints, objects, actions, agents, events, etc. Links between requirements allows one to
capture re�nements, con
icts, responsibility assignments, etc. Modelling goals of di�erent
types is supported, which allows de�ning goal attributes, links between goals (e.g. to
model the situation when a goal negatively or positively supports other goals), as well as
AND/OR goal re�nement links and links between goals and agents.

UML-based approaches

AUML (Agent UML) [14], being a modelling language rather than a methodology, allows
for the modelling of agents, their internal behavior and interactions within an organization.
The key idea of Agent UML is to reuse those UML diagrams that �t the need of multi-
agent system (MAS) designers and to extend UML (e.g. through stereotypes, tagged
values, constraints) in order to represent agents. Two new modelling facilities introduced
in AUML are sequence diagrams and agent class diagrams. Sequence diagrams de�ne the
exchange of messages through protocols, and comprise agents and agent roles, connectors,



CHAPTER 2. STATE OF THE ART 15

messages and message conditions, protocol templates, etc. Agent class diagrams illustrate
the static design view of a system with a set of classes, interfaces, collaborations and their
relationships.

MESSAGE modelling language [33] is based on RUP (Rational Uni�ed Process) no-
tation, which is, in turn, based on UML. MESSAGE extends UML with agent-related
concepts such as agent, organization, role, goal, task, interaction and interaction proto-
col. An organization is de�ned as a group of autonomous agents working together for
a common purpose. The distinction between roles and agents is analogous to that be-
tween interfaces and classes: a role describes the external characteristics of an agent in a
particular context. The MESSAGE methodology covers the analysis and design phases
of a multi-agent system development, in which it follows the iterative and incremental
approach of RUP.

GAIA

GAIA [141] is the �rst agent-oriented software engineering methodology that explicitly
takes into account social concepts. One of the key concepts in GAIA is that of an or-
ganization, which is viewed as a collection of roles, which are, in turn, de�ned in terms
of responsibilities, permissions, activities and protocols. Responsibilities de�ne the func-
tionality of the role, while permissions are the \rights" which allow the role to perform
its responsibilities. Activities are computations that can be executed by the role along,
and protocols de�ne the interaction between roles. An organization can be subdivided
into suborganizations, and one agent can be involved in multiple organizations. In an
organization, an agent can play one or more roles, each associated with a set of expected
behaviors. To accomplish their roles, agents typically need to interact with each other to
exchange knowledge and coordinate their activities. The notion of an environment of a
multi-agent system is related to all the entities and resources that the system can exploit,
control, or consume.

With respect to designing a new organization, two important notions are organizational
rules (the constraints that the actual organization, once de�ned, will have to respect)
and an organizational structure. The GAIA design process starts with the analysis phase,
which aims at de�ning an environmental model, preliminary roles and interaction models,
as well as the set of organizational rules. Then, during the architectural phase, the system
organizational structure is de�ned, which is followed by an implementation-independent
multi-agent system speci�cation at the detailed design phase.

AORML

RAP/AOR (Radical Agent-Oriented Process/Agent-Object-Relationship) [75] agent-
oriented software engineering process follows the RUP, but is based on AORML (AOR
modelling language) instead of object-oriented modelling approach. RAP/AOR does not
aim at capturing human-like intelligent features such as desires and intentions, or so-
phisticated forms of proactive behavior. Rather, its focus is on declarative models of
communication and interaction founded on reactive behavior and on the basic mental



CHAPTER 2. STATE OF THE ART 16

state components of beliefs, perceptions, and commitments. In RAP/AOR, a problem
domain is modelled from the interaction, information, and behavior viewpoints.

AORML distinguishes active and passive entities, that is, agents and (non-agentive)
objects of the real world; an entity can be an agent, an event, an action, a claim, a commit-
ment, or an ordinary object. Agents can communicate, perceive, act, make commitments,
and satisfy claims. Objects are passive entities with no such capabilities. In addition
to human and arti�cial agents, AORML also includes the concept of institutional agents
(e.g. organizations or organizational units), which are composed of a number of other
agents that act on their behalf. An important behavior modelling element of AORML
are reaction rules, used to express interaction patterns. There are two basic types of
AOR models, which di�er with respect to the position of the observer of a system: ex-
ternal models for representing a (business) domain and internal models for specifying a
multi-agent system design.

MAS-CommonKADS

MAS-CommonKADS [84] is an agent-oriented software engineering methodology that
guides the process of analysing and designing multi-agent systems. The origins of
MAS-CommonKADS come from CommonKADS, a knowledge engineering methodology,
and from object-oriented methodologies, such as Object Modelling Technique, Object-
Oriented Software Engineering and Responsibility Driven Design.

The functional requirements of a multi-agent system are described via a set of models,
which specify the properties of agents and tasks they carry out, the expertise agents
need to achieve their goals, organizations they form or interact with, agent coordination
and their communication with human users. The design model consists of network design
model, which concerns the aspects of an agent network infrastructure; agent design model,
which concerns identifying the most suitable agent architectures; and platform design
model, which concerns selecting the agent development platform for the architecture of
each agent.

2.3.2 Enterprize modelling

The problem of organizational design has been widely studied in both information and
social sciences, which makes a thorough overview of the �eld a challenging task. Thus,
only two subareas of organizational design are considered in the thesis. The following
section reviews brie
y the area of enterprise modelling, i.e. the organizational modelling
of enterprises. Then, in the next section, we discuss a number of approaches to the
modelling and design of agent organizations.

Enterprise Project

The aim of the Enterprise Project [127] is to provide a set of supporting tools (Enterprise
Tool Set) for modelling business activities of an organization. The components of the
Enterprise Tool Set include Process Builder, used to model business processes in an or-
ganization, Agent Toolkit, an agent-based solution to support the integration of the tools



CHAPTER 2. STATE OF THE ART 17

already in use in an organization, Task Manager, an interface between the user and the
Tool Set, and Enterprise Ontology, which underlies the integration and communication of
the Tool Set components.

Enterprise Engineering Methodology

The Enterprise Engineering Methodology (EEM) [10] is a part of the PRIDE framework,
which is a collection of methodologies and techniques for Information Resource Manage-
ment. The EEM and requirements engineering for socio-technical systems have similar
objectives: EEM aims at developing the Enterprise Information Strategy (EIS), which
is a plan to satisfy the information needs of an enterprise (e.g. by developing the new
or modifying the existing information systems). This plan is synchronized with business
needs of an enterprise and is based on the modelling and analysis of the enterprise and
its environment.

The EEM comprises the following �ve phases: project planning, in which an organi-
zation is de�ned in terms of its objectives and relations with the environment; logical
enterprise analysis, in which the logical structure of an organization, its operation and
resources is de�ned; physical enterprise analysis, which focuses on the de�nition of the
physical structure of an organization; development of the EIS, which de�nes the objectives
and the plan an organization will follow, and which should be reviewed routinely to align
it with the changing business requirements and conditions; and evaluation, which is about
initiating and estimating the impact of the developed EIS.

CIMOSA

The Computer-Integrated Manufacturing Open-System Architecture (CIMOSA) [5], de-
veloped by the AMICE Consortium, aims at e�cient and adaptive enterprise operation
supported by information technology. CIMOSA de�nes an integrated methodology to
support all phases of a CIM system life cycle from requirements speci�cation through sys-
tem design, implementation, operation, and maintenance. An organization is modelled
according to the following four views: function view, which describes the functional struc-
ture required to satisfy the objectives of an enterprise and the related control structures;
information view, which describes the information required by each function; resource
view, which describes the resources and their relations to functional, control and orga-
nizational structures; and organization view, which describes enterprise organizational
structures in terms of responsibilities assigned to individuals for functional and control
structures, information and resources.

GERAM

The Generalised Enterprise Reference Architecture and Methodology (GERAM) [16] is
meant to be not \yet another proposal" for an enterprise reference architecture, but rather
a generalizing framework, applicable to di�erent types of enterprises, in which the existing
enterprise integration knowledge can be organized. GERAM provides a description of all
the elements recommended in enterprise engineering and integration, thereby it sets the



CHAPTER 2. STATE OF THE ART 18

standard (i.e. de�nes the criteria to be satis�ed) for the collection of tools and methods
which support the initial enterprise integration design as well as change and adaptation
during the enterprise operational lifetime.

GERAM proposes methodologies for enterprise engineering and modelling languages,
which are supported by enterprise engineering tools. Modelling languages are used by the
methodologies to model the structure, content, and behavior of an enterprise. Enterprise
models are considered to be an essential component of enterprise engineering and inte-
gration. Modelling languages allow for modelling human activities within an enterprise
as well as business processes and supporting technology. In GERAM, enterprise models
represent the wide range of enterprise operations, including its manufacturing or service
tasks, organizational and management structures, and control and information systems.
The modelling process is supported by partial models, which are reusable models of human
roles, processes and technologies.

2.3.3 Designing agent organizations

In this section, we overview a number of approaches related to agent organizations [79].
The concept of social and organizational agent as well as the related constructs and
structures are essential for capturing socio-technical system properties.

OperA

OperAmethodology [47] focuses on designing an open organizational environment in which
autonomous intelligent adaptive agents act and interact. In order to model roles, goals and
interactions within an organization, OperA proposes a 3-layered approach which comprises
the following models. Organizational model describes the desired or intended behavior
and overall organizational structure of agent society in terms of roles, communication and
coordination models and norms. Social model populates the organizational model with
speci�c agents mapped to roles through a social contract. Social contracts describe the
agreed behavior of an agent within the society in terms of externally observable events.
Interaction model describes agent interactions by the means of interaction contracts.

A formal theory for the OperA framework is the language for contract representation
(LCR), based on deontic temporal logic. LCR allows describing and verifying contracts
that specify interaction between agents.

AGR

The AGR model [54] (the old name is AALAADIN) is based on three core concepts:
agent, group and role. An agent is speci�ed as an active communicating entity trying
to achieve its design goals, no constraints are imposed on the internal architecture of
agents. A group is de�ned as a set of agents playing speci�c roles, where a role is an
abstract representation of an agent function within a group. Each agent can be part of
one or more groups and play one or more roles. Agents can interact by sending messages
only when they belong to the same group. The core agent-group-role meta-model allows



CHAPTER 2. STATE OF THE ART 19

for modelling di�erent forms of agent organizations (e.g. hierarchical or market-like) in
di�erent application domains.

To analyze and design multi-agent organizations the following two structures are used:
group structure is an abstract description of a group, which speci�es the roles within a
group and interactions among them; organizational structure is a set of group struc-
tures, which speci�es the interconnections between agents, roles and groups. The MadKit
agent-based platform implements the AGR concepts, and follows three design principles:
micro-kernel architecture (i.e. a minimal set of facilities allowing for the deployment of
agent services), agenti�cation of services (i.e. system services are represented as agents
playing speci�c role in meta-level groups), and graphic component model. Any services
beside those assured by the micro-kernel, are handled by agents, organized in groups, and
identi�ed by roles.

MOISE+

MOISE+ (Model of Organization for multI-agent SystEms) [80] represents a multi-agent
organization in terms of its structure, functioning and the deontic relation among these
two. The analysis of an organization along each of the dimensions can proceed indepen-
dently. In MOISE+, the speci�cation of an organization is formed by structural speci�-
cation, functional speci�cation and deontic speci�cation.

Structural speci�cation is based on the concepts of a role, role relation and a group. A
role is a set of constraints that an agent should follow when it enters a group and commits
to playing that role. A relation, or a link between roles implies certain permissions granted
to its participants, e.g. in case of a communication link, the agent playing the link source
role is allowed to communicate with the agent playing the link destination role. At the
level of groups, compatibility constraints among two roles are introduced, which state that
the agents playing one role are also allowed to play the other role. Roles, role relations
and groups are used to build, respectively, the individual, social and collective levels of an
organizational structure. Functional speci�cation in MOISE+ is based on the concepts
of missions (a set of global goals) and global plans, assembled in a social scheme, which
is a goal decomposition tree where the responsibilities for the sub-goals are distributed
in missions. Deontic speci�cation relates structural and functional speci�cations of an
organization with the help of permissions and obligations of a role in a mission.

2.4 Automation support for software design

In this section, we discuss the existing approaches to socio-technical system design au-
tomation, emphasizing the support for the early development stages.

2.4.1 Automatic program synthesis

Almost �fty years ago the idea of deriving the code directly from the speci�cation (such
as that advocated in [101]) started a large programme for deductive program synthesis,
which is based on the following idea. A system goal together with a set of axioms are
speci�ed in a formal speci�cation language. Then the system goal is proved from the



CHAPTER 2. STATE OF THE ART 20

axioms using a theorem prover. A program for achieving the goal is extracted from the
proof of the theorem. High expectations for this approach had even led to the de�nition
of the transform software engineering process model [13], which underlying assumption
is the existence of the automatic transformation of the formal speci�cation of a software
into a program satisfying the speci�cation.

A number of software tools were developed to support the automated program syn-
thesis, for instance, Specware automated software development system [1, 136], or Am-
phion [98, 116], a domain-oriented design environment developed at NASA Ames Research
Center, or Nuprl proof development system [41, 34], etc. The �eld is still active, with
papers reporting on applications and extensions of the existing techniques [136, 34, 116],
or proposing new ones [51, 104]. However, these approaches are largely domain-speci�c,
and in some cases do not actually guarantee that the synthesized program will meet all
requirements stated up front [51]. Existing frameworks often require from their users a
considerable expertise in formal mathematics: it is acknowledged that \users without a
background in formal mathematics �nd that developing a formal problem speci�cation is
usually more di�cult than developing code manually" [98].

2.4.2 MDA and design patterns

Model driven software development

Another approach to facilitating the work of the designer is supporting the tedious aspects
of software development by automating the design re�nement process. This approach
underlies Model Driven Architecture (MDA) approach [109], which has been proposed by
Object Management Group and is a framework for de�ning methodologies for software
system development. MDA aims at bridging the gap between problem and implementation
domains, and, therefore, its central focus is on (possibly automatic) model transformation,
for instance, from the platform-independent model of the system to platform-speci�c
models used for implementation purposes. Models are usually described in UML, and
the transformation is performed in accordance with the set of rules, called a mapping.
Transformation could be manual, or automatic, or mixed. Tools supporting MDA exist
and are used in the Rational Uni�ed Process for software development. Yet, the state-
of-the-art MDA technologies provide support for storing and manipulating models rather
than for rigorous model transformation and analysis [58].

Design patterns

A widely accepted proposal of Gamma et al. on design patterns [62] aims at supporting
the process of software system design by proposing template solutions to recurrent design
problems. Namely, a design pattern is a solution (commonly observed from practice) to a
certain problem in a certain context, so it may be thought as a problem-context-solution
triple. Several design patterns can be combined to form a solution. Notice that it is still
the designer who makes the key decision on what pattern to apply to the given situation.

Numerous proposals for design patterns for di�erent domains and di�erent steps of
the software development process can be found in the literature, including organizational
patterns for Tropos early requirements analysis [92].



CHAPTER 2. STATE OF THE ART 21

2.4.3 Software engineering as a search problem

There exist a number of works (e.g. see [39] for an overview) in which various problems
a software engineer encounters during the development of a system are treated as search
problems. Indeed, designing a software system means exploring the space of alternative
options in order to �nd an optimal solution, normally a trade-o� between the development
costs and the quality of a resulting artifact.

Clarke et al. [39] overview the application of such well-known search techniques as hill
climbing, simulated annealing, tabu search, genetic algorithms and genetic programming
to test data generation, module clustering, cost estimation, etc. In automatic search-
based test data generation, the aim is to construct such a set of test cases that the code
(or speci�cation) coverage is maximized. In cost estimation, genetic programming is used
to learn the cost predictive function from a training data set.

Another interesting application of search-based techniques, which objectives are re-
lated to those of the planning-based framework presented in this thesis, is the search-based
requirements analysis and optimization [143, 55]. In essence, requirements optimization
is about �nding \the ideal set of requirements that balance customer requests within re-
source constraints" [143]. This problem is particularly relevant in the context of iterative
development, where it is also know as the next release problem: which requirements (and
of which customers) to select to implement in the next release. Requirements engineer-
ing for multiple customers, which often have competing or even con
icting needs, can be
naturally framed as a search problem, and in [143, 55] it is proposed to use evolutionary
algorithms to handle it.

In particular, in [55] a notion of fairness of requirements assignments is viewed as a
�tness function. That is, in a fair requirements assignment each customer gains roughly
equal value or spends equal cost. Therefore, the aim of a search-based algorithm is to
maximize the fairness of a requirements assignment, after the values (costs) are associated
to each requirement for each customer.

In [55], the authors consider di�erent notions of fairness in parallel (e.g. fairness
might be understood di�erently by di�erent stakeholders), and thus, the �tness function
is multi-objective. Here an important notion is a set of non-dominated solutions, also
called Pareto-optimal front. A solution is said to be dominated by another solution if the
latter is worse or equal than the former with respect to all objectives and strictly worse
with respect to at least one objective. For example, if our objective is to minimize the
development time and cost, then the set of requirements which implementation requires
10 days and 100 cost units is dominated by the set which implementation requires 8 days
and 90 cost units, and the latter is dominated by the set which implementation requires
8 days and 85 cost units. The set of solutions, each of which is not dominated by any
other solution, is called Pareto-optimal front, and the aim of the search algorithm is to
identify it.

The authors also argue that multi-objective search problems are a natural �t for re-
quirements optimization, as often several (possibly interdependent) factors should be
optimized independently, e.g. cost and value, or implementation-based versus business-
based objectives, or simply di�erent types of resources needed for the implementation of
a requirement. However, the most tricky point in the real life application of the (multi-



CHAPTER 2. STATE OF THE ART 22

objective) search based techniques is the need to quantify these objectives, that is, de�ne
numeric values and costs associated to each requirement from a viewpoint of each cus-
tomer.

In general, the application of search-based techniques to requirements optimization
seems a promising area, though a number of challenges are to be addressed [143]. For
instance, it is not always obvious how to de�ne and/or calculate a �tness function, how to
chose \the best" search algorithm and initialize its input parameters. Among other issues
are scalability, the problem of explaining the results to customers, handling requirements
dependencies, etc.

2.4.4 AI techniques: planning the design

In this thesis, we have adopted AI (Arti�cial Intelligence) planning techniques to support a
designer in exploring the space of alternative options. AI planning is about automatically
determining a course of actions (i.e., a plan) needed to achieve a certain goal where an
action is a transition rule from one state of the world to another. Planning is useful in the
situations where it is not feasible to enumerate in advance the possible transitions from
the initial to the desired state [8]. In case of socio-technical system design, a desired state
of the world is the one in which all the goals of domain stakeholders are satis�ed, and a
plan prescribes a way to allocate tasks and resources among human, organizational and
software actors to reach this state.

To de�ne a planning problem, one needs to specify

� initial state of the world;

� desired state of the world;

� actions that can be performed.

Once the domain is de�ned, the solution to the planning problem is a (not necessarily
optimal) sequence of actions that make it possible to reach the desired state starting from
the initial state.

There exist several ways to represent the elements of a classical planning problem, i.e.
the initial state of the world, the goal of the planning problem (i.e. the desired state of the
world), and the possible actions system actors can perform. PDDL (Planning Domain
De�nition Language) is a widely used speci�cation language proposed in [68]. In the
implementation of our approach, we use PDDL of the version 2.2 [50], which supports,
among others, derived predicates and timed initial literals.

There are two basic approaches to the solution of the planning problem [135]. One
is the graph-based planning algorithms in which a compact structure, called Planning
Graph, is constructed and analyzed. In the other approach, the planning problem is
transformed into a SAT problem and a SAT solver is used. Planning has found a number
of applications in robotics, process planning, autonomous agents, etc.

A few works can be found which relate planning techniques with information systems
requirements analysis and design [6, 63, 35]. For example, one of the early proposals [6]
describes a program called ASAP (Automated Speci�er And Planner), which automates



CHAPTER 2. STATE OF THE ART 23

a part of the domain-speci�c software speci�cation process. ASAP supports a designer
in selecting methods for achieving user goals, discovering plans that result in undesir-
able outcomes, and �nding methods for preventing such outcomes. The disadvantage of
the approach is that a designer still performs a lot of work manually when determining
the combination of goals and prohibited situations appropriate for the given application,
de�ning possible start-up conditions and providing many other domain-speci�c expert
knowledge.

Castillo et al. [35] present an AI planning application to assist an expert in designing
control programs in the �eld of Automated Manufacturing. The system they have built
integrates POCL, hierarchical and conditional planning techniques (see [35, 112] for ref-
erences). The authors consider standard planning approaches to be non-appropriate with
no ready-to-use tools for the real world, whereas in our work the opposite point of view
is advocated. An application of the planning approach to the design of secure systems
is proposed by Gans et al. [63]. Their work is based on i* modelling approach [140] and
ConGolog [69], a logic-based planning language. However, the authors focus more on
representing/modelling trust in social networks, than on automating the design, and do
not go far in explaining how they exploit the planning formalism.

In Chapter 4 of this thesis, we propose the formalization of the problem of socio-
technical system design as a planning problem and discuss the properties a plan should
satisfy, whereas in Chapter 6 we provide details on the implementation of the proposed
approach.

2.5 Evaluating socio-technical designs

To select a satisfying design option for a socio-technical system, a human designer or
a supporting software tool should be able to evaluate its optimality, that is, to analyze
as many possible impacts a speci�c design choice may have as it is possible [40]. This
requires having both the concrete evaluation criteria and the guidelines on how they
should be used. Note that the comparison of design choices often cannot be done in
an objective way, but is based on the subjective preferences of a designer or/and other
domain stakeholders [17].

In this section, we overview the existing approaches to multi-criteria decision support
for requirements analysis and design, and then discuss the concrete evaluation criteria to
be used in the domain of socio-technical system design.

2.5.1 Evaluation procedures: general approaches

The problem of evaluating the design choices is inherently multi-dimensional [17]. Indeed,
a design should be evaluated along multiple (and often con
icting) dimensions, such as
cost, required resources, reliability, security, performance, ease of use, etc. The value
provided by a socio-technical systems is itself multi-dimensional. Domain stakeholders
usually have di�erent views on what an optimal design is, so integrating stakeholder
viewpoints requires again a multi-dimensional approach to the evaluation of design choices.
Therefore, the approaches to the evaluation of socio-technical system designs should be



CHAPTER 2. STATE OF THE ART 24

able to handle multi-dimensional optimality criteria.
Three classes of approaches to multi-dimensional evaluation can be found in the liter-

ature: additive weighted methods, aspiration-level methods and outranking methods [17].
If alternative options are evaluated along n criteria, then the ith alternative can be rep-
resented as ai = (ai1 ::: ain), where aij is the value given to alternative ai according to
criterion j. In additive weighted methods, weights wi; i = 1; n are associated to each at-
tribute, and an alternative with the highest utility value is selected, where the utility for
ai is de�ned as

u(ai) =
nX

j=1

wkaij:

Not surprisingly, the most problematic issue of the method is the selection of weights, as
it is not clear how they are de�ned and what their exact meaning is [96]. Another issue
is the scale according to which attributes are measured: in the de�nition of u(ai) there is
an implicit assumption of constant rates of substitution between attributes [17].

The second group of methods use so called aspiration levels, which are the levels of
the attributes that a decision maker wants to achieve, or, alternatively, thresholds that
should not be violated (e.g. maximum amount of resources to use, maximum workload or
development cost, etc.). Attributes can be given di�erent priorities, so that �rst the most
important constraints are satis�ed, which produces the limited set of design choices, and
then other criteria are applied to this set. The main advantage of aspiration-level approach
is that specifying aspiration levels is more natural for a designer than specifying weights.
The evaluation procedure we develop in Section 5.4 borrows ideas from aspiration-level
methods.

The last group of methods, outranking methods, are applicable in cases in which a
set of discrete alternatives is explicitly given. The key concept here is an outranking
relation, which is de�ned between each two alternatives and indicates that one alternative
is \better" than the other. For all three groups of methods, the problem of imprecise or
incomplete input data (weights or preferences) is addressed in the literature [17].

2.5.2 Examples of evaluation procedures

A number of concrete proposals can be found in the literature that address the problem of
evaluating and comparing alternative options during requirements analysis and design [89,
85, 115, 88].

In [89], the authors present an approach to selecting the optimal set of requirements
given the limited resources. The approach is based on analytic hierarchy process (AHP),
which prescribes pair-wise comparison among candidates according to pre-de�ned crite-
ria, which in [89] are cost and importance of a requirement. A light-weighted require-
ments negotiation model, Multi-Criteria Preference Analysis Requirements Negotiation
(MPARN), is proposed in [85]. The aim of the model is to support stakeholders in
evaluating, negotiating, and agreeing upon requirement alternatives. MPARN uses the
win-win process [22] to elicit stakeholder needs, identify requirements and explore the
con
ict-resolution options, whereas multi-criteria preference analysis is used to evaluate
and negotiate con
ict-resolution options. The authors also present an overview of the



CHAPTER 2. STATE OF THE ART 25

ways of calculating the weights for alternative options, for instance, a user can assign
weights directly, or a function (linear or non-linear) can be used to calculate weights.

Another interesting work [115] suggests an empirically tested method for multi-
stakeholder prioritization of system requirements, and proposes an approach to visualize
the priority distribution among stakeholders, together with measures on disagreement and
satisfaction. Finally, in AGORA requirements elicitation framework [88], for each stake-
holder a preference matrix is de�ned, which contains not only the preference values this
stakeholder assigns to each of the goals, but also his estimation of the preference values
for each goal for other stakeholders. These matrices can aid a designer in selecting and
adopting a goal from a set of alternatives by identifying and analyzing goal con
icts.

2.5.3 Game-theoretic perspective on evaluation

An alternative way of looking at the problem of selecting an optimal socio-technical design
is related to game theory [110]. Indeed, domain stakeholders can be seen as players in a
game theoretic sense as they are self-interested and rational. Each stakeholder is willing
to maximize the utility of the game, that is, the utility value associated to a design
option. This value might depend on multiple factors such as development time and cost,
the amount of change to be made to the existing organizational structure, reliability,
usability, security of the solution, etc.

Game theory is an established discipline which deals with con
icts and cooperation
among rational independent decision-makers, called also players. The key concept in clas-
sical game theory is the notion of equilibrium, which de�nes the set of strategies, one for
each player, which none of the independent rational players wants to deviate from. By
playing an equilibrium each player maximizes his utility locally, given some constraints.
For example, playing the Nash equilibrium means that no player can bene�t when de-
viating from his equilibrium strategy given that all other players play the equilibrium.
Game theory is applied in various areas, especially in economics (modelling markets, auc-
tions, etc.), corporate decision making, defense strategy, telecommunications networks
and many others. Among the examples are the applications of game theory to so called
network games (e.g. routing, bandwidth allocation, etc.), see [129] for references.

In Section 5.3 of the thesis, we discuss in more details the problem of evaluating
alternative design options from a game-theoretic perspective.

2.5.4 Evaluation criteria

In the approaches discussed in the previous section, evaluation criteria are assumed to
be domain independent. For a concrete method, the weights or priority order among
candidates are assumed to be given, but where do they come from? Some of the evalu-
ation criteria might be straightforward to de�ne: domain stakeholders often care about
development costs or amount of resources used (such as personnel, time or physical re-
sources). Other criteria are intrinsically subjective, for instance, the task complexity or
the importance of a requirement.

Obviously, for a design alternative it is important to evaluate it with respect to func-
tional requirements of a system, namely, whether and to which extent a concrete design



CHAPTER 2. STATE OF THE ART 26

satis�es the prescribed requirements. However, it is equally important to evaluate alter-
native options with respect to so called non-functional requirements (NFR), which are
the quality criteria such as e�ciency, reliability, safety, usability, etc. [38]. For a non-
functional requirement it is often not possible to de�ne a clear-cut criteria of whether it is
satis�ed or not. In [72] a formal framework for reasoning with goal models is introduced,
which distinguishes between full and partial evidence of a goal being either satis�ed or
denied, and de�nes the propagation rules of the goal satisfaction labels. A number of
works [74, 134, 96] use similar approaches to analyze the contribution links between goals
and non-functional requirements in order to compare the alternative choices with respect
to a set of NFR.

There exist also evaluation criteria related to the structural characteristic of a socio-
technical system. For instance, an i*-related proposal presented in [128], uses coupling
metrics to assess the degree of dependencies between the system and the users. In [59],
a problem of de�ning quantitative evaluation metrics for evaluating i* models is dis-
cussed, with predictability of model elements as an example of the measured property.
Predictability is related to the behavior of socio-technical system actors, which can have
a high degree of autonomy in actions they take to achieve their objectives.

Another structural characteristic of a socio-technical model is related to the notion of
criticality, which measures how a system will be a�ected in case the actor is removed from
or leaves the system. The notion of criticality is tightly connected to that of resilience
of networks to the removal of their vertices in the social network literature [107]. In [65],
in- and outgoing criticality of an actor in a requirements model is de�ned as the sum of,
respectively, the criticality of the in- and outgoing dependencies this actor participates.
The notion of security criticality is introduced in [26], where it is understood as the
measure of how system security will be a�ected if the security constraint is violated. In
Section 5.2 we will consider the criticality-related evaluation criteria in more details.



Chapter 3

Requirements Analysis in Tropos:

Extending the Process

As explained in Chapter 1, the planning-based framework for supporting the design of
socio-technical systems proposed in this thesis, has originated in context of Tropos agent-
oriented methodology [25], and uses its notation and modelling principles. In the fol-
lowing, we illustrate the Tropos modelling notation with the help of an e-business case
study, and give some details on the Tropos methodological process. Then, we discuss
the problem of exploring and evaluating the space of design alternatives in the context
of Tropos, and present an overall schema of the Tropos-based requirements engineering
process which addresses the above problem1.

3.1 The Tropos modelling language

The Tropos modelling language uses extended i* [140] notation with actor, goal, softgoal,
task, resource, and dependency being the basic modelling constructs.

Actors, agents and roles Actor is used to model an entity in an system or an organiza-
tional setting, which can have strategic goals and intentions and perform actions to
achieve goals. An actor can be a human, organizational or software agent, or a role,
which is an abstract characterization of the behavior of an actor within a context.
An actor can also represent a position, that is, a set of roles typically played by one
agent; however, we do not use the concept of the position further in this thesis.

Goals and softgoals Goals represent the strategic interests of an actor. In Tropos, goals
of two types are considered: hard goals (usually called simply goals) and softgoals,
where a softgoal is a goal for which there is no explicit criteria on whether it is
satis�ed or not (e.g. it is di�cult to say that the goal \improve system usability"
is fully satis�ed). Goals and softgoals are typically used to model functional and
non-functional system requirements, respectively. A goal may contribute positively
or negatively to the satisfaction of another goal, and this is modelled by contribution

1Part of the material presented in Chapters 3, 4, 5, 6 was published in [31].

27



CHAPTER 3. REQUIREMENTS ANALYSIS IN TROPOS: EXTENDING THE PROCESS28

relation among goals. A means-end relation between two goals represents the fact
that whenever the source goal (means) is satis�ed, the target goal (end) becomes
satis�ed. A goal can be decomposed into AND- or OR-subgoals, which is modelled
by AND/OR-decomposition relations. AND-decomposition of a goal re�nes it into
subgoals which are to be satis�ed in order to satisfy the parent goal, while OR-
decomposition of a goal suggests a list of alternative subgoals any of which can
satisfy the parent goal.

Tasks and resources A task (sometimes also called a plan) speci�es a particular se-
quence of actions that should be executed to satisfy a goal, and a resource represents
a physical or an information entity. In the same way as goals, tasks can be decom-
posed into AND/OR-subtasks, and means-end relations between tasks, or between
a task and a goal can be de�ned.

Dependencies A dependency represents an \agreement" between two actors, the depen-
der and the dependee, on the delivery of a dependum. The dependum can be a goal
or softgoal to ful�ll, a task to perform, or a resource to deliver. Dependency mod-
elling is one of the key activities in Tropos: �rst, it is used to model and re�ne goal
dependencies between social actors of the organizational setting, then dependencies
are used to model the delegation of responsibility from the existing to new system
actors (e.g. to software system to-be), and then, later in the development process,
data and control 
ows between system actors are modeled in terms of dependencies.

Graphically, actors are represented as circles, and goals, softgoals, tasks and resources
are, respectively, represented as ovals, clouds, hexagons, and rectangles; dependencies
among actors have the form depender ! dependum ! dependee. In this thesis, depen-
dencies are represented as \De"-labelled directed links, in order to be consistent with the
notation used in S&D Tropos tool [122] (see Section 6.1 for the details), in which the
Secure Tropos modelling notation is adopted [70].

Let us further illustrate the Tropos modelling process with the help of an e-business
case study, adapted from the SERENITY EU project2. The case study focuses on the
banking domain, namely, on the loan provision process. A detailed description of the case
study is given in [123], while here for the sake of clarity and ease of understanding, we
present only those details which are relevant for our framework.

The main actors of the e-banking scenario are the customer, the BBB Bank (hereafter
the bank) and the credit bureau. The customer has an intention to buy a house, and to
do this, she needs to get a loan from a bank. When looking for a suitable proposal, the
customer not only checks whether or not she is granted a loan (which might depend, e.g.,
on her employment status), but also on the conditions upon which the loan is given (e.g.
the loan costs).

The diagram in Figure 3.1 presents the actors of the banking scenario along with their
high-level goals and inter-dependencies. In the diagram, an arrow from get a loan to �nd
money represents a means-end relation between the goals.

Although the bank has a complex organizational structure and contains various depart-
ments, management hierarchy, and hundreds of employees, we consider only three roles

2http://www.serenity-project.org/



CHAPTER 3. REQUIREMENTS ANALYSIS IN TROPOS: EXTENDING THE PROCESS29

Figure 3.1: E-business case study: initial settings



CHAPTER 3. REQUIREMENTS ANALYSIS IN TROPOS: EXTENDING THE PROCESS30

within the bank played by its employees. In particular, we model and analyze strategic
interests and functionalities of the bank in terms of those of the bank manager, the junior
clerk and the senior clerk, which are represented as roles in Figure 3.1 and are connected
to BBB bank actor with is-part-of relation. The manager's duty is leading the (local
agency of) the bank. He can be involved in all steps of the loan approval process, but
usually he is only involved when a �nal decision or supervision is needed. The junior clerk
is a bank employee with just a couple of years of working experience, therefore he can deal
only with those activities which require less skill and responsibility. The senior clerk is
an experienced bank employee, who is responsible for performing all banking transactions
for the customer.

The credit bureau is \a third-party business partner of a �nancial institution that
processes, stores and safeguards credit information of physical and industrial agents" [123].
The bank, through the senior clerk or the bank manager, can contact the bureau in order
to obtain the information about credit worthiness of the customer.

3.2 The Tropos methodology: why to extend

The Tropos methodology supports the following development phases: early requirements
analysis, late requirements analysis, architectural design, detailed design, and implemen-
tation.

Early requirements analysis During the early requirements analysis system stake-
holders along with their goals are identi�ed. In this phase, actor and rationale
diagrams are used. An actor diagram is a graph of actors interconnected with
strategic dependencies for goals. As the analysis proceeds, actor diagrams are re-
�ned and extended. In a rationale diagram the goals of a speci�c actor are analyzed
and dependencies with other actors are established. Goals are decomposed into
AND/OR-subgoals and positive/negative contributions of subgoals to other goals
are speci�ed.

Late requirements analysis During late requirements analysis, a new actor, the
system-to-be, is included into the organizational model, and its dependencies with
the existing actors are analyzed.

Architectural and detailed design The design phase is subdivided into architectural
and detailed design. Architectural design de�nes the global architecture of a system
in terms of sub-systems (represented as actors), interconnected through data and
control 
ows (represented as dependencies). A mapping of the system actors to a
set of software agents, which are characterized by speci�c capabilities, is provided.
The aim of the detailed design phase is specifying agent capabilities and interactions.

Implementation Finally, the implementation follows step by step the detailed design
speci�cation.

In this thesis, our focus is on the early stages of the development process, namely,
on modelling and analyzing requirements for a socio-technical system. In this activity,



CHAPTER 3. REQUIREMENTS ANALYSIS IN TROPOS: EXTENDING THE PROCESS31

the designer starts with modelling the initial organizational setting (as presented in the
diagram in Figure 3.1), and then re�nes the goals and relations between the actors/goals
in order to provide the details on how the loan approval is organized and how work is
divided among existing and/or new actors.

However, it is not clear how exactly the model re�nement should be organized, espe-
cially for a large-scale problem. Hugo Estrada in his doctorate thesis [53], has analyzed
the i* /Tropos modelling framework with respect to a number of features such as expres-
siveness, modularity, complexity management, reusability, scalability and others. The
results of the evaluation reported in [53], show that i* /Tropos modelling performs poorly
on a large scale, which is caused, in particular, by the lack of re�nement capability of the
modelling method and inability to handle model complexity.

Speci�cally, one of the analysis steps is goal re�nement, that is, the construction of
goal models [72] for each of the top-level goals, which are decomposition trees of a root
goal into AND- or OR-subgoals. Then, given a goal model, the question is the following:
what is an optimal or, at least, good enough assignment of leaf goals to actors so that the
root goal is satis�ed when all actors deliver on the goals assigned to them? The number of
possible assignments is limited by the fact that di�erent actors have di�erent capabilities,
and not all actors can delegate to all others. That is, an actor can delegate a goal only
to actors he can depend on, e.g. those he knows, or manages, or pays money to. Still,
the number of alternative delegation networks grows exponentially with the number of
actors and/or goals that need to be dealt with. All this makes the manual re�nements
of a dependency model an extremely complex task, and, accordingly, calls for a way to
automatically construct and evaluate possible alternatives to facilitate the analysis and
design process.

To give an example, the corresponding problem to be addressed in the case study
consists of �nding the most e�ective way for bank employees to collaborate in order to
satisfy customer requests and bank strategic interests. There could be several alterna-
tives with respect to goal decomposition and assignment, depending on, for example, the
involvement of the bank manager, or the division of labor between the junior and senior
clerks. Another source of alternatives is the possible automation of (part of the) banking
procedures. For this purpose, another system actor is introduced, the bank internal com-
puter system (hereafter the system), which is capable of storing data, performing di�erent
calculations (e.g. of loan costs), providing contract templates, etc. Di�erent decisions on
what procedures to automate produce alternative social networks, which are all intended
to satisfy customer needs but di�er in terms of cost, risk, workload, etc.

Tropos framework provides the designer with the tools for reasoning on goal decom-
position and contribution relations [72], or automatic veri�cation of security and trust
requirements [70]. At the same time, no tools are available to support the designer in
the process of exploring the space of alternative design choices. To address this problem,
we complement the Tropos requirements analysis and design process as described in the
following section.



CHAPTER 3. REQUIREMENTS ANALYSIS IN TROPOS: EXTENDING THE PROCESS32

Figure 3.2: Requirements analysis process: a general schema.

3.3 The proposed requirements engineering approach

Our proposal is to structure the requirements analysis process to support a designer in
constructing and evaluating requirements models. The general schema of the process,
which we have already presented in [30], is presented in Figure 3.2. The description of
an initial organizational setting is provided by a designer, and includes actors, their goals
and capabilities, dependencies among actors, possible ways of goal re�nements (decom-
positions of a goal into AND/OR-subgoals), and other goal and actor properties (see
Chapter 4 for details). This input is analyzed and iteratively improved so as to output
a model that guarantees the ful�llment of stakeholder goals and is good enough with
respect to a number of user-de�ned criteria. Most of the process steps can be automated.
However, the presence of a human designer (referred to as an analyst in the schema) is
inevitable: the design of socio-technical systems can be supported by tools but cannot be
automated.

As a �rst step, the process checks whether there exists at least one assignment of goals
to actors that leads to the satisfaction of top-level goals. Input checker analyzes the
organizational setting description, detects inconsistencies, and proposes possible improve-
ments, which then are approved, or rejected, or modi�ed by the designer. In particular, it
is checked whether available actors possess enough capabilities to collectively satisfy their
goals, and whether the relationships between actors permit this to happen. To analyze
actor capabilities means to check that for each goal it is possible to �nd an actor who
is capable of achieving each of its AND-subgoals or at least one of its OR-subgoals. To
analyze actor interdependencies means to check whether a goal can be delegated from an
actor who wants to achieve it to an actor who is capable of achieving it, namely, whether
there exists a path between two actors. In [30], we give details on analyzing and dealing
with missing capabilities, which is based on label propagation algorithm similar to the
one presented in [72]. After a missing capability is detected, there are two ways to deal
with it:

� Add a new capability to an existing actor. Such a decision could be based on the



CHAPTER 3. REQUIREMENTS ANALYSIS IN TROPOS: EXTENDING THE PROCESS33

actual capabilities of this actor. Namely, if this actor is already capable of achieving
one or several goals of the same type, it is likely that it could manage the new goal
as well.

� If there is no way to add the missing capability to one of the existing actors, a new
actor might be introduced.

After the input is checked, the �rst possible alternative is generated by the Planner,
which exploits AI planning algorithms [135] to construct a social network that is capable
of achieving the speci�ed high-level system goals and, at the same time, satis�es a number
of (optimality) criteria (see Chapters 4-5 for the details).

An alternative generated by the planner is then assessed by the Evaluator with
respect to a number of criteria. Some optimality criteria can be incorporated into the
planning domain formalization (see Section 4.3), while the others are used a posteriori
to evaluate an already obtained solution in terms of costs, risks, etc. These criteria
are de�ned by the designer and refer to the optimality of the solution either from a
global perspective (e.g. assessing the system security or e�ciency), or from the local
perspectives of stakeholders (e.g. assessing the workload distribution). Evaluation criteria
and procedures are discussed in Chapter 5. If evaluation reveals that an alternative is
not acceptable, then the Evaluator provides feedback to the Planner in order to formulate
constraints for the generation of the next alternative. If no further alternative can be
generated, the current description of an organizational setting is changed according to
the constraints identi�ed by the Evaluator, and then is analyzed by the Input checker,
and so on, iteratively.

Note that the output of the evaluation process needs to be approved by a human
designer. User evaluation interface presents the selected alternative to the designer
together with the summarized evaluation results. Also, it provides the designer with the
interface for giving his feedback on why the selected alternative does not satisfy him. On
the basis of this feedback the constraints for the generation of the next alternative are
formulated and forwarded to the Planner.

The result of this process is a new requirements model, which is, ideally, optimal or, in
practice, good enough with respect to all the local and global criteria, and is approved by
the designer. Note that after obtaining one satis�cable alternative it is possible to repeat
the process to generate others, reusing already identi�ed constraints.



Chapter 4

Exploring the Space of Design

Alternatives

In this chapter, we give the details on how planning is used to support the designer in
constructing networks of goal delegations among actors. We explain how the initial orga-
nizational setting and the desired plan properties are formalized, and how the planning
actions are de�ned to satisfy the desired properties by construction.

4.1 Formalizing the input setting and desired properties of a

solution

To model an initial organizational setting, a designer needs to identify actors and goals, as
well as social dependencies among actors. For this purpose, a set of �rst-order predicates
is used, as presented in Table 4.1. The predicates take variables of three types: actor, goal
and gtype (goal type) and are classi�ed under the following categories:

� Goal properties. To assign types to goals, type predicate is used. Goal types are
used to group goals into domain speci�c types in order to allow for specifying the
properties of an entire group of goals instead of specifying the same property for each
goal separately. Goal re�nements are represented using and/or subgoaln predicates.
The temporal order in which goals are achieved is constrained by the order predicate.
To represent a goal con
ict, i.e. the situation in which only one of several goals can
be achieved, the con
ict predicate is used. This predicate is symmetric, that is

8g1; g2 : goal con
ict(g1; g2)! con
ict(g2; g1)

The means-end relation between goals is represented by the means end predicate,
which re
ects the possibility that the satisfaction of an end goal is accomplished
through the satisfaction of the corresponding means goal. When a goal is satis�ed,
the satis�ed predicate becomes true.

� Actor properties. Actor capabilities are described with can satisfy and
can satisfy gt predicates meaning that an actor has enough capabilities to satisfy

34



CHAPTER 4. EXPLORING THE SPACE OF DESIGN ALTERNATIVES 35

Goal Properties

type(g : goal; gt : gtype)
and subgoaln(g : goal; g1 : goal; : : : ; gn : goal)
or subgoaln(g : goal; g1 : goal; : : : ; gn : goal)
order(g1 : goal; g2 : goal)
con
ict(g1 : goal; g2 : goal)
means end(g1 : goal; g2 : goal)
satis�ed(g : goal)

Actor Properties

can satisfy(a : actor; g : goal)
can satisfy gt(a : actor; gt : gtype)
wants(a : actor; g : goal)

Actor Relations

can depend on(a1 : actor; a2 : actor)
can depend on gt(a1 : actor; a2 : actor; gt : gtype)
can depend on g(a1 : actor; a2 : actor; g : goal)

Table 4.1: Formalizing an organizational setting: predicates

either a speci�c goal, or any goal of a speci�c type. We de�ne the following axiom
for can satisfy gt predicate.

8a : actor; gt : gtype; g : goal
can satisfy gt(a; gt) ^ type(g; gt)! can satisfy(a; g)

Initial actor desires are represented with wants predicate.

� Actor relations. Dependencies among actors are re
ected by can depend on,
can depend on gt, and can depend on g predicates, which mean that one actor can
delegate to another actor the ful�lment of any goal, or any goal of a speci�c type,
or a speci�c goal, respectively. We de�ne the following axioms for can depend on
and can depend on gt predicates.

8a1; a2 : actor; gt : gtype
can depend on(a1; a2)! can depend on gt(a1; a2; gt);

8a1; a2 : actor; gt : gtype; g : goal
can depend on gt(a1; a2; gt) ^ type(g; gt)!

can depend on g(a1; a2; g):

Figure 4.1 presents an example of a formalized organizational setting corresponding to
the scenario shown in Figure 3.1 (excluding information on roles and is-part-of relations).

4.2 Planning approach

As indicated earlier, we adopt the view of i* [140] and Tropos [25], where the requirements
to socio-technical systems are conceived as networks of delegations among actors. Every
delegation involves two actors, where one actor delegates to the other the ful�llment of
a goal. The delegatee can either ful�ll the delegated goal, or further delegate it, thus



CHAPTER 4. EXPLORING THE SPACE OF DESIGN ALTERNATIVES 36

TBanking � gtype
Customer Bureau Bank Manager

JuniorClerk SeniorClerk� actor
BuyHouse FindHouse FindMoney CloseSale GetLoan

FindLoanPlan ApplyForLoan GetLoanApproved
GetLoanPlanInfo SelectLoanPlan SendApplication
GetApplAccepted CheckExtR� goal

(type GetLoanPlanInfo TBanking)
(type GetApplAccepted TBanking)
(type GetLoanApproved TBanking)
(can depend on gt Customer Bank TBanking)
(can depend on Bank Manager)
(can depend on Bank Bureau)
(can satisfy Customer FindHouse)
(can satisfy Customer SelectLoanPlan)
(can satisfy Customer SendApplication)
(can satisfy Customer CloseSale)
(can satisfy Bureau CheckExtR)
(and subgoal3 BuyHouse FindHouse FindMoney CloseSale)
(and subgoal3 GetLoan

FindLoanPlan ApplyForLoan GetLoanApproved)
(and subgoal2 FindLoanPlan

GetLoanPlanInfo SelectLoanPlan)
(and subgoal2

ApplyForLoan SendApplication GetApplAccepted)
(means end GetLoan FindMoney)
(wants Customer BuyHouse)

Figure 4.1: An extract of formalization of the diagram in Figure 3.1



CHAPTER 4. EXPLORING THE SPACE OF DESIGN ALTERNATIVES 37

creating another delegation relation in the network. Intuitively, these can be seen as
actions that the designer ascribes to the members of the organization and the system-to-
be. Further, the task of constructing such networks can be framed as a planning problem
where selecting a suitable socio-technical system structure corresponds to selecting a plan
that satis�es the goals of human, organizational and software actors.

Thus, we have chosen an AI planning approach [135] to support the designer in the
process of selecting the best alternative socio-technical structure. Therefore, we need to
choose a speci�cation language to represent the planning domain, that is, the initial and
the desired states of the world and the actions that can be performed. Then, the solution
to the planning problem will be a sequence of actions that makes it possible to reach a
desired state of the world starting from the initial state.

The set of predicates introduced in Table 4.1 is used to represent the initial state of
an organizational setting. The desired state (or goal of the planning problem) is described
through the conjunction of satis�ed predicates: for each wants(a,g), satis�ed(g) is added
to the goal of the planning problem.

A plan, which is constructed to ful�ll the goals of system actors, comprises the following
actions:

� Goal satisfaction. Satisfaction of a goal is an essential action, which can be
performed only by an actor who is capable of achieving the goal. The result of this
action is the ful�llment of the goal. Action SATISFIES(a : actor; g : goal) represents
the fact that goal g is achieved by actor a.

� Goal delegation. An actor may choose to delegate one of his goals to another actor.
We represent this transfer of responsibilities through action DELEGATES(a1; a2 :
actor; g : goal). It is performed only if the delegator wants the goal to be ful�lled
and trusts that the delegatee will achieve it (i.e. he can actually depend on the
delegatee). After having delegated the goal, the delegator is no longer responsible
for its ful�llment, and does not care how the delegatee satis�es the goal (e.g. by his
own capabilities or by further delegation).

� Goal decomposition. Two types of goal re�nement are supported by the
framework: AND- and OR-decomposition. A way/ways in which a goal can
be decomposed is prede�ned and known to all the system actors. Actions
AND DECOMPOSES(a : actor; g; g1; :::; gn : goal) and OR DECOMPOSES(a : actor;
g; g1; :::; gn : goal) represent the fact that goal g is decomposed into n AND/OR-
subgoals by actor a.

Actions are described in terms of preconditions and e�ects, both being conjunctions of
formulas containing the predicates we have introduced, their negations, disjunctions, and
universal and existential quanti�ers. If a precondition of an action is true in the current
state of the world, then the action can be performed; as a consequence of an action, a
new state is reached where the e�ect of the action is true. Figure 4.2 presents a sample
sequence of plan actions corresponding to the diagram in Figure 3.1.



CHAPTER 4. EXPLORING THE SPACE OF DESIGN ALTERNATIVES 38

AND DECOMPOSES Customer BuyHouse
FindHouse FindMoney CloseSale

AND DECOMPOSES Customer GetLoan
FindLoanPlan ApplyForLoan GetLoanApproved

AND DECOMPOSES Customer FindLoanPlan
GetLoanPlanInfo SelectLoanPlan

DELEGATES Customer Bank GetLoanPlanInfo
SATISFIES Customer SelectLoanPlan
AND DECOMPOSES Customer ApplyForLoan

SendApplication GetApplAccepted
SATISFIES Customer SendApplication
DELEGATES Customer Bank GetApplAccepted
DELEGATES Customer Bank GetLoanApproved

Figure 4.2: A fragment of a plan corresponding to Figure 3.1

4.3 Desired properties of a solution

In this section, we discuss the properties a solution to a planning problem should sat-
isfy. Later, we will de�ne formally the four plan actions introduced above, so that these
properties are satis�ed by construction.

Let I = (D;F ) be the initial state of an organizational setting, where D is the domain,
i.e. a set of objects (actors, goals and goal types), and F is a set of 
uents, i.e. positive or
negative grounded literals (predicates introduced in Table 4.1). We refer to the domain
and 
uent components of a state I as ID and IF , respectively. We also assume that

predicate(arg1; ::; argn) 2 IF ! 8i argi 2 ID;

that is, if some predicate is in IF then all the objects it takes as arguments are in ID.
Let P be a plan, i.e. a (partially) ordered sequence of actions, G be a set of predicates

which characterize the goal of a planning problem. Then, the execution of the plan P in
state I will result in a new state R of a socio-technical system,

R = result(P; I):

In this setting, a planning problem consists in constructing such a P that

G � RF :

This property, referred to as basic plan property from now on, in our setting means
that all goals of all actors are satis�ed after a plan is executed. The property is formalized
as shown in line 1 in Table 4.2. In this and further properties, the names of actions of a
plan P are capitalized, while the names of predicates contain lowercase letters only.

A set of important plan properties, referred to as plan compliance with the initial
organizational setting, consists in ensuring that a plan can actually be executed starting
from the initial state of a socio-technical system. Namely, the following properties should
hold.

1. Only an actor who has a capability to satisfy a goal is assigned the obligation to
satisfy it.



CHAPTER 4. EXPLORING THE SPACE OF DESIGN ALTERNATIVES 39

2. A goal can be delegated from one actor to the other, only if the former can actually
depend on the latter.

3. A goal can be AND/OR-decomposed only in a prede�ned way, that is, according to
an AND/OR decomposition tree that is given as part of the problem statement.

For the formal representation of these properties see lines 2:1� 2:3 in Table 4.2.
Another related set of plan properties, referred to as plan compliance with goal

relations, represent the fact that executing a plan cannot result in violating temporal,
con
ict, or means-end relations between goals.

To formalize these properties, let us de�ne a partial order of plan actions1. Let a time
step number T (p) 2 f0; N � 1g be associated with each action p 2 P where N � jP j.
Namely, p is performed at T (p), which means that p's preconditions are true at T (p),
while the e�ects become true at T (p) + 1. Also let S(t); t 2 f0; N � 1g be the state of an
organizational setting after all the preceding actions p; T (p) < t are performed.

For a plan to be compliant with goal relations, the following properties should hold.

1. Goals should be satis�ed in the correct order.

2. Only one of the con
icting goals can be satis�ed in a plan.

3. If a means goal is satis�ed and there are no satis�ed goals which are in con
ict with
the end goal, then the end goal should become satis�ed.

For the formal representation of these properties see lines 3:1� 3:3 in Table 4.2.
The last group of properties is concerned with the optimality of a plan, meaning that

a plan should be such that the goals of system actors are satis�ed in a minimal number
of steps. In this respect, the following two properties, referred to as non-redundancy
properties, should hold.

1. A goal cannot be satis�ed more than once.

2. Plans are assumed to be minimal in the sense that any subset of the actions of a
plan does not satisfy the goal for which the plan was intended.

For the formal representation of these properties see lines 4:1 � 4:2 in Table 4.2. Note
that the axiom 4:1 in Table 4.2 states that the same goal cannot be satis�ed by di�erent
actors, while the fact that the same goal cannot be satis�ed twice by the same actor is
implicit in that P is a set, and thus, cannot contain duplicates. Also note that the second
property implies the absence of delegation loops and unnecessary actions, meaning that
no action over the same goal is performed twice by two di�erent actors. Even though the
�rst property can be inferred from the second one, we state both explicitly for the sake
of clarity.

Now our aim is to de�ne the plan actions in terms of their preconditions and e�ects
in the way that the resulting plan satis�es all of the above four groups of properties.

1Most of the planning algorithms return a (partially) ordered sequence of actions as a resulting plan.



CHAPTER 4. EXPLORING THE SPACE OF DESIGN ALTERNATIVES 40

Basic plan property

1:8a : actor; g : goal:wants(a; g) 2 IF !
satis�ed(g) 2 RF

Compliance with initial organizational setting

2:18a : actor; g : goal:SATISFIES(a; g) 2 P!
can satisfy(a; g) 2 IF

2:28a1; a2 : actor; g : goal:DELEGATES(a1; a2; g) 2 P!
can depend on g(a1; a2; g) 2 IF

2:3:1 8a : actor; g; g1; : : : ; gn : goal:AND DECOMPOSES(a; g; g1; : : : ; gn) 2 P!
and subgoaln(g; g1; : : : ; gn) 2 IF

2:3:2 8a : actor; g; g1; : : : ; gn : goal:OR DECOMPOSES(a; g; g1; : : : ; gn) 2 P!
or subgoaln(g; g1; : : : ; gn) 2 IF

Compliance with goal relations

3:18a : actor; g1; g2 : goal:order(g1; g2) 2 IF !
satis�ed(g1) 2 SF(T(SATISFIES(a; g2)))

3:28g1; g2 : goal:con
ict(g1; g2) 2 IF !
:(satis�ed(g1) 2 RF ^ satis�ed(g2) 2 RF)

3:38p 2 P; g1; g2 : goal:means end(g1; g2) 2 IF ^ satis�ed(g1) 2 T(p)^
:(9g0 : goal:satis�ed(g0) 2 T(p) ^ con
ict(g2; g

0) 2 IF)!
satis�ed(g2) 2 T(p)

Non-redundancy properties

4:18a : actor; g : goal:SATISFIES(a; g) 2 P!
:9a0 6= a : actor:SATISFIES(a0; g) 2 P

4:2:9p:((R0 = result(fP n pg; I)) ^ (G � R0F))

Table 4.2: Desired plan properties

4.4 Planning formalization

As we mentioned already, planning actions are described in terms of preconditions and
e�ects, which in turn, are expressed in terms of predicates presented in Table 4.1. After
the application of each subsequent plan action, the state of the world changes, namely,
some of the 
uents which describe the state of the target socio-technical system become
true, while the others become false.

A plan which satis�es all actor goals, should step by step change the initial state into
the �nal state where satis�ed(g) is true if initially wants(a,g) was true for some actor a.
Thus, the key idea is to propagate wants(..,g) along the delegation links from the actor
who wants g initially, towards the actor(s) who are responsible for satisfying either g or
its subgoals. With this idea in mind, we de�ne the actions as presented in Table 4.3 and
explained in the following.

� SATISFIES(a : actor; g : goal). The preconditions of the satisfaction action are the
following: a wants g to be satis�ed, a is capable of achieving g (or any goal of the
same type), all the goals that should be satis�ed before g are satis�ed, no goals
which are in con
ict with g are satis�ed. The two e�ects are: g is satis�ed, a no
longer wants g to be satis�ed. Thus, each satisfaction action removes (makes false)
one wants predicate from the current state of the world.

� AND DECOMPOSES(a : actor; g; g1; :::; gn : goal) and OR DECOMPOSES(a :
actor; g; g1; :::; gn : goal). The preconditions of a decomposition action are: a wants



CHAPTER 4. EXPLORING THE SPACE OF DESIGN ALTERNATIVES 41

SATISFIES(a : actor; g : goal)

precondition:
wants(a; g) ^ can satisfy(a; g)^
8gprev : goal :(order(gprev; g) ^ satis�ed(gprev))^
8g0 : goal :(con
ict(g; g0) ^ satis�ed(g0))

e�ect:
satis�ed(g) ^ :wants(a; g)

AND/OR DECOMPOSES(a : actor; g; g1; :::; gn : goal)

precondition:
wants(a; g) ^ and=or subgoaln(g; g1; :::; gn)

e�ect:
:wants(a; g) ^ wants(a; g1) ^ ::: ^ wants(a; gn)

DELEGATES(a1; a2 : actor; g : goal)

precondition:
wants(a1; g) ^ can depend on g(a1; a2; g)

e�ect:
:wants(a1; g) ^ wants(a2; g)

Table 4.3: Actions: preconditions and e�ects

g to be satis�ed, it is possible to AND/OR-decompose g into subgoals g1; :::; gn. As
an e�ect, a no longer wants g to be satis�ed, while g1; :::; gn are added to the list of
a's desires, i.e. a now wants g1; :::; gn to be satis�ed. Thus, a decomposition action
removes wants predicate for the parent goal from the state of the world, but adds
(makes true) n wants predicates, one for each of the subgoals.

� DELEGATES(a1; a2 : actor; g : goal). The preconditions of a delegation action are:
a1 wants g to be satis�ed, a can depend on a2 either for any goal or for the goal of
the type which g belongs to. The e�ects are the following two: a1 no longer wants g
to be satis�ed, while g is added to the list of a2's desires, i.e. a2 now wants g to be
satis�ed. Thus, a delegation action removes one wants predicate from the current
state of the world, and at the same time adds one: in a sense, it \passes" wants for
g from the delegator to the delegatee.

In addition to the above, the following rules should apply:

� When all AND-subgoals or at least one of the OR-subgoals of a goal are satis�ed,
then satis�ed should become true for this goal.

� When a means goal of a means end relation is satis�ed and there are no satis�ed goals
which are in con
ict with the end goal, then the end goal should become satis�ed.

To address these one can de�ne axioms, or derived predicates that hold in every state of
the system and are used to complete the description of the current state [50]. However,
due to performance problems introduced by derived predicates in practice, we postpone
the discussion of this issue until Section 6.1.

Now, after the planning domain is fully de�ned, we need to show that the desired
plan properties (see Table 4.2) are guaranteed by our approach.



CHAPTER 4. EXPLORING THE SPACE OF DESIGN ALTERNATIVES 42

� Basic plan property. Following AI planning algorithms, a plan is constructed
in such a way that the formula which represents the goal of the planning problem
becomes true after the plan is applied to the initial setting. Thus, all satis�ed(g)
predicates which comprise the goal of the planning problem are true after all the
plan actions are executed.

� Plan compliance with the initial organizational setting. According to the
de�nitions of the plan actions (see Table 4.3):

{ satisfaction action cannot be performed by an actor who has no capability to
satisfy a goal;

{ delegation action cannot be performed if the delegator cannot depend on the
delegatee;

{ decomposition of a goal can only be done in accordance with the AND/OR goal
tree given for the goal.

� Plan compliance with the goal relations. According to the de�nition of the
plan actions (see Table 4.3) and domain axioms:

{ a goal cannot be satis�ed earlier than any goal it is in order with;

{ a goal cannot be satis�ed if another goal with which the former is in con
ict is
satis�ed;

{ satisfaction of a means goal implies the satisfaction of the corresponding end
goal.

� Regarding the satisfaction of non-redundancy properties there are two following
observations. Firstly, for the absence of redundancy we rely not on the way our
domain is de�ned, but on the planning approach itself. Basically, as most planning
algorithms search for a (locally) optimal plan [135], a plan containing redundant
actions can be immediately replaced by a better one (which is shorter and still
satis�es the planning problem goal) just by removing a number of actions. Secondly,
the property stating that each goal should be satis�ed only once, is supported by
the fact that once a goal is satis�ed, satis�ed predicate becomes true for it and it
cannot be made false by any other action.

To summarize, in this chapter we have proposed to formulate the problem of selecting
an optimal design in terms of AI planning. Namely, we consider the assignment of goals
to actors, goal decomposition and of the delegation of goals from one system actor to
another, to be the primitive actions of the planning domain. We have de�ned the way to
formalize an initial organizational setting, identi�ed the desired properties of a resulting
plan, and have shown how the planning actions should be de�ned to incorporate these
properties. The implementation of the proposed approach will be discussed in details
in Chapter 6, where we show how the planning domain can be e�ciently implemented
in PDDL speci�cation language [50] and how an o�-the-shelf tool is used to generate
alternatives designs.



Chapter 5

Evaluation of Socio-Technical

Designs

The alternative design option generated by the planner need to be evaluated and approved
by the designer. However, such an evaluation can be complex enough even for designers
with considerable domain expertise, and thus a supporting tool would be bene�cial. Al-
ternative options can be evaluated both from global and local perspectives, i.e. from the
designer's point of view and from the point of view of an individual actor who is part of
the dependency network. In this chapter, we discuss a number of evaluation criteria of
both perspectives, as well as their application to the requirements networks.

5.1 Global evaluation criteria

The optimality of a solution in the global sense could be assessed with respect to the
following criteria.

� Length of proposed plan.

� Overall plan cost.

� Degree of satisfaction of non-functional requirements.

5.1.1 Length of proposed plan

The number of actions in the proposed plan is most often the criterion for the planner itself
to prefer one solution over another. For those planners which produce partially ordered
plans (e.g. IPP [91]), the corresponding measure is the number of time steps in which a
plan can be executed. Thus, it can be assumed that a plan produced by a planning tool
is already optimal (or, in many cases, locally optimal, e.g. in case of LPG-td) in terms of
length minimization.

43



CHAPTER 5. EVALUATION OF SOCIO-TECHNICAL DESIGNS 44

5.1.2 Overall plan cost

In AI planning, criteria which take costs into consideration, are related to the idea of
plan metrics introduced in PDDL 2.1 [57]1. Plan metrics specify the basis on which a
plan is evaluated for a particular problem, and are usually numerical expressions to be
minimized or maximized. E.g. a cost or duration can be associated to a domain action,
and then a plan is constructed so that the sum of costs/durations of all the plan actions
is minimal. However, the complexity of the problem of optimizing a solution with respect
to the de�ned metrics is high, in fact, \the introduction of numeric expressions, even in
the constrained way that we have adopted in PDDL 2.1, makes the planning problem
undecidable" [57]. Thus, e�ective use of plan metrics is still a research issue, and, as a
consequence, the feature is poorly supported by the available planning tools.

Moreover, the planning metrics are not su�cient in cases where a cost should be as-
signed to instances of a planning action, while the planning metrics in PDDL 2.1 work
on a generic rather than an instance level. Namely, we want to assign di�erent costs
to SATISFIES(SeniorClerk,CalcIntRating) and SATISFIES(Manager,CalcIntRating) actions,
while planning metrics allow us to assign a cost value only to the \generic" action SAT-
ISFIES(a: actor, g: goal). This is not satisfactory, as in our planning domain, costs
associated with satisfying the same goal are likely to be di�erent for di�erent actors, as
well as costs associated with delegating the same goal to di�erent actors can di�er (e.g.
delegating a goal to the colleague sitting next to you is often less costly than delegating
the very same goal to the employee of another department who you even do not know
in person). Thus, instead of using the planning metrics, we propose to evaluate a plan a
posteriori, and then, on the basis of the evaluation results, provide additional constraints
for the search for the next, better plan.

Let us now introduce notions of an action and plan cost, and a general schema we use
further in this chapter to represent and compare costs.

A cost associated to an instance of a domain action can incorporate a variety of
factors, such as the time spent for executing the action, the amount of (di�erent types
of) resources used, the associated e�ort (related to complexity of the action), etc. Let
~c(p), where p is the instance of an action of the form action name(arg1; ::; argn), be a
cost vector associated to p, where ci(p) measures the i

th cost dimension.
For example, consider the satisfaction of the goal calculate internal rating. Let

~c(SATISFIES(a;CalcIntRating)), where a is the actor who actually satis�es this goal, be
of the form (total time, doc support, effort). Here the components of the cost vector
are (a) the total time spent to satisfy the goal (i.e. to calculate an internal customer
rating), (b) the number of instructions and regulations consulted in the bank electronic
document base, (c) the subjective complexity that actor a attributes to the action (e.g.
characterized as \high", \medium" or \low"). Then, two concrete examples for manager
and senior clerk actors will be

~c(SATISFIES(Manager;CalcIntRating)) = (200; 3; low);

1Another related approach is planning with preferences (see e.g. [12]). However, for reasons similar to those
for the planning metrics case, most plan evaluation criteria discussed in this section cannot be incorporated into
planning with preferences.



CHAPTER 5. EVALUATION OF SOCIO-TECHNICAL DESIGNS 45

~c(SATISFIES(SeniorClerk;CalcIntRating)) =

= (350; 1;medium):

However, as the entries in a cost vector are, in general, heterogenous and measured
in di�erent units, this representation of cost is not satisfactory. Let us then introduce a
scaling function ~rc(~c(p)), which maps heterogenous cost values to natural numbers from
1 to n, with 1 being the lowest and n the highest cost values. In the above example, let
n = 3, and

[~rc]1(total time) =

8><
>:

1; total time � 200;
2; 20 < total time � 400;
3; total time > 400;

[~rc]2(doc support) =

8><
>:

1; doc support � 2;
2; 2 < doc support � 5;
3; doc support > 5;

[~rc]3(effort) =

8><
>:

1; effort = low;
2; effort = medium;
3; effort = high;

where [~rc]i(argi) is a \partial" scaling function for the ith cost factor. In this setting,

~rc(~c(SATISFIES(Manager;CalcIntRating))) = (1; 2; 1);

~rc(~c(SATISFIES(SeniorClerk;CalcIntRating))) = (2; 1; 2):

The cost function of a plan P , called also social cost in networks literature (see e.g. [106]),
is then de�ned either in the vector form

~c (P ) =
X
p2P

~rc(~c(p));

or in the scalar form

�c (P ) =
X
p2P

1

n

nX
i=1

[~rc(~c(p))]i;

where [~v(x)]i is the i
th element of vector ~v(x).

Note that we do not discuss here neither the way the cost is measured along its various
dimensions, nor the way the scaling function is constructed. These tasks are domain
speci�c and require the interference of human experts.

5.1.3 Degree of satisfaction of non-functional requirements

By non-functional requirements (NFR) we mean quality criteria, which allow one to eval-
uate a socio-technical system, as opposed to functional requirements, which de�ne the
behavior of a system [38]. Examples of such criteria are e�ciency, reliability, safety,
usability, and many others. An important observation is that there can exist many al-
ternative ways to implement system functional requirements, which di�er with respect
to those non-functional requirements that the designer considers important for a system.



CHAPTER 5. EVALUATION OF SOCIO-TECHNICAL DESIGNS 46

The \best" alternative may not exist, as often there are trade-o�s between NFR, e.g.
performance vs. safety, resilience vs. e�ciency, etc. Therefore, the �nal choice of an
appropriate alternative is usually up to a human designer.

To measure the impact of a design alternative on a certain non-functional requirement,
either qualitative or quantitative metrics are used.

� Qualitative metrics are relative scales which allow comparing the degree of impact
of two design alternatives towards a concrete NFR (e.g. such a metric may allow
saying that \alternative X is better than alternative Y in terms of usability"). In
goal modelling, qualitative reasoning on non-functional requirements typically means
specifying whether the achievement of a goal contributes positively (\+") or nega-
tively (\-") to a NFR. In [72] a formal framework for reasoning with goal models
is introduced, which distinguishes between full and partial evidence of a goal being
either satis�ed or denied, and de�nes the propagation rules of the goal satisfaction
labels. A number of works [74, 134, 96] use similar approaches to reason about the
choice between functional alternatives on the basis of their contribution to a set of
NFR.

� In turn, adopting quantitative metrics means assigning numerical weights to quantify
positive and negative in
uences of alternative design options on the degree of NFR
satisfaction. In some cases, the numerical weights have a domain-speci�c physical
interpretation (e.g. response or recovery times). However, as pointed out in [96],
most often it is not clear neither what these numbers mean (as they are subjective),
nor where they come from (who is responsible of providing them).

Since the problem of both qualitative and quantitative evaluation metrics in the con-
text of non-functional requirements in software design was studied by many researches
(for examples see the references above), and a number of formal frameworks and tools
were developed, we do not aim at inventing yet another way of dealing with NFR. A
future work direction we consider, is incorporating an existing NFR reasoning technique
into our framework.

5.2 Criticality of an actor in a plan

The criticality of an actor measures how a social network will be a�ected in case the
actor has been removed from or has left the network. The notion of criticality is tightly
connected to that of resilience of networks to the removal of their vertices in the social
network literature [107]. A signi�cant, while quite obvious related result is that most of
the real-life and model networks are highly vulnerable to the removal of their highest-
degree vertices, that is, the vertices with the highest number of in- and outgoing links.

In our framework, not only the links between the nodes matter, but also the goals
that are assigned to the removed node according to the plan. In the following we discuss
both criticality dimensions, that is, the impact of the removal of both satisfaction and
delegation actions from a plan2. Note that as we consider only non-redundant plans, the

2By action removal we mean, for instance, temporal unavailability of an actor or the failure of a communication
link.



CHAPTER 5. EVALUATION OF SOCIO-TECHNICAL DESIGNS 47

removal of actor a compromises a plan P in case there exists an action p 2 P such that a
is one of p's arguments, a 2 arg(p). Namely, if all actions a participates to are removed
from a plan, the remaining actions do not satisfy all goals of the corresponding planning
problem.

5.2.1 Leaf goals satisfaction dimension

When an actor is removed from a social network, all the leaf subgoals he was assigned in
the plan remain unsatis�ed. Namely, a measure of a node's a criticality in a plan P is
the (weighted) fraction of leaf goals that cannot be satis�ed by P after a is removed from
the social network constructed in accordance with P . Let an integer number w(g) be the
weight of goal g. Basically, w(g) is the measure of importance of g for the socio-technical
system de�ned by a human designer. Then the criticality of actor a in the plan P is
de�ned as follows:

crg(a; P ) =

P
SATISFIES(a;g)2P w(g)P
SATISFIES(x;g)2P w(g)

;

where x is an actor and g is a goal.
If all goals are considered equally important for the system (8g; g0 : goal w(g) = w(g0)),

then the criticality can be calculated as follows:

crg(a; P ) =
jg:SATISFIES(a; g) 2 P j

j(g; x):SATISFIES(x; g) 2 P j
;

where x is an actor and g is a goal.

5.2.2 Dependency dimension

Together with an actor, a number of in- and outgoing dependencies for goals are removed
from the network. This means that a number of delegation chains become broken and
the goals delegated along these chains cannot reach nodes at which they will be satis�ed
(either directly or after being AND/OR-decomposed). Thus, we can de�ne another set
of measures of a node a criticality in a plan P , namely, a fraction of \lost" dependencies
(ingoing, outgoing, or any type) after a is removed from the social network constructed
in accordance with P :

crin(a; P ) =

P
DELEGATES(a0;a;g)2P w(g)P
DELEGATES(x;y;g)2P w(g)

;

crout(a; P ) =

P
DELEGATES(a;a0;g)2P w(g)P
DELEGATES(x;y;g)2P w(g)

;

crdep(a; P ) = crin(a; P ) + crout(a; P );

where a0, x, y are actors and g is a goal.
In a number of other frameworks [140, 65, 26], each dependency link is assigned a

certain criticality value, either qualitative or quantitative, which is the measure of how
the system will be a�ected if this dependency fails. In i* [140] the notion of dependency



CHAPTER 5. EVALUATION OF SOCIO-TECHNICAL DESIGNS 48

strength is de�ned, that is, a dependency is considered to be open (which corresponds to
the lowest criticality level), committed, or critical. In [65], in- and outgoing criticality of
an actor in a requirements model is de�ned as the sum of, respectively, the criticality of
the in- and outgoing dependencies this actor participates. In addition, the authors present
the procedure of complexity and criticality analysis (where complexity is the measure of
e�ort required from an actor to satisfy a speci�c goal). Namely, the procedure identi�es all
the actors for which the values of complexity and criticality are greater than the respective
prede�ned maximum values. Then, in order to reduce complexity and criticality of the
existing actors, new (software) actors are introduced and the dependencies which violate
complexity and criticality constraints are redistributed among these new actors.

In [26] the notion of security criticality is introduced, being the measure of how system
security will be a�ected if the security constraint is violated. An example of a security
constraint in our scenario would be to keep customer's data private associated to the
goal register customer. The maximum value of criticality is de�ned for each actor, and an
algorithm is proposed to reduce the criticality (as well as the complexity) of an overloaded
actor by redistributing the goals and tasks of this actor to others.

5.2.3 Actor criticality with respect to a set of goals

The proposed criticality measures consider the weighted fraction of leaf goals that are not
satis�ed or dependencies that are lost after an actor is removed from a network. However,
it is also important to quantify the impact of a node removal on the top-level goals of a
socio-technical system, or, in general, on any prede�ned set of non-leaf goals. To address
this issue, the following measure is introduced.

Let Gaff (a; P ) be a set of goals a�ected by the removal of actor a from the depen-
dency network constructed in accordance with the plan P . Namely, if a is removed, all
goals in Gaff (a; P ) cannot be satis�ed by the above socio-technical structure. Also, let
Gdir aff (a; P ) be the set of goals directly a�ected by the removal of a:

Gdir aff (a; P ) = fg : goal: SATISFIES(a; g) 2 P _
9a0 : actor:(DELEGATES(a0; a; g) 2 P )_
9a00 : actor:(DELEGATES(a; a00; g) 2 P )g

Let Gr be the set of \reference" goals, i.e. top-level or any prede�ned subset of system
goals with respect to which criticality of an actor in a plan will be evaluated. For example,
in the e-business case study, Gr can consist of three goals, get information about loan plans,
get customer application accepted and get loan approved, or, if one wants to evaluate the
criticality of the system with respect to the loan approval process, Gr will consists of its
three subgoals, that is, evaluate loan, decide on loan and �nalize the terms.

To construct Gaff (a; P ) goal set corresponding to the set Gdir aff (a; P ), the modi-
�cation of the label propagation algorithm [72] can be used, which allows inferring the
(un)satis�ability of top goals by propagating through a goal graph the labels represent-
ing evidence for the goals being either satis�ed or denied. Satis�ability is propagated
bottom-up, from the leaf to the top-level goals, along decomposition, means-end and
con
ict relations.



CHAPTER 5. EVALUATION OF SOCIO-TECHNICAL DESIGNS 49

The modi�cations of the algorithm consist in that the propagation starts not from the
set of the leaf goals, but from the goals inGdir aff (a; P ) (which are assigned unsatis�ability
labels), and those leaf goals which are not the (recursive) AND/OR-subgoals of any goal
in Gdir aff (a; P ). The unsatis�ability labels of goals g 2 Gdir aff (a; P ) remain unchained
even if their satis�ability is inferred by the label propagation algorithm. The latter may
happen if in P goal g 2 Gdir aff (a; P ) was delegated along the delegation chain which
involved the removed actor a, while the satisfaction of g was performed by the actor(s)
di�erent from a. The above modi�cations work due to non-redundancy of the constructed
plans, that is, it is assumed that P does not contain alternative ways to satisfy any of the
system goals.

After Gaff (a; P ) goal set is constructed, the criticality of a in P with respect to Gr is
de�ned as follows.

cr(a; P;Gr) =

P
g2Gr^Gaff (a;P )w(g)P

g2Gr
w(g)

:

In many cases, the more even the load (in terms of assigned goals and delegations) of
system actors, the lower the criticality of each actor. The problem of balancing the load
distribution is considered in Section 5.4, where an evaluation and replanning procedure
is introduced. The key idea of this procedure is to formulate the constraints for the
construction of the next plan on the basis of the evaluation of the current plan. However,
if the workload is balanced, but the subgoals of each goal g 2 Gr are distributed among
a large fraction of system actors, the criticality of each actor is quite high as the removal
of one actor will cause the failure of most of the goals in Gr. One of the approaches to
the problem of leveraging high criticality is runtime replanning of those fragment of the
social network in which criticality constraints are violated. Though we do not discuss it
in the thesis, such an approach is a feasible extension of our framework and constitutes
another future work direction.

5.3 Local evaluation: game-theoretic insights

A challenging characteristic of requirements analysis for a socio-technical system is the
presence of human and organizational actors. These actors can be seen as players in a
game theoretic sense as they are self-interested and rational. This may mean that they are
willing to minimize the load imposed personally on them, e.g. they want to constrain the
number and the complexity of actions they are involved in3. In a certain sense non-human
system actors are players as well as it is undesirable to overload them. Each player has a
set of strategies he could choose from, e.g. he could decide to satisfy a goal himself or to
pass it further to another system actor. Strategies are based on player capabilities and his
relations (e.g. subordination, friendship, or trust, all represented as possible dependencies
in our framework) with other human, organizational and software actors in the system.

We assume that each player ascribes a cost to each possible action, as discussed in
Section 5.1. Then, it is possible to calculate the cost of a given alternative (or the outcome

3This is not always the case, as sometimes actors may want the workload to be the maximum they can handle,
e.g. in looking for the reward like salary increase or a the recognition of the boss/colleagues.



CHAPTER 5. EVALUATION OF SOCIO-TECHNICAL DESIGNS 50

of the game) for the player by summing up the weights of the plan actions this player is
involved in. For each player, minimizing this cost means maximizing the utility of the
game. One of the key game theoretical concepts is that of an equilibrium [110], which
de�nes the set of strategies, one for each player, which none of independent rational players
wants to deviate from. By playing an equilibrium each player maximizes his utility locally,
given some constraints. For example, playing the Nash equilibrium means that no player
can bene�t when deviating from his equilibrium strategy given that all other players play
the equilibrium.

However, in non-cooperative setting, there could exist Nash equilibria whose social
cost (the sum of individual costs for all players) is much worse than the social cost in
the globally optimal situation, called social optimum. To measure the impact of lack of
cooperation and coordination on the system e�ectiveness, the notion of cost of anarchy
has been introduced in [93]. Cost of anarchy is the ratio between the worst possible Nash
equilibrium and the social optimum. There exist numerous studies on the theoretical
bounds on the price of anarchy in the speci�c cases (e.g. [93, 4]), as well as the attempts
to design games, i.e. strategies and reward schemas, so that to encourage behaviors close
to the social optimum (see e.g. [7, 95], and, more generally, mechanism design theory [43]).

A substantial di�culty in applying game-theoretic ideas to our problem is that all
actors of a socio-technical system need to work cooperatively in order to satisfy all initial
organizational goals. Di�erently from classical non-cooperative game theory, where all
players choose their strategies independently and simultaneously before the game, in our
problem actor choices are closely interrelated. A player cannot independently change his
strategy because the new action sequence will very likely be unsatisfactory, i.e. it will
not be a solution anymore. So, to satisfy stakeholder goals it is necessary to impose
an additional load on some other actors in order to compensate the load the deviating
player tries to avoid. The actors on which this additional load is imposed might not
be satis�ed with the new solution, and will try to deviate from the strategy they were
imposed, and so on and so forth. Thus, if one actor wants to deviate from the gener-
ated solution, the re-planning is needed to search for another alternative option, which
is then evaluated, possibly, to be re-planned again. In the following section, we discuss a
\planning-and-evaluation" procedure which aims at �nding a good enough (rather than
optimal) delegation and assignment socio-technical structure among the available alter-
natives.

5.4 Supporting local evaluation

In an ideal setting, the objective of our framework is to produce plans which are optimal
with respect to both global and local evaluation criteria. However, choosing the optimum
among all available alternatives, which are in the general case exponentially many, might
not be feasible in practice. Moreover, as noted by Herbert Simon [125], what makes
humans e�ective (in comparison to machines) is their ability to identify a satis�cing
design as opposed to an optimal one. Thus, our approach to optimization, or, more
precisely, to looking for a satis�cing solution consists in the following: For all the global
and local criteria, thresholds are speci�ed, and a plan that stays within these thresholds



CHAPTER 5. EVALUATION OF SOCIO-TECHNICAL DESIGNS 51

is considered to be good enough to be adopted.
In this section we present the revised procedure we devised for optimizing a plan with

respect to the local criteria [29]. The problem of evaluating and improving a plan with
respect to such global criteria as the overall plan cost and actor criticality, can be faced in
an analogous way. We do not report here the details in order not to overload the chapter,
and focus on optimizing a plan with respect to the local criteria.

An example of a utility function we consider here, is related to workload distribution.
We assume that each actor, human, organizational or software, wants to minimize the
number and cost of goals he is assigned. The cost of a goal, as it was discussed in
Section 5.1, can incorporate a variety of factors, such as the time and e�ort required to
achieve it, resources used, etc. Costs have to be de�ned explicitly for leaf goals, i.e. for
those goals that could be assigned to actors that have capabilities to satisfy them. There
is no need to de�ne or calculate a cost for a goal that is to be further decomposed and
delegated. Costs are \local" in a sense that the same goal can have di�erent costs for
di�erent actors. For each actor there is a maximum complexity (in terms of cost) it can
handle, i.e. the sum of costs for all the goals this actor is assigned should be less than
a prede�ned threshold, namely, maximum complexity. If this condition is violated, the
actor might be willing to deviate from the imposed assignment.

More precisely, for all actors ai; i = 1; n and all goals gk; k = 1;m, where n and m are
the number of actors and goals, respectively, the complexity values are de�ned:

� ~csik is the complexity for actor ai of satisfying goal gk;

� ~crik is the complexity for actor ai of decomposing goal gk;

� ~cdijk is the complexity for actor ai of delegating goal gk to actor aj.

Here we assume that ~csik, ~crik, ~cdijk are of the form ~rc(~c(p)), p 2 P , that is, they are
\normalized" with the help of scaling function ~rc(::) (see Section 5.1 for the details).

The cost of a given alternative P for actor ai is calculated by summing up the costs
of actions of P in which ai is involved, and is denoted by

~c(P; ai) =
X

DELEGATES(ai;aj;gk)2P

~cdijk+

X
DECOMPOSES(ai;gk;gk1;:::;gkl)2P

~crik+

+
X

SATISFIES(ai;gk)2P

~csik;

where DECOMPOSES(ai; gk; gk1; :::; gkl) stands for the AND/OR-decomposition of gk into
l subgoals gk1; :::; gkl.

After the costs are computed, for each actor the conditions are de�ned upon which an
actor decides whether to deviate from an alternative P or not. The conditions could be
either one of the following, or both.

� Actor ai whose prede�ned maximum complexity ~cmax(ai) is less than ~c(P; ai) is
willing to deviate from P. This condition is the one we consider further in the thesis.



CHAPTER 5. EVALUATION OF SOCIO-TECHNICAL DESIGNS 52

� Actor ai whose prede�ned upper bound ~cdev
up
(ai) on cost deviation is less than

~c(P; ai)� avgi(~c(P; ai)) is willing to deviate from P .

After the costs and maximum complexities are de�ned, the evaluation procedure is
organized as follows.

1. Plan P is generated by the planner.

2. Plan cost for each actor is calculated, by summing up the costs of all the action the
actor is involved in.

3. Actors willing to deviate from the plan are identi�ed, i.e. actors whose plan cost is
greater than the corresponding maximum complexity.

4. One of these actors is selected, namely, actor amax which has the maximum di�erence
� between plan cost and maximum complexity:

�(a) =
nX
i=1

[~c(P; a)� ~cmax(a)]i:

5. A subset of actions Pdev � Pamax is formed with the total cost greater or equal to �,
where Pamax denotes those actions of P in which amax is involved.

6. The de�nition of the planning problem is changed in order to avoid the presence of
actions of Pdev during the next planning iteration.

7. The procedure restarts with the generation of a next plan.

The process stops when a good enough solution is found, i.e. no actors are willing to
deviate from it and the designer approves this solution.

Step 6 of the procedure deserves additional explanations. In order to make it possible
to avoid the actions contained in Pdev in the next plan, we introduce the following \tracing"
predicates:
pr satisfies(a : actor; g : goal),
pr and=or decomposes(a : actor; g1; g2; ::: : goal),
pr delegates(a1; a2 : actor; g : goal),

which become true when the corresponding action takes place. Then, if, for instance,
Pdev contains a satisfaction action for goal g, the following line is added to the goal of
the planning problem: not pr satisfies(amax; g), which means that the next generated
solution cannot contain this action.

To summarize, in this chapter we have proposed a number of dimensions along which
a socio-technical design should be evaluated. Speci�cally, we have studied how such
criteria as the number and the cost of actions the system actors perform is related to
the optimality of the corresponding socio-technical system design. We have discussed the
use of non-functional quality criteria and the respective reasoning techniques available
in the literature. The structural properties of the design, realted to the criticality of a



CHAPTER 5. EVALUATION OF SOCIO-TECHNICAL DESIGNS 53

system actor, were also explored. Finally, we have proposed the planning-and-evaluation
procedure, which focus (as suggested by Simon in [125]) is not on optimizing, but rather
on �nding a good enough solution. This is done with respect to a number of thresholds
de�ned by the designer, which classi�es the procedure as an aspiration level method,
which we discussed in Section 2.5.



Chapter 6

Implementation and Validation of

the Approach

In this chapter, we report on the implementation of the proposed planning-based ap-
proach, its application to the e-business case study as well as to a number of other case
studies, and then present the results of scalability experiments we have conducted to
justify the use of a planning approach for medium size real-life case studies.

6.1 Implementing the planning domain

In the following, we address a number of problems related to the implementation of the
proposed approach, such as choosing an o�-the-shelf planner, some peculiarities of PDDL
implementation of the planning domain, as well as the tool support of the whole approach.

6.1.1 Choosing the planner

An important problem we have faced during the implementation of our approach, is the
problem of choosing the \right planner" among o�-the-shelf tools available. In the last
years many planners have been proposed [112], which are based on di�erent (classes of)
algorithms, use di�erent domain representation languages, adopt di�erent heuristics for
making the plan search e�cient, etc. We have compared a number of planners (listed in
Table 7.4) with respect to the following requirements:

� As discussed earlier in this section, we do not want the planner to produce redundant
plans. A plan is non-redundant if after deleting an arbitrary action, the resulting
plan is no more valid (i.e. it does not allow reaching the desired state of the world
from the initial state). Some planners we have tested (e.g. DLV K [113]), do not
satisfy this requirement.

� The planner should use PDDL (Planning Domain De�nition Language) since it
has become a \standard" planning language and many research groups work on
its implementation. Moreover, the language should support a number of advanced
features that are essential for implementing our planning domain (e.g. negation in a

54



CHAPTER 6. IMPLEMENTATION AND VALIDATION OF THE APPROACH 55

Planner Release URL

DLVK 2005-02-23 http://www.dbai.tuwien.ac.at/proj/dlv/K/

IPP 4.1 2000-01-05 http://www.informatik.uni-freiburg.de/ koehler/ipp.html

CPT 1.0 2004-11-10 http://www.cril.univ-artois.fr/ vidal/cpt.en.html

SGPLAN 2004-06 http://manip.crhc.uiuc.edu/programs/SGPlan/index.html

SATPLAN 2004-10-19 http://www.cs.washington.edu/homes/kautz/satplan/

LPG-td 2004-06 http://zeus.ing.unibs.it/lpg/

Table 6.1: Compared planners

planning problem goal, which is not allowed in IPP [91]). Ideally, the planner should
support the last stable version of PDDL, so PDDL3 [67] or at least PDDL 2.2 [50]
should be supported.

� It is desirable that the planner is available on both Linux and Windows platforms
as a set of the Tropos-based reasoning tools we have developed [122] work on both.
However, we understand that most of the available planners are research tools, and
so they are often released for the one speci�c platform only (with Linux being a
more frequent choice).

Based on the above requirements, we have chosen LPG-td [99], a fully automated
system for solving planning problems, supporting PDDL 2.2 speci�cation language for
implementing our planning domain. We do not claim that this is the best or the �nal
choice of a planning tool, as the �eld of AI planning keeps developing. The use of PDDL
as a domain representation language facilitates a lot any future transition from LPG-td
to another PDDL-based planner.

6.1.2 Domain preprocessing and PDDL implementation

Now let us discuss two implementation speci�c questions, namely, the implementation of
decomposition actions, and the implementation of domain axioms.

AND/OR-decomposition actions should take n+2 parameters, where n is the number
of subgoals of the decomposed goal. As the number of action parameters in PDDL should
be �xed, we have to �x an upper bound for n and introduce an and/or subgoal n predicate
and a decomposition action for each i � n. According to our experience, large values of
n is hardly the case in practice. E.g., for all the (medium-size industrial) case studies
considered in [123] and [142], n is less or equal than 6. In Figure 6.1(b) an example of
PDDL code of the AND-decomposition action for the case of two subgoals is presented.

As discussed in the previous section, axioms in our planning domain should be de�ned
for the following cases:

� to infer the satisfaction of a goal from the satisfaction of all its AND-subgoals, or
one of its OR-subgoals;

� to infer the satisfaction of an end goal from the satisfaction of its means.

Also, as explained in Section 4.1, the following rules should hold for the planning
domain predicates:



CHAPTER 6. IMPLEMENTATION AND VALIDATION OF THE APPROACH 56

(: action SATISFIES
: parameters(?a� actor ?g � goal)
: precondition(and
(can satisfy ?a ?g)
(forall(?g1� goal)(and
(or (not(con
ict ?g1 ?g)) (not(satis�ed ?g1)))
(or (not(order ?g1?g)) (satis�ed ?g1))
(or (not(means end ?g1 ?g)) (not(satis�ed ?g1))))

)
(wants ?a ?g)

)
: e�ect(and
(satis�ed ?g)
(not(wants ?a ?g))
(pr satis�es ?a ?g)

)
)

(a) Satisfaction action

(: actionAND DECOMPOSES2
: parameters(?a� actor ?g ?g1 ?g2� goal)
: precondition(and
(and subgoal2 ?g ?g1 ?g2)
(wants ?a ?g)

)
: e�ect(and
(wants ?a ?g1)
(wants ?a ?g2)
(not(wants ?a ?g))
(pr and decomposes2 ?a ?g ?g1 ?g2)

)
)

(b) Decomposition action

Figure 6.1: Samples of PDDL code.

� if goal g1 is in con
ict with goal g2, then g2 is in con
ict g1, that is, con
ict relations
between goals is symmetric;

� predicates de�ning actors capabilities and possible dependencies either for all goals or
for the goals of a speci�c goal type (can depend on, can depend on gt, can satisfy gt),
should be \instantiated" so that only capabilities and possible dependencies for the
concrete goals (can depend on g and can satisfy) can be used in action formalization.

However, de�ning axioms in terms of derived predicates [50] increases the complexity
of the planning problem to the point where the planner is not e�cient anymore. This
problem is neither new, nor speci�c to the planner we have adopted, as there is always
a trade-o� between the expressiveness and manageability of a formal domain de�nition
language [66]. In a number of works [66, 44, 64] di�erent approaches to the preprocessing
of complicated planning domains are proposed. The key idea is to de�ne a mapping
that transforms a complicated domain to the equivalent one, in which axioms, quanti�es,
conditional e�ects and the like, are represented using a restricted (and less expressive)
subset of PDDL language. For the domain axioms, the approach consists in introducing
new domain actions and modifying the preconditions and e�ects of the existing actions.

None of the above cited approaches is suitable for dealing with the axioms in our
planning domain. The algorithm presented in [66] was proved to be incorrect in [64].
The alternative algorithms presented in [64] and [44] consider only those axioms that
cannot a�ect predicates which are changed in e�ects of any domain action. However, this
is not the case in our domain, as satis�ed predicate has to be changed both by actions
and axioms. Inspired by the above approaches, we propose the following transformation
of our planning domain to its equivalent version that does not represent axioms explicitly.

Firstly, we de�ne a number of new planning actions, presented in Table 6.2. Combines
actions appear in a plan each time the satisfaction of a goal should be inferred from the
satisfaction of its subgoals. Infers actions support means-end relationship between goals.



CHAPTER 6. IMPLEMENTATION AND VALIDATION OF THE APPROACH 57

COMBINES AND(g; g1; ::; gn : goal)

precondition:
and subgoaln(g; g1; ::; gn) ^ satis�ed(g1) ^ :: ^ satis�ed(gn)

e�ect:
satis�ed(g)

COMBINES OR(g; g1; ::; gn : goal)

precondition:
or subgoaln(g; g1; ::; gn) ^ (satis�ed(g1) _ :: _ satis�ed(gn))

e�ect:
satis�ed(g)

INFERS(g means; g end : goal)

precondition:
means end(g means; g end) ^ satis�ed(g means)^
8g : goal:(con
ict(g; g end) ^ satis�ed(g))

e�ect:
satis�ed(g end)

Table 6.2: Additional actions: preconditions and e�ects

Note that in the preconditions of this action we have to check whether the end goal is in
con
ict with any of the goals satis�ed so far. If so, the satisfaction of the end goal cannot
be inferred as, in our framework, the con
ict relation is stronger than the means-end
relation.

In order to enforce the use of means-end relation and to avoid redundancy, an ad-
ditional constraint should be added to the precondition of the satisfaction action. As
presented in Figure 6.1(a), a goal cannot be satis�ed if its satisfaction can be inferred
using means-end relation. Note that the meaning of predicate pr satisfies used in Fig-
ure 6.1(a), as well as of the other \trace" predicates, will be discussed in Section 5.4.

The last step concerns preprocessing the planning problem speci�cation. Namely,

� for each con
ict(g1, g2) predicate in the problem de�nition, we add (avoiding the
duplicates) con
ict(g2; g1);

� each can depend on is replaced by can depend on g predicates for all goals g;

� each can depend on gt is replaced by can depend on g predicates for all goals g of the
corresponding goal type;

� each can satisfy gt is replaced by can satisfy predicates for all goals g of the corre-
sponding goal type.

As a result, with LPG-td, producing a plan for the planning domain with derived
predicates takes more than 100 times longer than producing the same plan with the
preprocessed domain. This, basically, means that planning with the derived predicates
does not scale, and cannot be used in the real-life domains. During the evaluation of a
plan, which is discussed in the next section, Combine and Infers actions are not taken into
considerations, as only those actions which represent a temporal act, rather than just an
immediate inference, matter for the evaluation process.



CHAPTER 6. IMPLEMENTATION AND VALIDATION OF THE APPROACH 58

Figure 6.2: S&D tool: de�ning actor properties

6.1.3 Tool support

The proposed planning-based requirements engineering approach is supported by S&D
(Security and Dependability) Tropos Tool [122], an integrated Eclipse-based framework for
modelling and analyzing system requirements, developed within SERENITY EU project1.

The tool has an interface for the input of actors, goals and their properties (see screen-
shots in Figures 6.2-6.3). This input is then translated into PDDL speci�cation language
(see Figure 6.4). LPG-td is built in the tool and is used to generate alternative require-
ments structures (see Figure 6.5), which are then represented graphically using Tropos
notation(see Figure 6.6).

For maintainability purposes, PDDL speci�cations are external to S&D Tool tool.
Also, the tool allows de�ning the input format in an XML-based form, and thus the
domain can be easily extended to capture more domain properties and constraints, in
addition to those presented in Table 4.1.

6.2 Case studies

6.2.1 E-business case study

In the early requirements model of the e-business case study in Figure 3.1, the goals get
information about loan plans, get application accepted and get loan approved are delegated
by the customer to the bank. To satisfy these goals, the actors representing the bank,

1http://www.serenity-project.org/



CHAPTER 6. IMPLEMENTATION AND VALIDATION OF THE APPROACH 59

Figure 6.3: S&D tool: de�ning goal properties

Figure 6.4: S&D tool: PDDL speci�cation



CHAPTER 6. IMPLEMENTATION AND VALIDATION OF THE APPROACH 60

Figure 6.5: S&D tool: running the planner

Figure 6.6: S&D tool: Tropos diagram



CHAPTER 6. IMPLEMENTATION AND VALIDATION OF THE APPROACH 61

i.e. the manager and the bank clerks, decompose these goal as follows. The �rst goal,
get information about loan plans, can be satis�ed either via online information request
processing, or by allowing a customer to come and ask for the related information in
person. The second goal, get application accepted, is decomposed into two OR-subgoals,
one of which concerns the processing of hand-�lled loan applications, while the other refers
to the processing of online applications. In both cases, the customer and, after that, her
request for a loan are registered. We assume that the bank would like to stick to either
online or in-person way of working with customers, that is, con
ict relations are de�ned
(a) between goals provide loan information in person and process online loan application,
and (b) between goals provide loan information on online request and process hand-�lled
application.

The third goal, get loan approved, is decomposed into three AND-subgoals, evaluate
loan, decide on loan and �nalize the contract. The �rst subgoal concerns the evaluation of
credit worthiness of both new and existing bank customers, and, in the latter case, can be
done either from scratch or using the previous evaluations for the same customer stored
in the internal database. In turn, evaluating the customer credit worthiness from scratch,
requires the involvement of the credit bureau. The goal of �nalizing the terms concerns
communicating the decision and available options to a customer (in person or via phone
call), and, �nally, signing the loan contract. Note that there are order relations among
the goals, e.g. loan evaluation should be done before the �nal decision can be made and
contract signed. We do not report all order relations here, though they are part of the
planning problem �le that is used in the experiments reported below.

All the actors, goals, possible ways of goal decomposition, con
ict and order relations
are formalized in the problem de�nition �le, which format is the same as in Figure 4.1 and
which we do not present here for the space reasons. Also, in this �le possible dependencies
among actors and actor capabilities are speci�ed. Namely, manager and senior clerk are
capable of calculating internal ratings, reviewing existing ratings, deciding on loans and
signing contracts. Senior and junior clerks are capable of approving online information
requests and applications, registering customers and applications and preparing contracts.
Manager, senior and junior clerks are capable of providing information on loan plans in
person and communicating �nal decision and contract options to customers by phone or
in person. The goal check external rating can be satis�ed by the credit bureau. The
software system, a new actor introduced to the scenario in the process of requirements
analysis, is capable of achieving a number of technological goals, such as processing online
information requests, registering customers and online loan requests and checking bank
database for the existing customer ratings.

In total, the de�nition of the planning problem for the e-business case study comprises
52 entities (6 actors, 5 goal types and 41 goals organized in 7 decomposition levels), 91
predicates before and 132 predicates after the preprocessing (see Section 6.1 for the details
on the preprocessing of planning problem speci�cation).

Here we illustrate the planning and evaluation procedure presented in Section 5.4. We
assume that only satisfaction actions have non-zero complexity for all the actors, and
the complexity of one subgoal is equal to one unit for any actor. Maximum complexities
are de�ned for the manager (1 unit) and for the senior clerk (3 units). In Table 6.3



CHAPTER 6. IMPLEMENTATION AND VALIDATION OF THE APPROACH 62

it# Description Actor : Workload Who deviates

1

Manager answers customer requests on loan plans,
provides internal ratings and decides on loans; Ju-
nior clerk registers customer applications; Senior clerk
communicates �nal decisions to customers and �nal-
izes contracts.

Manager : 3
Senior Clerk : 3
Junior Clerk : 2
System : 0

Manager

2

Manager decides on loans; Senior clerk provides in-
ternal ratings, communicates �nal decisions to cus-
tomers and �nalizes contracts; customer requests are
processed and customer applications are registered au-
tomatically by the System and approved by Senior
clerk.

Manager : 1
Senior Clerk : 6
Junior Clerk : 0
System : 3

Senior Clerk

3

No solution found; Pamax of the previous iteration
is revisited and SATISFIES(SeniorClerk, CalcIntRating)

is replaced with SATISFIES(SeniorClerk, PrepareCon-

tract).

| |

4

Manager decides on loans; Senior clerk processes cus-
tomer requests and registers customer applications,
provides internal ratings and signs contracts; Junior
clerk communicates �nal decisions to customers and
prepares contract templates.

Manager : 1
Senior Clerk : 4
Junior Clerk : 2
System : 0

Senior Clerk

5

Manager decides on loans; Senior clerk provides inter-
nal ratings, communicates �nal decisions to customers
and signs contracts; customer requests are processed
and customer applications are registered automati-
cally by the System and approved by Junior clerk;
Junior clerk prepares contract templates.

Manager : 1
Senior Clerk : 3
Junior Clerk : 3
System : 3

|

Table 6.3: E-business case study: plans and their evaluation



CHAPTER 6. IMPLEMENTATION AND VALIDATION OF THE APPROACH 63

Figure 6.7: E-business case study: adopted solution



CHAPTER 6. IMPLEMENTATION AND VALIDATION OF THE APPROACH 64

the iterations of the planning and evaluation procedure applied to the case study are
presented. Five iterations are required to reach a good enough solution. For each iteration
we give a short textual description, the costs of the plan constructed on this iteration for
each of the actors, and the name of amax actor (see Section 5.4 for the details), who
initiates the deviation from the generated plan as his complexity thresholds are violated.
The �nal alternative is presented in Figure 6.7.

On each iteration, LPG-td took about 5.5 seconds to produce a plan. The plan corre-
sponding to the �nal alternative consists of 57 actions organized in 33 time steps: LPG-td
planner produces partially ordered plans, that is, actions that can be performed in parallel
are grouped together.

Let us now discuss the evaluation of the �nal design alternative with respect to the
global criteria presented in Section 5.1.

There can be identi�ed at least two important non-functional aspects relevant for the
e-business case study. The �rst aspect concerns customer satisfaction, which includes
quality of service (referred to the direct communication between customers and bank
clerks), usability, or ease of use of the online system, availability both of clerks and the
online system, and security of the banking system as perceived by the customer. The
second aspect refers to maximizing bank pro�ts, which includes reliability of customer
credit trustworthiness assessment, security of the banking procedures, and attractiveness
of bank services for the customer. Both lists are not supposed to be exhaustive, other
non-functional aspects can be added after examining the stakeholder interests and the
speci�cs of a concrete bank.

To give an example of comparing two design alternatives with respect to a non-
functional requirement, consider the two alternative ways the loan contract terms are
communicated to the customer: either in person, or via phone. The customer may con-
sider the former alternative to contribute positively to the security of the procedure just
because he perceives personal communication to be more secure for such a private case as
the loan contract discussion. Some of the listed non-functional aspect can be addressed
only during the further elaboration of the case study. For instance, the questions related
to usability and availability of the online banking system are considered during the de-
tailed design of the latter. Some other aspects, such as the availability of the clerks, can
be assessed only on the instantiated model, in which roles are assigned to concrete agents,
and additional instance level constraints are enforced. An example of such constraint,
related to security of banking procedures and reliability of customer rating calculations,
is the requirement that certain phases of the customer assessment cannot be performed
by the same clerks. To a certain extent, this constraint is already addressed at the level
of roles, as in the �nal plan the manager takes the �nal decision on a loan, while the
other operations are performed by the senior clerk. The problems related to requirements
models instantiation and the analysis of the instance level constraints appear to be an
interesting research direction and are among our ongoing activities.

The examples of the cost-based global evaluation criteria relevant to the case study are
the ones concerned with the resources consumed in each of the alternative con�gurations
of a socio-technical system. For instance, it might be of interest to assess how intensively
the printer is used during the loan approval process (the result can be used to adjust the



CHAPTER 6. IMPLEMENTATION AND VALIDATION OF THE APPROACH 65

existing infrastructure), or how often the internal document base is consulted during the
various stages of the loan approval process (this might be related to the unsatisfactory
performance of the bank clerks, or may reveal the insu�cient throughput of the internal
network). It is relatively straightforward to quantify such criteria and to evaluate the
alternatives using the cost-based schema presented in Section 5.1. Note that, as in case
of non-functional requirements, some of the cost-based criteria are applicable only at the
instance level, for example, in a model containing roles but not concrete agents it does
not appear possible to assess the total e�ort (e.g. in working hours) normally spent for
processing one customer application.

The scale of the case study, at least as it is presented in the thesis, does not provide the
opportunity to fully test the criticality evaluation metrics discussed in Section 5.1. The
observations that can be made on the �nal design alternative presented in Figure 6.7 with
respect to criticality are, for instance, the following. The senior clerk is a critical actor
for the goal get loan approved, while the unavailability of the manager will not be highly
critical, as the only contribution of the manager to this goal is making the �nal decision.
In an alternative system con�guration, in which the �nal decision is taken by the senior
clerk, the criticality of the manager for the goal get loan approved is zero, however, as
it was discussed above, this contributes negatively to the non-functional requirement for
the security and reliability of the loan approval procedure.

6.2.2 Other case studies

We have applied the framework presented in the thesis to a number of case studies in a
number of application domains. The technical details on most of the case studies and
the respective customization of the framework are given in Chapter 7. Here we brie
y
describe each of the case studies and the issues that were addressed.

Medical Information System case study. In [32] we have customized our planning-
based framework for the domain of secure system design. The planning domain is
de�ned to guarantee that the resulting socio-technical model satis�es the trust and
permission constraints imposed on it (e.g., no goal is delegated along an untrusted
link). The framework was applied to the Medical Information System case study,
which deals with the payment for medical care, in particular, two alternative welfare
schemes are considered. Further details on the case study can be found in Section 7.1.

Air Tra�c Management scenario. . Another extension of our framework [9] used
risk-based evaluation metrics for selecting a suitable design alternative, and aims at
safety critical applications. The approach was evaluated on the basis of Air Tra�c
Management case study which comes from SERENITY EU project [123]. In this
case study we have considered the functioning of Air tra�c Control Center and the
replanning of its work in case of the changing tra�c conditions. See Section 7.2 for
the further details.

E-Voting case study . Another interesting case study comes from the ProVotE project
funded by the Autonomous Province of Trento, which promotes the introduction of
forms of e-voting for the provincial elections. The goal of the ProVotE is that of



CHAPTER 6. IMPLEMENTATION AND VALIDATION OF THE APPROACH 66

providing a smooth transition from the paper-based voting system to new tech-
nologies. In [27] we have presented the details on the requirements modelling and
analysis undertaken in the course of this case study, namely, the precise modelling of
the existing paper-based electoral processes, and the mechanisms for documenting
and reasoning on the possible alternative implementations of the procedures to sup-
port the electronic-based elections. In [30] we have presented the application of our
planning-based framework to the fragment of the e-voting case study that concerns
the process of data transfer from a polling station to the central Electoral o�ce at
the end of an election day.

Search-and-order MAS. In [28] we have customized our planning-based framework to
the problem of self-con�guring socio-technical systems. The presented approach was
illustrated with the scenario involving a small company which sells o�ce equipment
to its customers, namely, we considered the problem of runtime recon�guration of the
supporting systems in response to both the internal and the environmental changes.
See Section 7.3 for the further details.

Software Development Support System case study . The case study we have used
for the illustrative purposes in [29], is centered around the development process for
medium-scale web based information systems (e.g., online library catalog, or travel
agency home page with online trip booking, etc.) in a a small software development
company. Interestingly, the realization of the socio-technical design practice is itself
a socio-technical system [40], and it is the analysis of such a \second order" STS
that we have illustrated in [29]. Speci�cally, we considered three development teams
within a company and analyzed the ways of task distribution and communication
among them.

Each of the above case studies helped us not only to evaluate the framework in terms
of its usability and performance, but also served as a test case, that is, helped to �x the

aw in the formalization and PDDL implementation as well as to add the new properties
and constraints to the planning domain.

6.3 Scalability experiments

The case study considered in Section 6.2 allows us to illustrate how the proposed planning-
based framework works, and what support it provides to a designer. Still, a reader
might wonder what happens in case of much bigger models, i.e. what conclusions can be
drawn about the scalability of the approach. In this section, we report on a number of
experiments related to the above question.

The main idea of the �rst part of the experiments was to understand how the growing
complexity of a planning problem in
uences the performance of the approach. We have
looked at series of planning problems with (a) growing number of goals to satisfy, and
(b) growing complexity of the goal trees. All experiments were conducted using LPG-td
planner [99].

A building block of each planning problem �le is an elementary tree which contains 4
decomposition levels, 15 goals (Gi, i = 1; 15), 2 OR and 4 AND decomposition relations:



CHAPTER 6. IMPLEMENTATION AND VALIDATION OF THE APPROACH 67

Ntrees Nelem Nleafs ttotal
1 15 4 0.14

2 30 8 1.08

3 45 12 5.24

4 60 16 7.43

5 75 20 6.03

6 90 24 15.3

7 105 28 13.25

8 120 32 16.83

9 135 36 19.83

10 150 40 26.52

11 165 44 37.29

12 180 48 ERR

Table 6.4: Experimental results: increasing the number of elementary goal trees

(or subgoal2 G1G2G3)
(and subgoal3 G2G4G5G6)
(or subgoal2 G4G9G10)
(and subgoal2 G5G11G12)
(and subgoal2 G3G7G8)
(and subgoal3 G7G13G14G15)

All problem �les contain 6 actors (Ai, i = 1; 6) organized into three levels with respect
to the relations between them:
(can depend onA1A2)
(can depend onA1A3)
(can depend onA2A4)
(can depend onA2A5)
(can depend onA3A5)
(can depend onA3A6)

Overlapping capabilities are introduced, namely, each leaf goal can be satis�ed by two
actors.

In the experiments reported in Table 6.4 the number of elementary goal trees Ntrees

which actor A1 wants to satisfy was increasing. That is, we studied what happens when the
planning problem grows \in breadth", namely, how the planner behaves in case the number
of top goals to be satis�ed increases, while the number of levels in goal decomposition
trees stays the same. Nelem stands for the total number of goals in the planning problem
�le, Nleafs stands for the number of leaf goals satis�ed in a plan. ttotal is the time (in
seconds) the planner took to solve the problem, namely, it is the sum of two components,
parsing and search time, the latter one being insigni�cant in all the experiments. ERR
denotes the situations in which the planner was not able to produce a solution due to the
problem complexity. As shown in the table, the planner was able to solve the problems
with up to 11 top goals to satisfy (remember that each top goal is an elementary tree
containing 15 goals organized into 4 decomposition levels).



CHAPTER 6. IMPLEMENTATION AND VALIDATION OF THE APPROACH 68

Nlev Nelem Nleafs ttotal ttotal with no OR's

4 15 4 0.15 0.14

7 43 7 4.39 4.31

8 51 11 8.88 8.71

9 59 15 6.07 5.48

10 67 19 7.93 7.65

11 75 23 5.94 5.95

12 83 27 12.91 11.84

13 91 31 10.49 8.07

14 99 35 12.58 9.3

15 107 39 12.59 10.48

17 115 43 15.11 10.13

19 123 47 21.61 17

23 131 51 40.39 34.66

24 139 55 ERR ERR

Table 6.5: Experimental results: increasing the number of goal tree levels

In the experiments reported in Table 6.5, the number of goal tree levels Nlev for a
top goal A1 wants to satisfy was increasing. That is, we study what happens when the
planning problem grows \in depth", namely, how the planner behaves in case the number
of top goals (one goal in our case) to be satis�ed does not change, while the number of
levels in goal decomposition tree, and thus the number of subgoals increases. The meaning
of Nelem, Nleafs, ERR, and ttotal is the same as in Table 6.4. The �rst line of numbers in
the table refers to the problem �le containing one elementary tree, the second line { to
the problem �le containing three elementary trees, one at levels 1-3, and the other two at
levels 4-7. For each of the subsequent lines a problem �le was constructed by adding one
or two levels of leaf goals to the previous problem �le. As shown in the table, the planner
was able to solve problems with the top goal having up to 23 decomposition levels.

The last column of values in Table 6.4 refers to ttotal with no OR's, which is the time the
planner took to solve the modi�ed problem, where all OR-decompositions in a problem
�le were changed to AND-decompositions. The fact that ttotal with no OR's is less than
ttotal in all the lines is not surprising, as each OR-decomposition doubles the number of
alternative solutions, and thus, increases the search space. Additional line of experiments,
which is not reported here, revealed that avoiding overlapping capabilities (i.e. reducing
a problem �le to the one in which each goal can be satis�ed by just one actor) did not
have a signi�cant impact on ttotal values.

The results reported in Tables 6.4 and 6.5, in our opinion, justify the scalability of the
use of planning in the domain of requirements engineering. According to our experience,
requirements models of real-life case studies (including the ones considered in this thesis)
stay within the complexity limits which our planning approach can handle. For instance,
for all the case studies reported in [123], the depth of goal decomposition trees is not
greater than 10 (while in our approach the planner was able to process the goal tree with
depth equal to 23). The number of top goals for the models in [123] is lower than 11,



CHAPTER 6. IMPLEMENTATION AND VALIDATION OF THE APPROACH 69

a number of elementary goal trees the planner was able to process in the experiments
reported in Table 6.4.

The second set of experiments, which included not only planning but also the evalua-
tion step, was conducted in order to study the scalability of the whole approach. Based
on the obtained results, the following two observations were made. Firstly, parsing and
search times were not in
uenced by additional predicates (negations of tracing predicates,
see Section 5.4 for the details) in the goal of the planning problem. Secondly, convergence
to a good enough plan appeared to depend on the ratio of acceptable (in terms of costs)
assignments of goals to actors among all possible assignments. For relatively small prob-
lems (with 6 actors, 10 leaf goals in a plan, each goal can be satis�ed by two actors) the
number of iterations towards a good enough plan was less or equal to 10.

To summarize, in this chapter we have presented the details of the implementation
of the approach proposed in Chapters 3-5 of the thesis, and evaluated it with the help
of a number of case studies as well as the scalability experiments. With respect to the
implementation, two aspects were addressed here: �rstly, the implementation of the plan-
ning domain in PDDL speci�cation language and the related performance problems, and
secondly, the tool supporting the designer in the whole process of exploring the space
of design alternatives. As for case studies, in this chapter we have presented the details
for only one of them, namely, the e-business case study coming from SERENITY EU
project [123]. We have summarized the work on the other case studies, leaving the de-
tailed discussion of three of them to the next chapter. Finally, we have reported on the
scalability experiments, which, in our opinion, justify the use of planning techniques to
support the design of socio-technical systems.



Chapter 7

Customizations and Applications of

the Approach

In this chapter, we report on the four application of the planning-based framework pre-
sented in the previous chapters. We have customized and the framework for the domains
of secure and trusted systems design, risk-driven design of safety critical systems, self-
con�guration of socio-technical systems at runtime, as well as for the problem of instantia-
tion of socio-technical designs. For each of these applications, we present a motivating case
study, de�ne the planning domain, and discuss the application of the resulting approach
to the case studies.

7.1 Designing secure systems

In this section we present the application of our planning-based approach to the domain
of secure and trusted system design. The approach extends Secure Tropos analysis and
design framework [70], and is illustrated using a Medical information system case study.1

The design of secure and trusted software that meets stakeholder needs is an increas-
ingly hot issue in Software Engineering (SE). This quest has led to re�ned Requirements
Engineering (RE) and SE methodologies so that security concerns can be addressed dur-
ing the early stages of software development (e.g. Secure Tropos vs i*/Tropos, UMLsec
vs UML, etc.). Moreover, industrial software production processes have been tightened
to reduce the number of existing bugs in operational software systems through code walk-
throughs, security reviews etc. Further, the complexity of present software is such that
all methodologies come with tools for automation support.

Secure Tropos methodology [70], being an extension of Tropos [25], is aimed at de-
signing secure systems. Its primitive concepts include those of Tropos and i* [140], but
also concepts that address security concerns, such as ownership, permission and trust.
Further, the framework already supports the designer with automated reasoning tools for
the veri�cation of requirements as follows:

1. Graphical capture of the requirements for the organization and the system-to-be,

1The material presented in this section was published in [32], and is a joint work with Nicola Zannone and
Fabio Massacci.

70



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 71

2. Formal veri�cation of the functional and security requirements by

� completion of the model drawn by the designer with axioms (a process hidden
to the designer),

� checking the model for the satisfaction of formal properties corresponding to
speci�c security or design patterns

In this framework (as in many other similar RE and SE frameworks) the selection of
alternatives is left to the designer. In the following, we show that we can do better.

Indeed, in Secure Tropos requirements are conceived as networks of delegation of
execution relations among actors (organizational/human/software agents, positions and
roles) for goals, tasks and resources. Every delegation of execution also involves two
actors, where one actor depends on the other for the delivery of a resource, the ful�llment
of a goal, or the execution of a task. As discussed in Section 4.2, these can be seen as
actions that the designer ascribes to the members of the organization and the system-
to-be. As suggested by Gans et al. [63] the task of designing such networks can then
be framed as a planning problem for multi-agent systems: selecting a suitable possible
design corresponds to selecting a plan that satis�es the prescribed or described goals of
human or system actors. Secure Tropos adds to the picture also the notion of delegation
of permission and various notions of trust.

The focus of this section is not on optimal designs: as noted by Herbert Simon [125],
what makes humans e�ective (in comparison to machines) is their ability to identify a
satis�cing design as opposed to an optimal one. Moreover, we assume that the designer
remains in the loop: designs generated by the planner are suggestions to be re�ned,
amended and approved by the designer. The planner is a(nother) support tool intended
to facilitate the design process.

7.1.1 Secure Tropos and a motivating case study

Secure Tropos [70] is a RE methodology for modeling and analyzing functional and secu-
rity requirements, extending the Tropos methodology [25]. This methodology is tailored
to describe both the system-to-be and its organizational environment starting with early
phases of the system development process. The main advantage of this approach is that
one can capture not only the what or the how, but also the why a security mechanism
should be included in the system design. In particular, Secure Tropos deals with business-
level (as opposed to low-level) security requirements. The focus of such requirements
includes, but is not limited to, how to build trust among di�erent partners in a virtual
organization and trust management. Although their name does not mention security,
they are generally regarded as part of the overall security framework.

Secure Tropos uses the concepts of actor, goal, task, resource and social relations for
de�ning entitlements, capabilities and responsibilities of actors. Actors' desires, entitle-
ments, capabilities and responsibilities are de�ned through social relations. In particular,
Secure Tropos supports requesting, ownership, provisioning, trust, and delegation. Re-
questing identi�es desires of actors. Ownership identi�es the legitimate owner of a goal,
task and resource, that has full authority on access and disposition of his possessions.



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 72

Provisioning identi�es actors who have the capabilities to achieve a goal, execute a task
or deliver a resource. We illustrate the use of the above concepts with the help of the
Medical information system (IS) for the payment for medical care case study, presented
in [32].

Example 1. The Health Care Authority (HCA) is the \owner" of the goal provide medical
care; that is, it is the only one that can decide who can provide medical care and through
what process. On the other hand, Patient wants this goal to be ful�lled. This goal can be
AND decomposed into two sub-goals: provisioning of medical care and payment for medical
care. The Healthcare Provider has the capability for the provisioning of medical care, but it
should wait for authorization from HCA before doing so.

Delegation of execution is used to model situations where an actor (the delegator)
delegates the responsibilities to achieve a goal, execute a task, or deliver a resource to
another actor (the delegatee) since he has not the capability to provide one of above by
himself. It corresponds to the actual choice of the design. Trust of execution represents
the belief of an actor (the trustor) that another actor (the trustee) has the capabilities to
achieve a goal, execute a task or deliver a resource. Essentially, delegation is an action due
to a decision, whereas trust is a mental state driving such decision. Tropos dependency
can be de�ned in terms of trust and delegation [71]. Thus, a Tropos model can be seen
as a particular Secure Tropos model. In order to model both functional and security
requirements, Secure Tropos introduces also relations involving permission. Delegation of
permission is used when in the domain of analysis there is a formal passage of authority
(e.g. a signed piece of paper, a digital credential, etc.). This relation is used to model
scenarios where an actor authorizes another actor to achieve a goal, execute a task, or
deliver a resource. It corresponds to the actual choice of the design. Trust of permission
represents the belief of an actor that another actor will not misuse the goal, task or
resource.

Example 2. The HCA must choose between di�erent providers for the welfare manage-
ment for executives of a public institution. Indeed, since they have a special private-law
contract, they can qualify for both the INPDAP and INPDAI2 welfare schemes. The IN-
PDAP scheme requires that the Patient partially pays for medical care (with a ticket) and
the main cost is directly covered by the HCA. On the contrary, the INPDAI scheme requires
that the Patient pays in advance the full cost of medical care and then gets reimbursed.
Once an institution has decided the payment scheme, this will be part of the requirements
to be passed onto the next stages of system development. Obviously, the choice of the
alternative may have signi�cant impacts on other parts of the design.

Figure 7.1 summarizes the above examples in terms of a Secure Tropos model. In this
diagram, actors are represented as circles and goals as ovals. Labels O, P and R are used
for representing ownership, provisioning and requesting relations, respectively. Finally,
we represent trust of permission and trust of execution relationships as edges respectively
labelled Tp and Te.

Once a stage of the modeling phase is concluded, Secure Tropos provides mechanisms
for the veri�cation of the model [70]. This means that the design process iterates over

2INPDAP (Istituto Nazionale di Previdenza per i Dipendenti dell'Amministrazione Pubblica) and INPDAI
(Istituto Nazionale di Previdenza per i Dirigenti di Aziende Industriali) are two Italian national welfare institutes.



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 73

Figure 7.1: Medical IS example: Secure Tropos model

the following steps:

� model the system;

� translate the model into a set of clauses (this is done automatically);

� verify whether appropriate design or security patterns are satis�ed by the model.

Through this process, one can verify the compliance of the model with desirable prop-
erties. For example, it can be checked whether the delegator trusts that the delegatee
will achieve a goal, execute a task or deliver a resource (trust of execution), or will use a
goal, task or resource correctly (trust of permission). Other desirable properties involve
verifying whether an actor who requires a service, is con�dent that it will be delivered.
Furthermore, an owner may wish to delegate permissions to an actor only if the latter
actually does need the permission. This is done, for example, to avoid the possibility of
having alternate paths of permission delegations. Secure Tropos provides the support for
identifying all these situations.

However, the \standard" automated reasoning capabilities of Secure Tropos are only
able to check that subtle errors are not overlooked. This is rather unsatisfactory from the
point of view of the designer. Whereas he may have a good understanding of possible
alternatives, he may not be sure which is the most appropriate alternative for the case
at hand. This is particularly true for delegations of permission that need to comply with
complex privacy regulations (see [102]).



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 74

(a) Potential choices (b) Actual choice

(c) Potential choices (d) Actual choice

Figure 7.2: Secure systems design: alternatives

Figures 7.2(a) and 7.2(c) present fragments of Figure 7.1, that point out the potential
choices of the design. The requirements engineer has identi�ed trust relations between
the HCA and INPDAP and INPDAI. However, when passing the requirements onto the
next stage only one alternative has to be selected because that will be the system that is
chosen. Figures 7.2(b) and 7.2(d) present the actual choices corresponding to the potential
choices presented in Figures 7.2(a) and 7.2(c), respectively.

To support the designer in the process of selecting the best alternative, we proposed
to use a modi�cation of the planning-based approach presented in Chapter 4 of the thesis.
In the following, we present the modi�ed formalization of the planning domain.

7.1.2 Planning domain

Table 7.1 presents the predicates used to describe the initial state of the system in terms
of actor and goal properties, and social relations among actors. We use

� AND/OR subgoal to describe the possible decomposition of a goal;

� provides, requests and owns to indicate that an actor has the capabilities to achieve
a goal, desires the achievement of a goal, and is the legitimate owner of a goal,
respectively;

� trustexe and trustper to represent trust of execution and trust of permission relations,
respectively.

The desired state of the system (or goal of the planning problem) is described through
the conjunction of predicates satis�ed derived from the requesting relation in the initial
state. Essentially, for each request(a,g) we need to derive satis�ed(g).



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 75

Goal Properties

AND subgoaln(g : goal; g1 : goal; : : : ; gn : goal)
OR subgoaln(g : goal; g1 : goal; : : : ; gn : goal)
satis�ed(g : goal)

Actor Properties

provides(a : actor; g : goal)
requests(a : actor; g : goal)
owns(a : actor; g : goal)

Actor Relations

trustexe(a : actor; b : actor; g : goal)
trustper(a : actor; b : actor; g : goal)

Table 7.1: Secure systems design: primitive predicates

Actions are listed in Table 7.2, and de�ned in terms of preconditions and e�ects as
follows:

� Satis�es. Following the de�nition of goal satisfaction given in [70], we say that an
actor satis�es a goal only if the actor wants and is able to achieve the goal, and { last
but not least { he is entitled to achieve it. The e�ect of this action is the ful�llment
of the goal.

� DELEGATES EXECUTION. This action is equivalent to goal delegation action de�ned
in Section 4.2. Namely, in case an actor does not have enough capabilities to achieve
assigned goals by himself, he has to delegate their execution to other actors. This is
performed only if the delegator requires the ful�llment of the goal and trusts that
the delegatee will achieve it.

� DELEGATES PERMISSION. In the initial state of the system, only the owner of a
goal is entitled to achieve it. However, this does not mean that he wants it or has the
capabilities to achieve it. On the contrary, in the system there may be some actors
that want a goal to be achieved and others that can achieve it. Thus, the owner
could decide to authorize trusted actors to achieve the goal. The formal passage
of authority takes place when the owner issues a certi�cate that authorizes another
actor to achieve the goal. We represent the act of issuing a permission through
action DELEGATES PERMISSION which is performed only if the delegator has the
permission on the goal and trusts that the delegatee will not misuse the goal. The
consequence of this action is to grant rights (on the goal) to the delegatee, which,
in turn, can re-delegate them to other trusted actors.

� AND/OR DECOMPOSES. These actions are equivalent to goal AND/OR-
decomposition actions de�ned in Section 4.2. The e�ect of AND DECOMPOSES
and OR DECOMPOSES is that the actor who re�nes the goal focuses on the ful-
�llment of subgoals instead of the ful�llment of the initial goal. One may argue if
decomposing a goal really takes time, and thus, if it is reasonable to treat it as an
action. However, a goal may be decomposed in di�erent ways. Thus, we assume
that the act of thinking on how it can be decomposed takes time.

The domain axioms concerning the propagation of goal satisfaction along goal re�ne-
ment are de�ned exactly the same as in Section 4.3. Moreover, axioms are used to derive



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 76

Basic Actions

DELEGATES EXECUTION(a : actor; b : actor; g : goal)
DELEGATES PERMISSION(a : actor; b : actor; g : goal)
SATISFIES(a : actor; g : goal)
AND DECOMPOSESn(a : actor; g : goal; g1 : goal; : : : ; gn : goal)
OR DECOMPOSESn(a : actor; g : goal; g1 : goal; : : : ; gn : goal)

Absence of Trust

NEGITIATES(a : actor; b : actor; g : goal)
CONTRACTS(a : actor; b : actor; g : goal)
DELEGATES EXECUTION UNDER SUSPICION(a : actor; b : actor; g : goal)
FULFILLS(a : actor; g : goal)
EVALUATES(a : actor; g : goal)

Table 7.2: Secure systems design: actions

and propagate entitlements. Since the owner is entitled to achieve his goals, execute his
tasks and access his resources, actors' entitlements should be propagated top-down along
goal re�nement.

Delegation and contract

Many business and social studies have emphasized the key role played by trust as a
necessary condition for ensuring the success of organizations [49]. However, common sense
suggests that fully trusted domains are simply idealizations. Actually, many domains
require that actors who do not have the capabilities to ful�ll their objectives, must delegate
the execution of their goals to other actors even if they do not trust the delegatees.
The presence (or lack) of trust relations among system actors particularly in
uences the
strategies to achieve a goal [100]. In other words, the selection of actions to ful�ll a
goal changes depending on the belief of the delegator about the possible behavior of the
delegatee. In particular, if the delegator trusts the delegatee, the �rst is con�dent that
the latter will ful�ll the goal and so he does not need to verify the actions performed by
the delegatee. On the contrary, if the delegator does not trust the delegatee, the �rst
wants some form of control on the behavior of the latter.

Di�erent solutions have been proposed to ensure for the delegator the ful�llment of his
objectives. A �rst batch of solutions comes from transaction cost economics and contract
theories that view a contract as a basis for trust [139]. This approach assumes that a
delegation must occur only in the presence of trust. This implies that the delegator and
the delegatee have to reach an agreement before delegating a service. Essentially, the idea
is to use a contract to de�ne precisely what the delegatee should do and so establish trust
between the delegator and the delegatee. Other theories propose models where e�ective
performance may occur also in the absence of trust [61]. Essentially, they argue that
various control mechanisms can ensure the e�ective ful�llment of actors's objectives.

In our framework, we propose a solution for delegation of execution that borrows ideas
from both approaches. The case for delegation of permission is similar. The process of
delegating in the absence of trust is composed of two phases: establishing trust and control.
The establishing trust phase consists of a sequence of actions, namely NEGOTIATES
and CONTRACTS. In NEGOTIATES the parties negotiate the duties and responsibilities



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 77

accepted by each party after delegation. The postcondition is an informal agreement
representing the initial and informal decision of parties to enter into a partnership. During
the execution of CONTRACTS the parties formalize the agreement established during
negotiation. The postcondition of CONTRACTS is a trust \under suspicion" relation
between the delegator and the delegatee. Once the delegator has delegated the goal and
the delegatee has ful�lled the goal, the �rst wants to verify if the latter has really satis�ed
his objective. This control is performed using action EVALUATES. Its postcondition is the
\real" ful�llment of the goal. To support this solution we have introduced some additional
actions (last part of Table 7.2) to distinguish the case in which the delegation is based on
trust from the case in which the delegator does not trust the delegatee.

Sometimes establishing new trust relations might be more convenient than extending
existing trust relations. A technical \side-e�ect" of our solution is that it is possible
to control the length of trusted delegation chains. Essentially, every action has a unit
cost. Therefore, re�ning an action into sub-actions corresponds to increasing the cost
associated with the action. In particular, re�ning the delegation action in absence of
trust guarantees that the framework �rst try to delegate to trusted actors, but if the
delegation chain results too long it can decide to establish a new trust relation rather
than to follow the entire trust chain.

7.1.3 Case study: experimentations

The above described planning domain for the design of secure systems was speci�ed in
PDDL 2.2 [50] and tested with LPG-td planner [99].

The planning domain is de�ned so that the desired plan properties de�ned in Sec-
tion 4.3 (the basic plan property, plan compliance with the initial organizational setting
and non-redundancy properties) are satis�ed by construction. Note that in this case non-
redundancy is related to need-to-know property of a design decision, which states that the
owner of a goal, a task or a resource wants that only the actors who need permission on
its possession are authorized to access it. This means that only the actor that achieves a
goal, executes a task or delivers a resource, and the actors that belong to the delegation
of permission chain from the owner to the provider should be entitled to access this goal,
task or resource.

We have applied our approach to the Medical IS presented in Figure 7.1. The desired
state of the system is obviously one where the patient gets medical care. The PDDL
2.2 speci�cation of the planning problem is presented in Figure 7.3. Figure 7.4 shows
the solution proposed by the planner. The �rst choice of the planner is one of the two
sub-optimal alternatives. Enforcing the planner for further search, we get the optimal
solution (i.e., the plan composed of the fewer number of actions than any other plan). It
is interesting to see that the planner has �rst provided a solution with INPDAP, then a
solution with INPDAI, and then, �nally, a revised solution with INPDAP.



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 78

: objects
actor Pat HCA HP INPDAP INPDAI
goal ProvideMC ProvisioningMC PaymentMC
goal PaymentTicket PaymentHCA
goal PaymentTicketHP PaymentTicketINPDAP
goal PaymentFullCost Reimbursement
goal CollectionINPDAI CollectionHP
goal ReimbursementINPDAI ReimbursementHP

: goal
satis�ed ProvideMC

: init
owns HCAProvideMC
request Pat ProvideMC
provide HP ProvisioningMC
provide HCA PaymentHCA
provide INPDAP PaymentTicketINPDAP
provide HP PaymentTicketHP
provide INPDAI CollectionHCA
provide INPDAI ReimbursementINPDAI
provide HP CollectionHP
provide HP ReimbursementHP
trustexe Pat HP ProvideMC
trustper HCA HP ProvisioningMC
trustexe HP HCA PaymentMC
trustexe HCA INPDAP PaymentMC
trustexe HCA INPDAI PaymentMC
trustexe INPDAP HCA PaymentHCA
trustper HCA INPDAP PaymentTicketINPDAP
trustexe INPDAP HP PaymentTicketHP
trustper HCA HP PaymentTicketHP
trustper HCA INPDAI CollectionINPDAI
trustexe INPDAI HP CollectionHP
trustper HCA HP CollectionHP
trustper HCA INPDAI ReimbursementINPDAI
trustexe INPDAI HP ReimbursementHP
AND subgoal 2 ProvideMC ProvisioningMC PaymentMC
AND subgoal 2 PaymentMC PaymentTicket PaymentHCA
AND subgoal 2 PaymentMC PaymentFullCost Reimbursement
OR subgoal 2 PaymentTicket PaymentTicketINPDAP PaymentTicketHP
OR subgoal 2 PaymentFullCost CollectionINPDAI CollectionHP
OR subgoal 2 Reimbursement ReimbursementINPDAI ReimbursementHP

Figure 7.3: Medical IS example: the planning problem in PDDL 2.2

7.2 Using risk analysis to evaluate design alternatives

In this section we present the application of our approach to the domain of agent-based
safety critical systems. We show how to incorporate risk concerns into the process of a
multi-agent system design (and runtime re-design), and illustrate the proposal with the
help of an Air Tra�c Management case study.3

3The material presented in this section was published in [9], and is a joint work with Yudis Asnar.



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 79

DELEGATES EXECUTION Pat HP ProvideMC
AND DECOMPOSES2 HP ProvideMC ProvisioningMC PaymentMC
DELEGATES PERMISSION HCA HP ProvisioningMC
SATISFIES HP ProvisioningMC
DELEGATES EXECUTION HP HCA PaymentMC
DELEGATES EXECUTION HCA INPDAP PaymentMC
AND DECOMPOSES2 INPDAP PaymentMC PaymentTicket PaymentHCA
DELEGATES EXECUTION HCA INPDAP PaymentHCA
SATISFIES HCA PaymentHCA
OR DECOMPOSES2 INPDAP PaymentTicket PaymentTicketINPDAP PaymentTicketHP
DELEGATES PERMISSION HCA INPDAP PaymentTicketINPDAP
SATISFIES INPDAP PaymentTicketINPDAP

(a) Optimal Plan

DELEGATES EXECUTION Pat HP ProvideMC
AND DECOMPOSES2 HP ProvideMC ProvisioningMC PaymentMC
DELEGATES PERMISSION HCA HP ProvisioningMC
SATISFIES HP ProvisioningMC
DELEGATES EXECUTION HP HCA PaymentMC
DELEGATES EXECUTION HCA INPDAI PaymentMC
AND DECOMPOSES2 INPDAI PaymentMC PaymentFullCost Reimbursement
OR DECOMPOSES2 INPDAI PaymentFullCost CollectionINPDAI CollectionHP
DELEGATES PERMISSION HCA INPDAI CollectionINPDAI
SATISFIES HCA CollectionINPDAI
OR DECOMPOSES2 INPDAI Reimbursement ReimbursementINPDAI ReimbursementHP
DELEGATES PERMISSION HCA INPDAI ReimbursementINPDAI
SATISFIES INPDAI ReimbursementINPDAI

(b) Sub-optimal Plan 1

DELEGATES EXECUTION Pat HP ProvideMC
AND DECOMPOSES2 HP ProvideMC ProvisioningMC PaymentMC
DELEGATES PERMISSION HCA HP ProvisioningMC
SATISFIES HP ProvisioningMC
DELEGATES EXECUTION HP HCA PaymentMC
DELEGATES EXECUTION HCA INPDAP PaymentMC
AND DECOMPOSES2 INPDAP PaymentMC PaymentTicket PaymentHCA
DELEGATES EXECUTION HCA INPDAP PaymentHCA
SATISFIES HCA PaymentHCA
OR DECOMPOSES2 INPDAP PaymentTicket PaymentTicketINPDAP PaymentTicketHP
DELEGATES EXECUTION INPDAP HP PaymentTicketHP
DELEGATES PERMISSION HCA HP PaymentTicketHP
SATISFIES HP PaymentTicketHP

(c) Sub-optimal Plan 2

Figure 7.4: Medical IS example: the chosen design alternative

Multi-agent systems (MAS) have recently proved to be a suitable approach for the de-
velopment of real-life information systems. The characteristics they exhibit (e.g., auton-
omy and ability to coordinate), are crucial for safety critical and responsive systems [130]:
agents can work independently and respond to the events (e.g., failure, exceptional situ-
ation, unexpected tra�c, etc.) as quick and correct as needed.

In a safety critical system, human lives depend heavily on the availability and reli-
ability of the system [11]. Therefore, countermeasures are introduced to mitigate the



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 80

e�ects of occurring failures (i.e., to cope with the risks that such failures introduce). For
instance, OASIS Air Tra�c Management system [97] exploits autonomous and responsive
behavior of agents to manage airspace and schedule air tra�c 
ow. OASIS monitor com-
ponents/agents compare the prediction of aircraft locations (i.e., the results of predictor
agents) and the actual aircraft positions. In case there is a signi�cant discrepancy, the
monitor agent noti�es the scheduler agent to re-schedule the landing time of a related
aircraft. Therefore, the monitor agent is seen as a countermeasure to prevent the risk of
aircraft collision which can occur due to the discrepancy prediction done by the predictors.

However, since designers never have the complete knowledge about the future, they are
not able to de�ne all the necessary countermeasures to prevent any kind of failures/risks.
One of the solutions is to enable agents with automatic capabilities to deal with the e�ect
of failures at runtime, as done in ANTS (Autonomous Nano Technology Swarm) mission
of NASA [130]. ANTS is comprised of autonomous agents (ruler, messenger and worker
agents) designed to cooperate in the process of asteroid exploration. A ruler organizes
workers and messengers so that they can explore an asteroid. However, a ruler may need
to re-organize the agents at runtime, for example, in case one of the worker agents has
been hit by an asteroid. This action is seen as a countermeasure that compensates for
the missing agent in the asteroid exploration mission.

In this section, we present an approach which allows the designer to evaluate alter-
native system con�gurations in terms of risk-based metrics either during the initial MAS
design, or at a certain time point at runtime when the need occurs to re-design an exist-
ing MAS structure in response to the changing outer conditions. The use of risk analysis
during the evaluation of alternative system designs helps a designer to ensure the relia-
bility and availability of a safety critical system, as long as an alternative with risk below
the prede�ned thresholds is chosen. Our framework is meant to be a Computer-Aided
Software Engineering (CASE) tool that supports a designer in de�ning and risk-based
evaluation of MAS design alternatives, but does not exclude the designer from the loop.

In the following, we �rst introduce an Air Tra�c Management case study, then detail
the approach, and �nally present its application to the case study.

7.2.1 A motivating case study

To illustrate our approach, we use the Air Tra�c Management (ATM) case study which
has been studied in the SERENITY Project4. Not surprisingly, an ATM system falls into
the category of safety-critical systems as it is closely related to the safety of human lives,
and, therefore, it is required to be available and reliable all the time of its operation.
However, there can occur many events, not know in advance, which can obstruct the
system and compromise its safety. For example, the aircraft tra�c in a sector may exceed
the safety threshold considered during designing the ATM. Further in this section, we will
propose a way to mitigate the risk introduced by a malicious event via the system risk-
based evaluation and redesign at runtime so that the new MAS design will compensate
the e�ect of risk. Before presenting the approach, let us describe the case study.

An Air tra�c Control Center (ACC) is a body authorized to provide air tra�c control

4http://www.serenity-project.org



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 81

Figure 7.5: ATM case study: air space division between ACC-1 and ACC-2

(ATC) services in a certain airspace. These services comprise controlling an aircraft, man-
aging the airspace, managing 
ight data of a controlled aircraft, and providing information
on the air situation. Suppose there are two adjacent ACCs, ACC-1 and ACC-2. As can
be seen in Figure 7.5, the airspace of ACC-1 is surrounded by the airspace of ACC-2. An
ACC organizes its airspace into several adjacent volumes, called sectors. For instance,
the airspace of ACC-1 is divided into 2 sectors (Sec 1-1 and Sec 2-1), and the airspace of
ACC-2 is divided into 4 sectors (Sec 1-2, 2-2, 3-2, and 4-2). Each sector is operated by a
team, consisting of a controller (Sec 1-1 has C1-1 as a controller), and a planner (P1-1 is
a planner for Sec 1-1). For the ease of communication, several adjacent sectors in an ACC
are supervised by a supervisor (SU1-1 supervises Sec 1-1 and 2-1 and SU1-2 supervises
Sec 1-2 and 2-2). In this scenario, a supervisor is a human agent, while controllers and
planners are software agents. To simplify, we call both human agent and software agent
actors. The supervisor may also play the role of a designer who approves/declines the
new plan and, consequently, is responsible for all the e�ects of this decision.

The scenario starts from the normal operation of ATM in which SU1-1 delegates control
of sector 1-1 to team 1, which consists of C1-1 and P1-1. C1-1 and P1-1 work together
providing ATC services to aircrafts in sector 1-1. C1-1 controls aircrafts to guarantee the
safe separation of each aircraft vertically and horizontally, and P1-1 manages the 
ight
data of the controlled aircrafts and the airspace of sector 1-1, thus supporting C1-1 in
controlling activities.

Now let us imagine that one day during summer holidays a 
ight bulletin appears that
states that there is going to be an increase in the en-route tra�c to sector 1-1. According
to the analysis made by P1-1, this will go beyond the capacity that can be safely handled



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 82

by a controller (C1-1). Thus, SU1-1 needs to redesign his sectors so that the en-route
tra�c can be handled safely, which can be done by:

� dividing his airspace into smaller sectors so that each controller covers a smaller area
and, consequently, the number of sectors that are supervised by SU1-1 is increased;

� delegating a part of the airspace to the adjacent supervisor (from the same or dif-
ferent ACC).

Each alternative introduces di�erent requirements. For instance, when dividing the
airspace, SU1-1 needs to ensure the availability of a controlling team (G14; G21) and the
availability of a set of CWP5. (G15; G22). Conversely, if SU1-1 decides to delegate a part of
his airspace to another supervisor, then SU1-1 needs to de�ne delegation schema (G10) and
to have su�cient level of \trust" towards the target supervisor and his team to manage
the delegated airspace. Moreover, SU1-1 needs to be sure that the target supervisor
has su�cient infrastructure (e.g., radars, radio communication coverage) to provide ATC
services in the delegated airspace.

In Section 7.2.3 the application of our planning-based risk-aware approach will be
presented.

7.2.2 Planning domain

Table 7.3 presents the predicates used to describe the initial state of the system in terms
of actor and goal properties, and social relations among actors:

� criticality h/m/l and criticality gt h/m/l predicates represents the criticality of the
goal, one of high, medium, or low. The criticality level implies the minimum needed
level of trust between the actors between which the goal is delegated. For instance,
if the criticality of the goal G is high, then it could be delegated from the actor A1

to the actor A2 only if A1 can depend on A2 for G (or for the type of goals which G
belongs to) with the high level of trust.

� can depend on g h/m/l and can depend on gt h/m/l predicates mean that the ful�ll-
ment of a speci�c goal or of any of a speci�c type can be delegated between the
actors, and the trust level of the dependency between these actors for this speci�c
goal or goal type is high, medium, or low, respectively.

All other predicates have the same meaning as in the basic set of predicates introduced
in Table 4.1.

A plan, constructed to ful�ll the goals, can contain the following actions, de�ned in
terms of preconditions and e�ects, expressed with the help of the above predicates.

� SATISFIES. This action is equivalent to goal satisfaction action de�ned in Section 4.2.

� AND/OR DECOMPOSES. This action is equivalent to goal AND/OR-decomposition
action de�ned in Section 4.2.

5Controller Working Position (CWP) is a set of resources allocated to support a controller to perform his tasks



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 83

Goal Properties

type(g : goal)
AND subgoaln(g : goal; g1 : goal; : : : ; gn : goal)
OR subgoaln(g : goal; g1 : goal; : : : ; gn : goal)
satis�ed(g : goal)

criticality h=m=l(g : goal)
criticality gt h=m=l(gt : gtype)

Actor Properties

can satisfy(a : actor; g : goal)
can satisfy gt(a : actor; g : gtype)
wants(a : actor; g : goal)

Actor Relations

can depend on g h=m=l(a : actor; b : actor; g : goal)
can depend on gt h=m=l(a : actor; b : actor; g : gtype)

Table 7.3: Safety critical systems design: primitive predicates

� DELEGATES. The delegation can only take place if the level of trust between the
actors is not lower than the criticality level required for the goal to be delegated.

� RELAXES. If there is no way to �nd a dependency relation which satis�es the required
level of trust, then the goal criticality might be relaxed (i.e., lowered). To minimize
the risk, as soon as the delegation has been performed, the goal criticality is restored
to the original value.

The domain axioms concerning the propagation of goal satisfaction along goal re�ne-
ment are de�ned exactly the same as in Section 4.3.

The presented planning domain was speci�ed in PDDL 2.2 [50] and tested with LPG-td
planner [99].

7.2.3 Evaluation process

After a candidate plan is generated by the planner, it should be evaluated based on certain
criteria, and then either modi�ed, or approved/declined by the designer. In case of risk-
based evaluation metrics, modifying a plan means identifying the actions that should be
avoided to lessen risk and then replanning under the new constraints.

In this framework, we consider two types of risk. The �rst type is a risk of goal
satisfaction, called satisfaction risk (sat-risk). Sat-risk represents the risk of a goal being
denied/failed when an actor attempts to ful�ll it. The value of the risk can be one of
the following: FD (Fully Denied), PD (Partially Denied), and ND (Not Denied). These
predicates are adapted from [121], and represent the high, medium, and low level of sat-
risk, respectively. The second type of risk is related to the risk of goal delegation. It
is based on the requirement that the level of trust between two actors should match the
criticality of the delegated goal. For instance, if a link between two agents is highly trusted,
than it can be used for delegating the goals of any criticality level, but if the level of trust
of a delegation link is medium than only the goals with low and medium criticality can be
delegated along this link, otherwise the risk is introduced.

The process of selecting a suitable design alternative is illustrated in Algorithm 1,
which should be run twice. In the �rst execution, the algorithm constructs a plan without



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 84

Algorithm 1 Planning and evaluation process

Require: domain fdomain description in PDDLg
problem fgoal and initial state of the problem in PDDLg
whitelist fa list of allowed actiong
relaxfallow/not relaxationg

1: boolean �nish false
2: while not �nish do
3: plan  run planner(domain; problem; relax)
4: if not evaluate sat(plan) then
5: refine sat(plan; problem)
6: else if relax and not evaluate act(plan) then
7: refine act(plan; problem;whitelist)
8: else
9: �nish  true
10: end if
11: end while
12: return plan

any relaxation actions (i.e., relax=false). If there is no solution then the second execution
is run, in which relaxation actions are allowed. Some steps in the algorithm are fully
automated (e.g., run planner line 3), while some still need a human involvement (e.g.,
adding the allowed actions to the whitelist in line 7). The algorithm is iterative and
comprises the following phases: planning, evaluation, and, �nally, plan re�nement. There
are two evaluation steps in the algorithm: STEP-1 evaluates the risks of goal satisfaction
(line 4), and STEP-2 evaluates relaxation actions (line 6). The �rst execution includes
only STEP-1, and if the second execution is necessary, both STEP-1 and STEP-2 are
executed. Each evaluation step is followed by a re�nement action (line 5 or 7), which
aims at changing the planner input so that during the next iteration it will produce
the better (i.e. less risky) candidate plan. In the following we give details on the two
evaluation steps of the algorithm.

STEP 1: Goal satisfaction evaluation

After a candidate plan is elicited (line 3), it should be evaluated and re�ned, so that
it meets the requirements imposed on it (i.e., the level of risk associated with the plan
is below the prede�ned threshold). The aim of the �rst evaluation step (line 4 of the
Algorithm) is to assure that sat-risk values of the candidate plan, i.e. the likelihood of
each system goal being denied/failed, do not exceed the thresholds, speci�ed by a designer.

By examining the candidate plan, the goal model of each top goal can be constructed,
which shows how a top goal is re�ned into atomic tangible leaf goals. Here tangible means
that for each leaf goal there is an actor that can ful�ll it (see e.g. Figure 7.7). Starting
from the sat-risk values of leaf goals, the risk values are propagated up to the top goals
with the help of so called forward reasoning. Forward reasoning is an automatic reasoning
technique introduced in [72], which takes a set of sat-risk values of leaf goals as an input.



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 85

Note, that sat-risk value for a goal depends on also on which actor satis�es it according
to a candidate plan. The values assigned to the leaf goals are propagated along the goal
tree up to the top goal, and thus the corresponding value for the top goal is calculated.

If sat-risk of one of the top goals is higher than the speci�ed threshold, then the re�ne-
ment process needs to be performed. The re�nement (line 5) identi�es those assignments
of the leaf goals to actors that should be avoided in order to have the sat-risk values of
the top goals within the speci�ed thresholds. The re�nement process starts by generating
a possible set of assignment (i.e., sat-risk values of the leaf goals) that results in the top
goals having the sat-risks below the speci�ed thresholds. This set of assignments is called
a reference model. Basically, a reference model is such a set of maximum sat-risk values
of leaf goals that the resulting sat-risks of the top goals do not violate the thresholds. If
the sat-risk values of leaf goals in the goal model are below the maximum speci�ed in the
reference model, then the sat-risk of the top goals are acceptable. The reference model can
be obtained automatically using backward reasoning [121], which aims at constructing the
assignments of leaf goals to actors so that the speci�ed sat-risk values for the top goals are
achieved. This is done by encoding a goal model as a satis�ability (SAT) problem, and
then using a SAT solver to �nd the possible assignments that satisfy the SAT formula.

By comparing the sat-risk values of leaf goals in the goal model with the corresponding
values in the reference model, those leaf goals are identi�ed that have higher sat-risk values
than the corresponding values in the reference model. The problem de�nition is re�ned
so that in the next planning iteration the risky satisfaction actions are avoided.

STEP 2: Action evaluation

The second evaluation step (line 6 of the Algorithm) is performed to guarantee that the
relaxation actions in a candidate plan are acceptable in terms of risk. We assume that
relaxing the criticality of a goal from high to medium, or from medium to low, can be
done safely only by the owner of a goal. We say that goal G is owned by A if initially
wants(A, G) holds; in this case all the subgoals of G are also said to be owned by A. To
allow a non-owner to relax the criticality of a goal, this goal should be explicitly added
to the whitelist by a designer.

For instance, in the ATM case study SU1-1 intends to increase his airspace capacity in
response to the tra�c increase by delegating his airspace(G11) to SU1-2. As the ful�llment
of G11 is critical (the criticality level is high), SU1-1 needs to have high trust level towards
SU1-2 for delegating G11 (i.e., can depend on gt h(SU1�1; SU1�2;G11) should hold). Then,
SU1-2 re�nes G11 into the subgoals control the aircraft (G2) and manage the airspace (G3)
. For satisfying these goals, SU1-2 needs to depend on the controller C1-2 for G2 , and
on the planner P1-2 for G3 . In case the trust level of the dependency of SU1-2 towards
C1-2 for G2 is medium, SU1-2 (even though he is not the owner of goal G2 ) needs to
relax the criticality of G2 so that it can be delegated to C1-2. This action will not be
considered critical only if G2 has been added to the whitelist by a designer.

Notice that relaxation actions are introduced only in the second run of algorithm.
During the re�nement phase (line 7) the problem de�nition is changed to meet this re-
quirement, and the replanning is performed.



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 86

7.2.4 Case study: experimentations

In this section, we illustrate the application of our approach to the ATM case study. The
following subsections detail the case study formalization, and the planning-and-evaluation
process, performed in accordance with Algorithm 1. The aim of the process is to elicit an
appropriate plan for SU1-1's sector, taking into account the constraints and the risks of
each alternative. The scenario starts with the intention of SU1-1 to increase the capacity of
airspace (G6) as a response to the air tra�c increase in sector 1-1. SU1-1 faces a problem
that C1-1 is not available to control (G14) more tra�c. Therefore, SU1-1 needs to modify
sector 1-1 without involving C1-1 so that the air tra�c increase can be handled.

Case study formalization

The following inputs should be provided for Algorithm 1:

� A formalized problem de�nition, which contains all the properties of the actors of
the ATM system, and their goals. The complete list of properties can be found in
Table 7.5.

� Goals of the planning problem (e.g., satisfy G6 without involving C1-1 in satisfying
G14 ).

� A list of authorized further relaxation actions (whitelist).

� Risk values of goal satisfaction actions. Table 7.4 shows all sat-risk values of the
satisfaction actions.

� Accepted risk values (e.g., risk value of G6 is at most PD).

In Table 7.4 the goal criticality values are presented in column Crit. Goal criticality
(H, high, M, medium, or L, low) denotes a minimum level of trust between two actors
that is needed if one actor decides to delegate the goal to another actor. For instance,
goal manage airspace (G3) is categorized as a highly critical goal, and goal analyze air
tra�c (G8) has low criticality. Thus, these goals require di�erent level of trust for being
delegated to another actor.

Also, Table 7.4 presents sat-risk values of (goal, actor) pairs. sat-risk takes one of
the tree values: FD (Fully Denied), PD (Partially Denied), or ND (Not Denied). For
instance, G19 can be satis�ed either by actor P1-1, P2-1, or P1-2, and the sat-risk
value is di�erent for these actors: full, partial, and none, respectively. The empty cells
in Table 7.4 means that the actor does not have capabilities to ful�ll the corresponding
goal.

Table 7.5 presents actor capabilities (can satisfy), possible ways of goal re�nements
(decompose), and possible dependencies among actors (can depend on) together with the
level of trust for each dependency. For instance, actor SU1-1 can satisfy goals G15 , G18

, and G22 , and the actor has knowledge to decompose G1 , G5 , G6 , G8 , and G9

. SU1-1 has high level of trust towards C1-1 and C2-2 for G2 .



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 87

X
X
X
X
X
X
XX

Goal

Actor

C1-1 C2-1 P1-1 P2-1 SU1-1 C1-2 P1-2 SU1-2

Id. Description Crit.

G1 Manage Aircraft within ACC
G2 Control Aircraft H
G3 Manage Airspace H
G4 Manage Flight Data M PD
G5 Maintain Air Tra�c Flow in Peak-Time
G6 Increase Airspace Capacity
G7 Analyze Air Tra�c L
G8 Re-sectorize within ACC
G9 Delegate Part of Sector
G10 De�ne Schema Delegation M ND PD
G11 Delegate Airspace H
G12 Have Controlling Resources
G13 Have Capability to Control the Aircraft ND PD PD
G14 Avail to Control FD ND
G15 Have Control Working Position for Controller H ND PD
G16 Have Authorization for FD Modi�cation M ND ND
G17 Have Capability to Manage FD ND PD
G18 Have Resources for Planning M ND
G19 Have Capability to Manage Airspace FD PD PD
G20 Have Capability to Analyze Air Tra�c PD
G21 Avail to Plan ND ND ND
G22 Have Control Working Position for Planner H ND ND

Table 7.4: ATM case study: goal criticality and sat-risk

Actor can satisfy
decompose can depend on

type top-goal sub-goals level dependum dependee

SU1-1 G15 And G1 G2, G3 H G2 C1-1, C2-1
G18 And G5 G6, G7 H G3 P1-1, P2-1
G22 Or G6 G8, G9 H G4 P1-1, P2-1

And G8 G2, G3, G4 M G7 P1-1
And G9 G10, G11 M G10 P1-1

L G10 SU1-2
H G11 SU1-2

P1-1, P2-1 G17 And G3 G18, G19 H G22 SU1-1
G19 And G4 G16, G17, G18
G21 And G7 G18, G20

P1-1 G10 L G16 C1-1
G20

P1-2 L G16 C2-1
C1-1, C2-1 G13 And G2 G4, G12, G13 H G15 SU1-1

G14 And G12 G14, G15
G16

C1-1 M G4 P1-1
C2-1 M G4 P2-1

M G4 P1-1
SU1-2 G10 And G11 G2, G3 M G2 C1-2

G15 M G3 P1-2
G22

P1-2 G19 And G3 G19, G21, G22 M G22 SU1-2
G21

C1-2 G4 And G2 G4, G13, G15 M G15 SU1-2
G13

Table 7.5: ATM case study: actor and goal properties



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 88

(satis�ed G6)
(not(satisfy C1-1 G14))
(not(delegate SU1-1 SU1-2 G11))

(a) Goal of Problem De�nition

0: (OR DECOMPOSES2 SU1-1 G6 G8 G9)
1: (AND DECOMPOSES3 SU1-1 G8 G2 G3 G4)
2: (DELEGATES SU1-1 C2-1 G2)
3: (AND DECOMPOSES3 C2-1 G2 G4 G12 G13)
4: (SATISFIES C2-1 G13)
5: (AND DECOMPOSES2 C2-1 G12 G14 G15)
6: (SATISFIES C2-1 G14)
7: (DELEGATES C2-1 SU1-1 G15)
8: (SATISFIES SU1-1 G15)
9: (DELEGATES C2-1 P2-1 G4)
10: (DELEGATES SU1-1 P2-1 G4)
11: (AND DECOMPOSES3 P2-1 G4 G16 G17 G18)
12: (SATISFIES P2-1 G17)
13: (DELEGATES P2-1 SU1-1 G18)
14: (SATISFIES SU1-1 G18)
15: (RELAXES 2L P2-1 G16)
16: (DELEGATES P2-1 C2-1 G16)
17: (SATISFIES C2-1 G16)
18: (DELEGATES SU1-1 P1-1 G3)
19: (AND DECOMPOSES2 P1-1 G3 G18 G19)
20: (SATISFIES P1-1 G19)

(b) The Candidate Plan after STEP 0

Figure 7.6: ATM case study: plan for increasing air space capacity

Planning and evaluation process

STEP 0: Planning. After specifying the inputs, the planner is executed to elicit a
candidate plan to ful�ll the prede�ned goals, which is shown in Figure 7.6(a). These
goals state that the plan should satisfy G6 , and the solution should not involve C1-1 to
satisfy G14 because C1-1 is already overloaded controlling the current tra�c. Moreover,
the planner should avoid involving the other ACC (i.e., SU1-2) by avoiding the delegation
of G11 to SU1-2 even it is possible in Table 7.5. Before adopting the candidate plan
(Figure 7.6(b)), two evaluation steps explained in previous section should be performed
to ensure the risk of the candidate plan is acceptable.

STEP 1: Goal satisfaction evaluation assesses the satisfaction risk of a candidate
plan. The goal model of goal G6 (in Figure 7.7) is constructed on the basis of the
candidate plan (in Figure 7.6(b)). The goal model shows which actors are responsible for
satisfying the leaf goals. For instance, G19 must be satis�ed by P1-1 and, moreover, in
this scenario, G9 is left unsatis�ed because the other or-subgoal, G8 , was selected to
satisfy G6 .

In this scenario, we assume that the acceptable sat-risk value for G6 is PD. To
calculate the sat-risk value of goal G6 , forward reasoning is performed (i.e., the sat-
risk values of leaf goals in Table 7.4 are propagated up to the top goal). This reasoning



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 89

Figure 7.7: ATM case study: goal model for a candidate plan of Figure 7.6(b)

mechanism is a part of the functionality of the GR-Tool6, a supporting tool for goal
analysis. By means of the forward reasoning, we obtain that the sat-risk of G6 is FD,
which is higher than the acceptable risk (i.e., PD). Thus, the re�nement is needed
to adjust the problem de�nition, so that a less risky plan is constructed during the next
replanning. The re�nement starts with the elicitation of a reference model using backward
reasoning. The reference model speci�es that all leaf goals must have at most PD sat-risk
value in order the sat-risk of top goal G6 not to be higher than PD.

By comparing the sat-risks of leaf goals in the goal model with the reference model, G19

(satis�ed by P1-1) is detected to be a risky goal; its sat-risk (in Table 7.4) is FD which is
higher than the one in the reference model. Therefore, the problem de�nition is re�ned
to avoid P1-1 satisfying G19 . As G19 is a subgoal of G3 , the decomposition action is
also negated, as the previous related action, according to the procedure explained in the
previous section. Thus, the problem de�nition is re�ned, and the goal of the planning
problem is now of the form shown in Figure 7.8(a). Afterwards, the planner is run to
elicit a new candidate plan. Basically, the new candidate plan is almost the same with
the previous plan (Figure 7.6(b)), the only di�erence is in lines 18-20 (see Figure 7.8(b)).
Later, this candidate plan is evaluated by going through the next step to ensure all the
actions (especially, further relaxations) are acceptable in terms of risks.

STEP 2: Action evaluation �lters the malicious relaxation actions. The scenario
starts from the goal G6 which is wanted by SU1-1. As all the other goals of the candidate
plan are the result of the re�nement of G6 , the owner of all of them is again SU1-1.

6http://sesa.dit.unitn.it/goaleditor



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 90

(satis�ed G6)
(not (satisfy C1-1 G14))
(not (delegate SU1-1 SU1-2 G11))
(not (and (satisfy P1-1 G19)(and decompose2 P1-1 G3 G18 G19)))

(a) Problem de�nition re�nement after STEP 1

............
18: (DELEGATES SU1-1 P2-1 G3)
19: (AND DECOMPOSES2 P2-1 G3 G18 G19)
20: (SATISFIES P2-1 G19)

(b) Final plan for satisfying G6

Figure 7.8: ATM case study: �nal problem de�nition and plan

Thus, relaxing the criticality of any goal that is performed by any actor except SU1-1 is
seen as a risky action.

For instance, P2-1 relaxes the criticality of G16 (line 15 in Figure 7.6(b)) to low
instead of medium. By default this action is a risky one and should be avoided, unless the
designer states explicitly that this action is not risky by adding it to the whitelist. Once
it is considered unacceptable, the goal of the planning problem should be extended with
the negation of the relaxation action (i.e., (not (relax2l P2-1 G1))).

Moreover, the designer can also introduce rules to avoid certain actions. For in-
stance, the designer may prevent C2-1 from delegating G4 to P2-1 (line 15 in Fig-
ure 7.6(b)) by adding a new predicate to the goal of the planning problem (namely,
(not (delegate C2-1 P2-1 G4))). For the sake of simplicity all the possible relaxation ac-
tions in the candidate plan are put to the whitelist, so we do not re�ne the problem
de�nition any further.

Thus, the last candidate plan to redesign SU1-1's sector is approved s.t. the tra�c
increase can be handled. Moreover, the plan is guaranteed to have risk values less/equal
than the prede�ned thresholds (i.e., sat-risk of G6 is less or equal than PD).

7.3 Runtime application: self-con�guring systems

One of the characteristic features of socio-technical systems (STS), challenging from a
design point of view, is that their structure has to evolve dynamically in response to the
changes of the environment. When new requirements are introduced, when an actor leaves
the system or when a new actor comes, the system structure needs to be redesigned and
revised. In this section, we present an approach to dynamic recon�guration of a socio-
technical system structure in response to internal or external changes. The approach is
based on the ideas presented in Chapters 4 and 5, namely, it uses planning for generating
possible alternative con�gurations, and local strategies for their evaluation. In the fol-
lowing, we present a recon�guration mechanism, which aims at making a socio-technical
system self-con�guring, and apply it to a simple case study.7

An important aspect of a socio-technical system is its dynamicity: an STS operates in

7The material presented in this section was published in [28].



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 91

continuously changing environments and, accordingly, its structure changes dynamically.
This calls for the new type of requirements that introduce the need of highly adaptable
and recon�gurable systems [130].

Recently, a lot of work has been devoted to the problem of dynamic recon�guration
and adaptation of software systems [48, 36, 15, 81, 46, 131]. Attempts to adjust the
existing agent-oriented methodologies, such as Gaia [36], or to create a specialized ones,
such as Adelfe [15], to develop adaptive agents are described in the literature. All these
proposals can be grouped in approaches that consider the recon�guration process from
the local and from the global perspective.

Self-con�guration from the local perspective, i.e. on the level of an individual agent,
is related to the concept of self-organization. Self-organization phenomena (see e.g. [137])
is observed when some macroscopic system properties arise (emerge) dynamically from
the local micro-level interactions. However, such perspective is sometimes not enough
as it does not allow to reach all the desired properties of an STS which works in the
dynamic environment [48]. For example, the social behavior of being helpful, or following
the imposed external laws, is di�cult to describe by the \individual rationality" principle
assumed by self-organization emergent models. Another example is a scienti�c institu-
tion, which could hardly function on the base of self-organization principles, without any
centralized authority. Di�erently, we strongly agree on the approach presented in [48],
which suggests combining the perspective of individual agents with the global one, in
which recon�guration is controlled centrally.

In this section, we propose an approach to the problem of dynamic recon�guration of an
STS structure in response to the internal and/or environmental changes. The approach
is based on planning techniques for exploring the space of alternative con�gurations,
combined with evaluating the generated alternative in terms of local strategies of the
system actors. The approach comprises the following steps.

� Identify system actors, their goals, capabilities, and interrelations.

� Select the initial con�guration by the following three-step iterative procedure:

{ construct the assignment of goals to actors with the help of planning, so that
all goals are to be satis�ed;

{ evaluate the obtained assignment with respect to local interests of the system
actors, in order to identify which actors will be motivated to deviate from the
assignment;

{ in case the deviation is inevitable, reformulate the planning problem, and go to
the construction of the next assignment.

� Monitor the STS and the environment, in case of changes assess whether the recon-
�guration is necessary. Recon�gure the system with the help of the above described
iterative procedure.

There exists a number of works which are, to some extent, similar to ours. [48] deals
with the problem of dynamic reorganization of agent societies, and presents the classi�-
cation of reorganization situations. According to the authors, the paper is exploratory



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 92

in nature, and contains the discussion of the problem rather then the possible solutions.
In [81] Moise+ organizational model is extended to support the reorganization of multi-
agent systems. The organization is represented along its structural and functional dimen-
sions, and the deontic relation among these dimensions is de�ned. The reorganization
process is performed by the set of organization agents playing the speci�c roles, such as
OrgManager that is in charge of managing the reorganization process, Monitor that is
monitoring the system, Designer that develops reorganization proposals, and the like.
However, no speci�c guidelines are provided on how the new system con�guration should
be conducted. [46] describes how to design adaptive multi-agent systems using the orga-
nizational model that consists of a structural and state models of an organization, and
a transition function from one organizational state to another. The structural model
contains the information about goals, agent roles, organizational rules and laws. A state
model is an instance of an organization which includes a set of agents together with the
relationships between them and other structural model components. A number of events
called reorganization triggers are described, which may cause the system reorganization.
The reorganization process is assumed to be application speci�c, and the selection of an
appropriate con�guration relies on maximizing a sort of utility function, so called orga-
nization capability score. In [131] the techniques for organization and reorganization of
multi-agent systems in the domain of oceanography are presented. The reorganization is
domain speci�c, and is based on communication protocols, with the help of which groups
of agents cooperate and reorganize themselves in response to the environmental changes.

Our di�ers from the above described work as it provides, independently of the domain,
the concrete guidelines on how the reorganization process could be organized. Another im-
portant point is the automation support: the process of exploring the space of alternative
system con�gurations is performed automatically with the help of planning techniques.
Also the local strategies of an STS actors are taken into account, which allows each actor
to evaluate the new con�guration from the local perspective, and deviate from it if the
load/risk/complexity of the new assignment is unacceptable for this actor. Taking the
local strategies of the system actors into consideration makes our approach particularly
useful for the socio-technical systems, because strategic and rational behavior is intrinsic
to the human actors.

In the following, we �rst present a motivating example, then introduce the recon-
�guration mechanism, illustrate it with the example, and discuss the architectural and
implementation issues.

7.3.1 A motivating case study

The case study we present in this section was selected to be quite simple for the reasons
of compactness and ease of understanding.

Consider a small �rm which sells o�ce equipment to its customers. The o�ce equip-
ment is supplied by two companies,MediaMarket andHWStore, both having a database
containing information about supplied goods, their technical characteristics and prices.
To organize the placing of orders for the sell items, the supporting software system of
the �rm comprises a subcomponent, called search-and-order multi-agent system (MAS),
which consists of three agents, see Figure 7.9. These agents can process the user or-



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 93

Figure 7.9: Search-and-order MAS

ders, i.e. search for the required item in the supplier's database, provide information to
the customer if the item was found, and formulate the request to a supplier otherwise.
Two of these agents, AMM and AHWS, can work only with the database of one supplier,
MediaMarket and HWStore, respectively. In other words, because of the (limited) capa-
bilities AMM possess, it cannot work with HWStore database, and vice versa. The third
agent AUNIV is a reserve one, it can query both databases, although, less e�ciently than
AMM and AHWS, and is used when other agents are unable to hold numerous requests of
a user (a clerk of a �rm). In principle, AUNIV can be a human agent which is exploited
only if some critical situation occurs: satisfying the customer's request needs some spe-
ci�c human support (e.g. making a phone call), or the software component fails and the
customer remains unserved, which violates the organizational rules, etc. However, as our
approach treats both arti�cial and human actors in a similar way, we will not introduce
human actors in the example due to the space and simplicity reasons. Also note that the
number of suppliers is limited to two just for the sake of simplicity. In reality in such a
system there can be tens, or even hundreds of di�erent suppliers, and a limited number
of agents, each with di�erent set of capabilities. Some of these agents are more e�cient
when working with one speci�c \type" of suppliers, while others are \universal", i.e. can
work with all suppliers. The task of allocating the incoming orders in a (sub)optimal way
is indeed challenging, and this is what we are going to automate with the help of the
approach proposed in this section.

Suppose that initially, i.e. at time point t0, there are three requests the agents have to
satisfy. One query, order a computer monitor at a price less than 500$ of MediaMarket,
is sent by a user to AMM , and two, order a keyboard at a price less than 20$ and order
headphones of HWStore, sent to AHWS. Even for this simple example there are a number
of alternative initial con�gurations. E.g., the query order a keyboard at a price less
than 20$ could be accomplished by searching either in the database of MediaMarket or



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 94

type (OrderMonitorOfMM; tDB1)
type (OrderKeyboardOfMM; tDB1)
type (OrderKeyboardOfHWS; tDB2)
type (OrderHeadphonesOfHWS; tDB2)
can depend (AMM; AHWS) can depend (AHWS; AMM)
can depend (AMM; AUNIV) can depend (AUNIV; AMM)
can depend (AHWS; AUNIV) can depend (AUNIV; AHWS)
can satisfy gt (AMM; tDB1)
can satisfy gt (AHWS; tDB2)
can satisfy gt (AUNIV; tDB1)
can satisfy gt (AUNIV; tDB2)
or subgoal2 (OrderKeyboard; OrderKeyboardOfMM; OrderKeyboardOfHWS)
wants (AMM; OrderMonitorOfMM)
wants (AHWS; OrderHeadphonesOfHWS)
wants (AHWS; OrderKeyboard)

Figure 7.10: Search-and-order MAS: planning problem formalization

(SATISFIES AMM OrderMonitorOfMM)
(SATISFIES AHWS OrderHeadphonesOfHWS)
(OR DECOMPOSES2 AHWS; OrderKeyboard

OrderKeyboardOfMM OrderKeyboardOfHWS)
(SATISFIES AHWS OrderKeyboardOfHWS)

Figure 7.11: Search-and-order MAS: initial con�guration

HWStore. Another source of alternatives is whether to involve AUNIV in performing the
queries or not. Thus, the problem is how to assign queries to agents in a (sub)optimal
way.

7.3.2 Planning domain

To de�ne our domain, we use a subset of the basic set of predicates introduced in Table 4.1.
Namely, predicates take variables of three types: actors, goals and goal types. To typify
goals, type(g : goal; gt : gtype) predicate is used. Actor capabilities with respect to goal
types are described with can satisfy gt(a : actor; gt : gtype) predicate. Social dependencies
among actors are re
ected by can depend on(a : actor; b : actor) predicate, and prede�ned
ways of goal re�nement { by and=or subgoaln(g : goal; g1 : goal; : : : ; gn : goal) predicates.
The initial desires of actors are represented with wants(a : actor; g : goal) predicate. When
a goal is ful�lled, satis�ed(g : goal) predicated becomes true for it.

As in Section 4.2, a plan, constructed to ful�ll the goals of the system actors, comprises
goal satisfaction, goal delegation and goal decomposition actions. LPG-td [99] planner with
PDDL [50] as a speci�cation language are used to implement the planning domain.

The formalization of the initial system con�guration is presented in Figure 7.10. The
plan P0 generated by the planner is presented in Figure 7.11, and its graphical represen-
tation is depicted in Figure 7.12. Note, that there are several alternative con�gurations
in which all goals are satis�ed (e.g. the goal OrderKeyboard can be achieved by AMM by
satisfying the OrderKeyboardOfMM or-subgoal, instead of OrderKeyboardOfHWS;
or the goal OrderHeadphonesOfHWS can be delegated to AUNIV and satis�ed by it).



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 95

Figure 7.12: Search-and-order MAS: initial con�guration

The con�guration presented in Figure 7.11 is just the �rst one generated by the plan-
ner, that is, it is a starting point to be evaluated and, possible, amended. We use here the
cost-based planning-and-evaluation procedure presented in Section 5.4, with the overall
goal of balancing the work load imposed on the search-and-order MAS actors.

We assume that di�erent order queries have di�erent costs for the three system agents,
depending, e.g., on the complexity of a query. The costs for AUNIV are higher, which is
caused by its \universality", i.e. ability to work with both suppliers. Moreover, the
order queries are subdivided into two classes: \simple" and \complicated". The cost of
the satisfaction of a simple query is lower than a corresponding cost for the complicated
query. An example of a complicated query could be order best-selling HDD of HWStore,
as it requires obtaining the statistical information.

The cost of any delegation is equal to 1 unit, the cost of a decomposition is equal to 2.
For AMM , AHWS performing simple order queries costs 10 units, performing complicated
ones { 15, for AUNIV { 15 and 20, respectively. Tolerable bound of load for all three agents,
under which they are not willing to deviate from the imposed recon�guration plan, is equal
to 30 units. In these conditions the costs of the obtained initial con�guration plan P0 (see
Section 2.2) are the following: c(AMM ; P0) = 10, c(AHWS; P0) = 2 + 10 + 10 = 22, and
c(AUNIV ; P0) = 0. Due to simplicity of the example, this �rst solution generated by the
planner is satisfactory from the point of view of all three agents, i.e. the evaluation shows
that the plan costs are within the tolerable load bounds for each agent.

7.3.3 Recon�guration mechanism

In this section, we present a centralized recon�guration mechanism, based on the planning-
and-evaluation procedure described in Section 5.4.

The recon�guration mechanism

� collects and manages the information about the system;

� evaluates both the overall system load, and the local utilities of each actor to de-
cide whether the system needs to be redesigned in response to external or internal
changes;



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 96

� and, if the above evaluation shows that the recon�guration is needed, replans the
system structure in order to optimize the distribution of load imposed on system
actors.

It stores and updates

� the current problem de�nition problemDef , i.e. actor and goal variables, and pred-
icates describing them;

� the list of all goals G = fgi; i = 1::ng present in the system together with their
states (described in the next paragraph), also for each goal the actor who initially
wanted it to be satis�ed is stored;

� the current plan of actions, i.e. a list of actions D = fdj; j = 1::mg generated during
the last (re)design iteration and not accomplished so far;

� archived data, e.g. actionLog.

To describe the states of the goals inG, we use the two of already introduced predicates,
namely, wants(a : actor; g : goal) and satisfied(g : goal). In addition, we introduce a
predicate committed(a : actor; g : goal). Predicates committed(a; g) becomes true when a
recon�guration mechanism is noti�ed that a has committed to g, meaning that a has taken
a decision to satisfy g. This predicate is used to support the minimal change principle
during the recon�guration process. As it will be seen from the algorithm presented in this
section, the recon�guration does apply to the commited goals, and thus, not all the STS
structure is revised each time. Note that satisfied(g) implies :committed(a; g).

The recon�guration algorithm is presented in Figure 7.13, and is organized in a way
that a block corresponds to one internal or environmental change. The noti�cation about
the change is obtained either from the inside of the system or from the environment.
Each system actor is obliged to communicate to some central point if it committed to,
or achieved a goal. In order to avoid continuous replanning, a time slot � is introduced,
such that the triggering events initiate evaluation and replanning only if the time passed
since the last replanning is greater than � (line 0).

In the following we explain each block brie
y.

� (lines 1{3) An actor a has committed to do a goal g. In this case committed(a; g)
is set to be true, and all decompositions and delegations of g are moved to the action
log.

� (lines 4{8) An actor a has achieved a goal g. In this case satisfied(g) is set to be
true, and satisfaction action is moved from D to the action log. Then it is evaluated
whether the actor that has satis�ed the goal is \free enough", in a sense whether
the total cost of the actions in D it is involved in is less than a prede�ne threshold.
If it is the case, the replanning with non-committed goals procedure ReplanWithG,
presented in Figure 7.14 and described below, is performed.

� (lines 9{17) One of the imposed requirements is relaxed, i.e. a goal g is no longer
needed to be achieved. We assume that g is not a subgoal of any other goal present



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 97

0 if noti�ed(notifMess) and tcurr � tprev � � quit
1 if notifMess = \a has committed to g" then
2 G : committed (a, g) true
3 move Decompose(::; g; :::) and Delegate(::; g; ::) from D to ActionLog
4 if notifMess = \a has achieved g" then
5 G : committed (a, g) false, satisfied (g) true
6 move Satisfy(a; g) from D to ActionLog
7 if load(a) � freeEnoughBound then
8 ReplanWithG(�) /* with empty set of new goals */
9 if notifMess = \g is removed" then
10 if g is a subgoal of a valid goal then quit /* abnormal situation */
11 remove variable g and predicates containing g from problemDef
12 move actions containing g from D to removedActionLog
13 for each subgoal gsub of g, s.t. gsub is not a (subgoal of any) valid goal
14 repeat lines 11{12
15 for each actor a if load(a) � freeEnoughBound then
16 ReplanWithG(�) /* with empty set of new goals */
17 exit for each loop
18 if notifMess = \a leaves the system" then
19 for each g initially wanted by a /* information stored in G */
20 repeat lines 11{12
21 remove variable a and predicates containing a from problemDef
22 move actions containing a from D to removedActionLog
23 remove predicates containing a from G, put a�ected goals to newGoalsList
24 Replan(newGoalsList)
25 if notifMess = \new a introduced" then
26 add a variable and related predicates to problemDef and G
27 ReplanWithG(�) /* with empty set of new goals */
28 if notifMess = new g introduced" then
29 add g variable and related predicates to problemDef and G
30 Replan(fgg)

Figure 7.13: Recon�guration algorithm



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 98

ReplanWithG(newGoals)
construct workingProblemDef :

problemDef with a problemGoal formed as a conjunction of satisfied(g),
s.t. g 2 newGoals or g 2 G and :commited(�; g) is true

iteratively
plan for workingProblemDef to get newPlan
evaluate newPlan together with

Satisfy(�; g) 2 D s.t. commited(�; g) is true
if newPlan is satisfactory then

replace D with newPlan together with
Satisfy(�; g) 2 D s.t. commited(�; g) is true

Replan(newGoals)
construct workingProblemDef :

problemDef with a problemGoal formed as a conjunction of satisfied(g),
s.t. g 2 newGoals

iteratively
plan for workingProblemDef to get newPlan
evaluate newPlan together with D

if newPlan is satisfactory then
append newPlan to D

else ReplanWithG(newGoals)

Figure 7.14: Replanning procedures

in the system. In this case the corresponding variable g : goal and predicates in
which g appears are removed from the problem de�nition. All action containing g
are moved from D to the removed action log. The same \removal procedure" is
done for each subgoal of g. Then it is evaluated whether any of the system actors is
\free enough" in the above de�ned sense, and if such actors exist, the ReplanWithG
replanning procedure is performed.

� (lines 18{24) One of the existing actors leaves the system. For each goal that was
initially wanted by this actor, the above described \removal procedure" is performed.
Then the corresponding variable a : actor and predicates in which a appears are
removed from the problem de�nition, all actions containing a are moved from D to
the action log. All goals which was wanted by a, or which a was committed to, are
considered to be new to the system, and the general replanning procedure Replan,
presented in Figure 7.14 and described below, is performed.

� (lines 25{27) A new actor joins the system. In this case a new variable a : actor ap-
pears in the problem de�nition together with the predicates describing the properties
of a. Then the ReplanWithG replanning procedure is performed.

� (lines 28{30) A new requirement to the system has been introduced, i.e. a new
goal g is to be satis�ed. In this case a new variable g : goal appears in the prob-
lem de�nition together with the predicates describing the properties of g, and for



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 99

(SATISFIES AMM OrderMonitorOfMM)
(SATISFIES AHWS OrderHeadphonesOfHWS)
(OR DECOMPOSES2 AHWS; OrderKeyboard

OrderKeyboardOfMM OrderKeyboardOfHWS)
(SATISFIES AHWS OrderKeyboardOfHWS)
(SATISFIES AHWS OrderSpeakersOfHWS)

Figure 7.15: Search-and-order MAS: �rst plan at t1

some actor a of the system wants(a; g) becomes true. Then the Replan replanning
procedure is performed.

In Figure 7.14 the replanning procedures used through the algorithm are introduced.

1. ReplanWithG. First planning for all new goals and goals in G, except for com-
mitted ones is performed; then the evaluation is done for the intermediate plan {
the new plan in which additional actions are included, Satisfies(a; g) 2 D, such
that commited(a; g) is true. If the evaluation is successful, D is replaced with the
intermediate plan.

2. Replan. Planning is performed for new goals, and then the intermediate plan {
D plus the new plan { is evaluated. If the evaluation is successful, new actions are
added to D. If not the ReplanWithG is performed.

If it is still impossible to �nd a plan of actions to satisfy the system goals, then the com-
mitments of actors to goals might be revised. However, this feature is not yet supported
by our framework, and is not addressed here.

7.3.4 Case study: experimentations

Let us now illustrate the proposed procedure with the help of the Search-and-order MAS
example. We consider the reaction of the recon�guration mechanism to the two triggering
events, occurred at the time steps t1 and tk.

Step t1. Suppose that a new request arrived to the agent AHWS, order speakers at
price between 10 and 30$ of HWS, which is simple. Till that moment AHWS has committed
to order headphones of HWStore.

Replanning only for the new goal gives the result presented in Figure 7.15.
The costs for the obtained plan P1 are the following: c(AMM ; P1) = 10, c(AHWS; P1) =

2 + 10 + 10 = 32 > 30, and c(AUNIV ; P1) = 0. As far as AHWS is not satis�ed with the
imposed load, replanning for all the goals, except committed, is performed.

The resulting plan P2 is illustrated in Figure 7.16.
The costs for the P2 are the following: c(AMM ; P2) = 10 + 10 = 20, c(AHWS; P2) =

2+1+10+10 = 23, and c(AUNIV ; P2) = 0. As far as all c(:; P2) < 30, the recon�guration
plan P2 is adopted. The assignment structure is revised, and redesigned as depicted in
Figure 7.17.

Step tk. Suppose that a new request arrived to the agent AHWS, order best-selling
HDD of HWS, which is classi�ed as complicated. Till this moment AMM has committed to



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 100

(SATISFIES AMM OrderMonitorOfMM)
(OR DECOMPOSES2 AHWS; OrderKeyboard

OrderKeyboardOfMM OrderKeyboardOfHWS)
(DELEGATES AHWS AMM OrderKeyboardOfMM)
(SATISFIES AMM OrderKeyboardOfMM)
(SATISFIES AHWS OrderHeadphonesOfHWS)
(SATISFIES AHWS OrderSpeakersOfHWS)

Figure 7.16: Search-and-order MAS: second plan at t1

Figure 7.17: Search-and-order MAS: �rst recon�guration



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 101

order a keyboard at a price less than 20$ of MM, AHWS has committed to order headphones
of HWS, and AUNIV has committed to a new simple goal from AMM .

Replanning only for the new goal gives the result presented in Figure 7.18.

(SATISFIES AMM OrderMonitorOfMM)
(OR DECOMPOSES2 AHWS; OrderKeyboard

OrderKeyboardOfMM OrderKeyboardOfHWS)
(DELEGATES AHWS AMM OrderKeyboardOfMM)
(SATISFIES AMM OrderKeyboardOfMM)
(SATISFIES AHWS OrderHeadphonesOfHWS)
(SATISFIES AHWS OrderHDDOfHWS)
(SATISFIES AHWS OrderSpeakersOfHWS)
(SATISFIES AUNIV GoalFromAMM)

Figure 7.18: Search-and-order MAS: �rst plan at tk

The costs for the Pk are the following: c(AMM ; Pk) = 21, c(AHWS; Pk) = 23 + 15 =
38 > 30, and c(AUNIV ; Pk) = 15. As far as AHWS is not satis�ed with the imposed load,
replanning for all the goals, except committed is performed.

The resulting plan Pk+1 is presented in Figure 7.19.
The costs for the Pk+1 are the following: c(AMM ; Pk+1) = 21, c(AHWS; Pk+1) = 24,

and c(AUNIV ; Pk+1) = 15+ 20 = 35 > 30. As far as AUNIV is not satis�ed with Pk+1, the
replanning is performed.

The resulting plan Pk+2 is illustrated in Figure7.20.
The costs for the Pk+2 are the following: c(AMM ; Pk+2) = 21, c(AHWS; Pk+2) = 10 +

2 + 1 + 15 + 1 = 29, c(AUNIV ; Pk+2) = 15 + 15 = 30. As far as all c(:; Pk+2) � 30, the
recon�guration plan Pk+2 is adopted. The assignment structure is revised, and redesigned
as depicted in Figure 7.21.

7.3.5 General architecture for self-con�guring systems

To implement the presented approach, i.e. to add to a socio-technical system the abil-
ity to self-con�gure, we propose the two-layered multi-agent architecture, presented in
Figure 7.22.

The lower layer, which we call the operational layer (OL), is domain-speci�c, and
comprises a set of agents aiming to satisfy the goal of an STS (place the orders to the

(SATISFIES AMM OrderMonitorOfMM)
(OR DECOMPOSES2 AHWS; OrderKeyboard

OrderKeyboardOfMM OrderKeyboardOfHWS)
(DELEGATES AHWS AMM OrderKeyboardOfMM)
(SATISFIES AMM OrderKeyboardOfMM)
(SATISFIES AHWS OrderHeadphonesOfHWS)
(SATISFIES AHWS OrderSpeakersOfHWS)
(SATISFIES AUNIV GoalFromAMM)
(DELEGATES AHWS AUNIV OrderHDDOfHWS)
(SATISFIES AUNIV OrderHDDOfHWS)

Figure 7.19: Search-and-order MAS: second plan at tk



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 102

(SATISFIES AMM OrderMonitorOfMM)
(OR DECOMPOSES2 AHWS; OrderKeyboard

OrderKeyboardOfMM OrderKeyboardOfHWS)
(DELEGATES AHWS AMM OrderKeyboardOfMM)
(SATISFIES AMM OrderKeyboardOfMM)
(SATISFIES AHWS OrderHeadphonesOfHWS)
(SATISFIES AHWS OrderHDDOfHWS)
(SATISFIES AUNIV GoalFromAMM)
(DELEGATES AHWS AUNIV OrderSpeakersOfHWS)
(SATISFIES AUNIV OrderSpeakersOfHWS)

Figure 7.20: Search-and-order MAS: third plan at tk

Figure 7.21: Search-and-order MAS: second recon�guration

suppliers, book the plane tickets, manage meeting agenda, etc.). On the upper layer,
which we call the control layer (CL), there sit four agents { Monitor, Controller, Planner
and Evaluator. Monitor is responsible for the communication with the agents of the oper-
ational layer, and the environment. The OL agents notify the Monitor about the relevant
changes. Controller, Planner and Evaluator realize the domain-independent procedures:
recon�guration, planning and evaluation, respectively. The data they store and process
(status of system goals, formal de�nition of a planning problem, costs of actions for each
actor) is speci�c to the given STS. Controller is following the recon�guration mechanism
presented above, delegating planning and evaluation tasks to Planner and Evaluator,
respectively. The new system con�guration, produced by Controller, Planner and Eval-
uator, is propagated to the OL agents by Monitor. The separation of duties between the
control layer agents is detailed in Table 7.6.

We propose that the described multi-agent architecture is to be implemented in JADE



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 103

Figure 7.22: Self-con�guring MAS: 2-layered architecture

Agent Data Stored Actions Performed Communication

Monitor Read-only access
to problemDef ,
D, G.

Monitors (listens) OL and the envi-
ronment; noti�es Controller about
triggering changes; propagates the
new plan to OL agents.

Environment,
OL agents, Con-
troller.

Controller problemDef ,
actionLog,
removeActionLog,
G, D.

Follows the recon�guration mecha-
nism, exploiting Planner (to initi-
ate replanning) and Evaluator (to
evaluate loads); updates stored
data structures; noti�es Monitor
about plan changes.

Monitor, Plan-
ner, Evaluator.

Planner Domain def-
inition; read-
only access to
problemDef .

Performs planning; tunes
problemDef in accordance with
Evaluator's results.

Controller, Eval-
uator.

Evaluator Action costs and
load bounds for
each OL agent.

Follows the evaluation procedure;
evaluates OL agents load.

Controller, Plan-
ner.

Table 7.6: Self-con�guring MAS: agents of the control layer



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 104

(Java Agent DEvelopment framework) [2], FIPA-compliant [3] framework for multi-agent
systems development. Four agents of the control layer will have the same functionality for
any domain-speci�c instance of the architecture. The Controller agent will implement the
recon�guration algorithm presented in Figure 7.13. The Monitor needs to implement the
communication with OL agents and the environment (e.g. using standard FIPA protocols,
like ContractNetProtocol). The functionality of the Planner and Evaluator agents has
been already implemented in S&D Tropos Tool [122].

The presented self-con�guration approach can be applied both to socio-technical sys-
tems, and to the multi-agent systems, which comprise only software agents. However,
the application of the approach to the former type of systems can be much more bene�-
cial, as dynamicity and the self-interested rational behavior are among the STS intrinsic
properties.

The proposed recon�guration mechanism is limited in that it supports only four types
of triggering events, namely, the situations when a new actor enters the system, or the
existing one leaves, when a new system goal is introduced, or one of the old ones is satis�ed.
However, the formalization could be quite easily extended to support the changes in the
actors' capabilities and commitments, failures when achieving goals, etc. This is possible
due to the 
exibility of the PDDL representation [50] of the problem and the planning
domain.

7.4 From organizational to instance level design

One of the critical issue in designing a socio-technical system is moving from an organiza-
tion structure to its actual implementation, where roles and activities have to be assigned
to speci�c agents (either humans or software components). Making a clear separation
between the organizational and the instance level of an STS allows the designer to verify
various constraints and properties that cannot be expressed at organizational level, but
are relevant only at instance level (e.g. con
ict of interests). In this section, we apply
our planning-based framework to the domain of socio-technical system design, considering
both organizational and instance level perspectives.

Most of the existing modelling frameworks remain silent on how organizational and
instance level models are related, a rare counter example is [142], where the relation
between the two is discussed and the formal de�nition of model instantiation axioms is
given. To a certain extent, similar problems are considered in the area of requirements
simulation [120], where the focus is usually on the validation of system speci�cations.

The separation of modelling and analysis levels is important, as there are constraints
that cannot be veri�ed at the organizational level, but are related to an instantiated
socio-technical model. One example of such constraint is avoiding the con
ict of interests,
which concrete realization consists in not allowing an agent to play two certain roles at
a time. Following the ideas presented in [142], our goal is to provide a Tropos-based
framework for modelling and analyzing socio-technical systems at both organizational
and instance levels. This framework will support model transformation and allow for



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 105

formal speci�cation of a vast range of constraints applied to roles as well as to agents
playing these roles.

In this work, we adopt the planning based approach presented in Chapter 4 for gener-
ating both organizational and instance level designs, and show how these two are related,
how an input setting at both levels is formalized and how the various constraints are
encoded. In the following, we �rst present a motivating case study, and then explain the
approach.

7.4.1 A motivating case study

The case study we will use in the section is the e-business case study described in Sec-
tion 3.1. It originates from SERENITY EU project [123], and focuses on banking, namely,
on how loans are provided by banks to their customers.

The main actors of the banking scenario are the Customer, who is willing to get a
loan, and the Bank, which can actually provide loans. In Tropos terminology, a customer,
which is a role that can be played by various human agents, depends on a bank for the
goal of obtaining a loan. We consider only three roles within the bank played by its em-
ployees, namely, Bank Manager, Senior Clerk and Junior Clerk. Yet another actor in the
scenario is a Consultant of the Credit Bureau. The consultant can be contacted by a bank
employee for the goal of checking customer credit worthiness. Moreover, some additional
information about the customer can be requested from various state institutions, e.g. a
bank might be interested in checking a customer criminal record before providing a loan,
so the relevant authority will be consulted for this purpose. In the our scenario, all such
sources of information are collectively represented as an agent called Government.

The fragment of the case study we consider in this section, contains only human and
organizational actors, the bank internal computer system (see Chapter 3 for the details)
is not considered here. However, this does not mean that our approach does not support
the analysis of systems which include software actors as well.

Two important questions should be addressed when analyzing the presented scenario.
The �rst question, which was considered in details in Chapters 4 and 5, is about the
optimal, or good-enough organizational structure capable of achieving the stakeholders'
goals. The second question to ask is the following: Are there any additional requirements
and constraints related to an instance of an organizational model, and if so, how concretely
should they be taken into account? To answer this, a concrete instantiation mapping and
a way to formally specify the constraints should be de�ned.

In the above fragment of the banking scenario, despite its simplicity, a number of
instance level constraints can be identi�ed. Take, for instance, the activity of checking
customer credit worthiness. In order to increase the reliability of the whole process, this
check should be performed by two di�erent persons: a bank clerk, performing an internal
check, and a consultant at the credit bureau, performing an additional check based on
the information which might not be available to the bank. However, this constraint can
be violated by a bank clerk who is also a part-time consultant at the credit bureau,
and it would be useful to have a support for identifying and �xing such violations. Or,
alternatively, it would be bene�cial to have a supporting tool for constructing a good-
enough (with respect to some prede�ned constraints) instantiation of an organizational



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 106

model. This latter challenge is addressed in this work.

7.4.2 General schema of the approach

Figure 7.23 presents the general schema of the design approach we propose, which includes
the following steps.

Figure 7.23: General schema of the approach

Planning and evaluation at the organizational level. This step takes as an input
the formalized initial organizational setting in terms of actors and goals, and the
speci�cation of the organizational level planning domain. It adopts planning tech-
niques for constructing organizational models, and uses the planning and evaluation
procedure presented in Chapters 4 and 5, which allows obtaining a model which is
optimal or good-enough with respect to a number of user de�ned criteria.

Organizational model instantiation. This step takes as an input the organizational
level plan produced on a previous step, formalized initial organizational setting,
instantiation predicates which specify the domain agents and the roles they play, and
a set of instantiation rules. At this step, a socio-technical model is instantiated in
accordance with the above rules. An output of this step is a formalized instantiated
organizational setting.

Planning and evaluation at the instance level. This step is analogous to the �rst
one, and takes as an input the formalized organizational setting produced on the



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 107

previous step, as well as the instance level planning domain, which includes a number
of instance level constraints discussed in Section 7.4.4.

To summarize, the above process provides an automation support for a number of
subsequent modelling and analysis activities, from building a high level organizational
model, to analyzing instance level model constraints (e.g. role or assignment con
icts).
The two main artifacts produced by the process are an organizational and a corresponding
instantiated model, both compliant by construction with a set of prede�ned properties
and constraints. Obviously, the design process cannot be fully automated, so a human
designer remains in the loop for approving or rejecting proposed alternatives, providing
feedback and making �nal design decisions.

7.4.3 Planning at the organizational level: example

Here the di�erence in the planning domain de�nition from the one presented in Chapter 4
is that an actor is specialized into an agent or a role. The notion of actor itself is used
to specify an input setting at the organizational level, as at this level there is no need to
distinguish between roles and agents. E.g. in the banking scenario, at the organizational
level we treat the agent government (assuming that the scope of the case study is limited
to one country) and the role consultant in the same way: we apply the same predicates
to describe the properties of both and the same actions to construct a plan which in-
volves both. This is so because at the organizational level the aim is to understand the
relations between a \generic" consultant and the government, while the actual number of
consultants is not yet relevant at this level.

Unlike actors, goals are used in both organizational and instance level formalization.
As explained later in Section 7.4.4, a key idea of goal instantiation is replacing an organi-
zational level goal, associated with a role, with a number of goal instances, each associated
with an agent playing this role. So, e.g. if in the instance level model there are two cus-
tomers, Carol and Cid, then there will be two instances of goal get a loan, one associated
with \Carol playing the role of a customer" and the other with \Cid playing the role of
a customer".

In Figure 7.24 the formalization of the fragment of the banking scenario at the organi-
zational level is shown. To understand the details of formalization, the reader can refer to
the diagram in Figure 7.26 (some of the relations present in this diagram will be explained
later, in Section 7.4.4). Here, the goal of getting a loan is AND-decomposed into getting
application accepted and getting loan approved. The latter goal is further decomposed
into evaluating the loan (which refers here to checking customer's trustworthiness), de-
ciding on loan and �nalizing loan contract. Checking customer's trustworthiness consists
in performing two checks, an internal one, which can be done by a senior clerk, and an
external one, which can be done by a consultant of the external Credit Bureau. To per-
form a customer check, a consultant should use two sources of information: the �nancial
data on customer's credit trustworthiness, which is collected and stored internally by the
Credit Bureau, and the data on customer's \general" trustworthiness, which is connected
to a customer's criminal record, and can be obtained via an inquiry to the appropriate
governmental institution.



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 108

GetLoan GetApplAccepted GetLoanApproved EvaluateLoan
DecideOnLoan FinalizeLoanContract IntCheck ExtCheck
CheckCrimR CheckCredTr StoreCrimR � goal

Customer Manager JuniorClerk SeniorClerk Consultant
Government � actor

Customer Manager JuniorClerk SeniorClerk Consultant � role
Government � agent

(and subgoal2 GetLoan GetApplAccepted GetLoanApproved)
(and subgoal3 GetLoanApproved

EvaluateLoan DecideOnLoan FinalizeLoanContract)
(and subgoal2 EvaluateLoan IntCheck ExtCheck)
(and subgoal2 ExtCheck CheckCrimR CheckCredTr)
(means end StoreCrimR CheckCrimR)
(can depend on Customer Manager)
(can depend on g Manager JuniorClerk GetApplAccepted)
(can depend on g Manager SeniorClerk GetLoanApproved)
(can depend on Consultant Government)
(can depend on g SeniorClerk Consultant ExtCheck)
(can satsify JuniorClerk GetApplAccepted)
(can satsify SeniorClerk IntCheck)
(can satsify SeniorClerk DecideOnLoan)
(can satsify SeniorClerk FinalizeContract)
(can satsify Consultant CheckCredTr)
(can satsify Government StoreCrimR)
(wants Customer GetLoan)

Figure 7.24: Banking scenario: formalization

Also, in the formalization there is a means-end link between store criminal record and
check customer's criminal record, which means that the satisfaction of the former goal
implies the satisfaction of the latter. Of course, the decomposition tree of the goal check
customer's criminal record is more complicated, namely, a consultant should formulate
an inquiry to the government, which is then processed and the answer is sent back, but
we omit these details for the sake of simplicity.

In addition, in Figure 7.24, possible dependencies among actors and actor capabilities
are speci�ed, and the wants predicate represents the motivation beyond the whole scenario:
a customer wants to get a loan. Note, that no type and con
ict predicates are present in
the formalization of this scenario.

Figure 7.25 presents the plan obtained for the banking scenario formalized in Fig-
ure 7.24. In Figure 7.26 the corresponding organizational model is depicted. In this
speci�c case, the model is a straightforward mapping of the initial organizational setting
to Tropos modelling primitives. Obviously, in more complex cases, the initial organiza-
tional setting allows for a number of alternative designs.

7.4.4 Organizational model instantiation

The key idea behind model instantiation, similarly to [142], is the following: a role has as
many instances as there are agents playing this role, and a goal has as many instances as
there are agents who want this goal to be satis�ed. As it was discussed earlier, certain con-



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 109

DELEGATES Customer Manager GetLoan
AND DECOMPOSES2 Manager GetLoan

GetApplAccepted GetLoanApproved
DELEGATES Manager JuniorClerk GetApplAccepted
SATISFIES JuniorClerk GetApplAccepted
DELEGATES Manager SeniorClerk GetLoanApproved
AND DECOMPOSES3 SeniorClerk GetLoanApproved

EvaluateLoan DecideOnLoan FinalizeLoanContract
AND DECOMPOSES2 SeniorClerk EvaluateLoan

IntCheck ExtCheck
SATISFIES SeniorClerk IntCheck
DELEGATES SeniorClerk Consultant ExtCheck
AND DECOMPOSES2 Consultant ExtCheck

CheckCrimR CheckCredTr
SATISFIES Consultant CheckCredTr
SATISFIES Government StoreCrimR
SATISFIES SeniorClerk DecideOnLoan
SATISFIES SeniorClerk FinalizeLoanContract

Figure 7.25: Banking scenario: an organizational level plan

straints can be expressed and analyzed only at the instance level, where a socio-technical
model re
ects the actual dependencies among agents playing roles and goal assignments
to these agents. The source of instance level constraints can be legal regulations (e.g.
two activities can not be performed by the same agent) or optimization concerns (e.g.
overlapping assignments of goals to agents should be avoided).

Instantiation may start either from an organizational level plan, or from a formalized
initial organizational setting. In the former case, the resulting instance level plan will be
an instance of an organizational level plan, while in the latter case the search space for an
instance level plan is bigger due to those relations and capabilities that are \potentially"
present at the organizational level (e.g. OR-decompositions of goals, actor capabilities
which are not used in the organizational level model). In our approach, both cases are
supported.

To formalize an instantiated organizational setting, a set of predicates presented in
Table 7.7 is used.

Instance level predicates (\Agent-Role Properties and Relations" section in Table 7.7)
describe agents, roles and their relations with goals, and are de�ned analogously to the
predicates in the basic set of Section 4.1. In all the instance level predicates an agent is
coupled with the role it plays. E.g. can satisfy(a: agent, r: role, g: goal) should be read
as \agent a when playing role r is capable of satisfying goal g".

Instantiation predicates are the following two: plays(a: agent, r: role) representing
the situation in which an agent is actually playing a role, and can play(a: agent, r: role)
meaning that an agent can potentially play a role, i.e. has all the necessary abilities for it.
Note that for the instantiation procedure to be consistent, we do not allow can play(a,r)
predicates for those roles r for which wants(r,g) is in the organizational level setting
description for some goal g.

Instantiation constraints represent two situations that should be avoided in a re-
sulting model, namely, role and goal assignment con
icts. The former is encoded by



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 110

Figure 7.26: Banking scenario: organizational level model

role con
ict a(r1, r2: role, a: agent) predicate, meaning that agent a cannot play roles r1
and r2 at the same time. The \generic" version of this predicate, in which an agent is
omitted, means that no agent is allowed to play the speci�ed roles at the same time. The
second type of constraint, goal assignment con
ict, encoded by assignment con
ict a(g1,
g2: goal, a: agent) predicate, represents the fact that goals g1 and g2 cannot be both
satis�ed by the same agent a. Again, the \generic" version of the predicate has the same
meaning for any agent of the domain.

As in the case of an organizational level formalization, certain rules, or axioms, should
hold:

1. possible agent dependency on a goal type implies the same dependency on all goals
of this type:
can depend on gt(a1; r1; a2; r2; gt); a1; a2 : agent; r1; r2 : role; gt : gtype!

8g : goal:type(g; gt)can depend on g(a1; r1; a2; r2; g);

2. agent capability to satisfy a goal type implies the capability to satisfy all goals of
this type:
can satisfy gt(a : agent; r : role; gt : gtype)! 8g : goal:type(g; gt) can satisfy g(a; r; g);

3. generic assignment con
ict implies assignment con
ict for any agent of the domain:



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 111

Instantiation Predicates and Constraints

can play(a : agent; r : role)
plays(a : agent; r : role)
assignment con
ict(g1; g2 : goal)
assignment con
ict a(g1; g2 : goal; a : agent)
role con
ict(r1; r2 : role)
role con
ict a(r1; r2 : role; a : agent)

Agent-Role Properties and Relations

can satisfy(a : agent; r : role; g : goal)
can satisfy gt(a : agent; r : role; gt : gtype)
wants(a : agent; r : role; g : goal)
can depend on(a1 : agent; r1 : role; a2 : agent; r2 : role)
can depend on gt(a1 : agent; r1 : role; a2 : agent; r2 : role; gt : gtype)
can depend on g(a1 : agent; r1 : role; a2 : agent; r2 : role; g : goal)

Table 7.7: Formalizing the instantiated setting: predicates

assignment con
ict(g1; g2 : goal)! 8a : agent assignment con
ict a(g1; g2; a);

4. goal assignment con
ict is symmetric:
assignment con
ict a(g1; g2 : goal; a : agent)! assignment con
ict a(g2; g1; a);

5. generic role con
ict implies role con
ict for any agent of the domain:
role con
ict(r1; r2 : role)! 8a : agent role con
ict a(r1; r2; a);

6. role con
ict is symmetric:
role con
ict a(r1; r2 : role; a : agent)! role con
ict a(r2; r1; a):

Let us consider the instantiation predicates and constraints for the banking scenario
listed in Figure 7.27. Seven new agents are introduced, Cid and Carol, the two customers,
Mike and Pat, which can play the role of a bank manager and senior clerk, respectively,
Chris, who can play the role of a consultant, Peter, who can be both a consultant or a
senior clerk, and Paul, who is capable of playing the roles of both junior and senior clerk.
Two examples of instance level constraints, represented also graphically in Figure 7.26,
are the following. The �rst one is an assignment con
ict between checking customer's
trustworthiness internally in the bank, and externally via an inquiry to the Credit Bureau.
Namely, these checks cannot be performed by the same person, which may happen if a
bank employee works as a part-time consultant, like Peter can do in our example. The
second constraint refers to the con
ict between the roles of junior and senior clerk, namely,
an agent is allowed to play only one of the roles at the same time. This can be, in principle,
violated by Paul in our example.

An organizational model is instantiated following the rules, detailed and illustrated
on the banking scenario in Table 7.8. These rules specify how to form an instance level
planning problem (IP ) starting from a planning problem at the organizational level (OP ).

7.4.5 Planning at the instance level

A plan constructed for the instantiated organizational setting consists of the following
actions.



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 112

Step Description and examples

1. Agents and roles

Add roles and agents from OP , add the new agents speci�ed in the instantiation input; add
role con
ict a(r1; r2; a) predicates speci�ed in the instantiation constraints;
Example Customer Manager JuniorClerk SeniorClerk Consultant � role

Government Peter Paul Pat Cid Carol Mike Chris � agent
(role con
ict JuniorClerk SeniorClerk)

2. Agent-role relations

Add all plays(a : agent; r : role) and can play(a : agent; r : role) predicates speci�ed in the in-
stantiation input; a \fake" role norole is introduced and plays(a : agent; norole) is added for
all agents a for which no role is speci�ed
Example (plays Cid Customer) (can play Chris Consultant) (plays Government norole)

3. Goals and
agent desires

For each goal g in OP add a goal with the name r-a-g for each (r : role; a : agent) pair such
that OP contains wants(r; g), and IP contains either play(a; r) or can play(a; r);
then, instantiate wants(a; g):
wants(r; g); r : role! 8a : agent; r-a-g : goal wants(a; r; r-a-g)
wants(a; g); a : agent! wants(a; norole; g);
Example Customer-Cid-GetLoan Customer-Carol-GetLoan � goal

(wants Cid Customer Customer-Cid-GetLoan)
(wants Carol Customer Customer-Carol-GetLoan)

4. Goal
decomposition

Instantiate and=or subgoaln(g; g1; :::; gn) by adding the corresponding predicates for each goal
instance *-g of g; if any of gi is not yet instantiated, add an instance r-a-gi for each r-a-g.
Example Customer-Cid-GetApplAccepted Customer-Cid-GetLoanApproved � goal

(and subgoal2 Customer-Cid-GetLoan
Customer-Cid-GetApplAccepted Customer-Cid-GetLoanApproved)

5. Goal con
icts
For each con
ict(g1; g2) for all (r : role; a : agent) such that r-a-g1 is an instance of g1 and g2
is not yet instantiated, instantiate g2 with r-a-g2; then, instantiate the relation as follows
con
ict(g1; g2); g1; g2 : goal! 8r : role; a : agent:9r-a-g1; r-a-g2 : goal con
ict(r-a-g1; r-a-g2)

6. Means-end

For each means end(gmeans; gend) for all (r : role; a : agent) such that r-a-gend is an instance of
gend, and gmeans is not yet instantiated, instantiate gmeans with r-a-gmeans; then, instantiate
the relation:
means end(gmeans; gend)! 8r : role; a : agent:9r-a-gmeans; r-a-gend means end(r-a-gmeans; r-a-gend)
Example Customer-Carol-StoreCrimR � goal

(means end Customer-Carol-StoreCrimR Customer-Carol-CheckCrimR)

7. Agent capabilities

Instantiate can satisfy(a; g) as follows
can satisfy(r; g); r : role! 8a : agent; *-g : goal can satisfy(a; r; *-g)
can satisfy(a; g) a : agent! can satisfy(a; norole; *-g);
Example (can satsify Chris Consultant Customer-Cid-CheckCredTr)

(can satsify Government norole Customer-Cid-StoreCrimR)

8. Dependencies

Instantiate can depend g(a1; a2; g) as follows
can depend g(r1; r2; g); r1; r2 : role! 8a1; a2 : agent; *-g : goal can depend g(a1; r1; a2; r2; *-g)
can depend g(a1; r2; g); a1 : agent; r2 : role!
8a2 : agent; *-g : goal can depend g(a1; norole; a2; r2; *-g)

can depend g(r1; a2; g); r1 : role; a2 : agent!
8a1 : agent; *-g : goal can depend g(a1; r1; a2; norole; *-g)

can depend g(a1; a2; g); a1; a2 : agent! 8*-g : goal can depend g(a1; norole; a2; norole; *-g);
Example (can depend on g Paul SeniorClerk Chris Consultant Customer-Cid-ExtCheck)

(can depend on g Paul SeniorClerk Peter Consultant Customer-Cid-ExtCheck)

9. Assignment
con
icts

Instantiate assignment con
ict a as follows
assignment con
ict a(g1; g2; a)!
8r : role:9r-a-g1; r-a-g2 : goal assignment con
ict a(r-a-g1; r-a-g2; a);

Example assignment con
ict a(Customer-Cid-CheckCredTr;Customer-Cid-IntCheck;Peter)
assignment con
ict a(Customer-Carol-CheckCredTr;Customer-Carol-IntCheck;Peter)

Table 7.8: Organizational model instantiation: steps and examples



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 113

Peter Paul Pat Cid Carol Mike Chris � agent
(plays Cid Customer)
(plays Carol Customer)
(can play Chris Consultant)
(can play Peter Consultant)
(can play Peter SeniorClerk)
(can play Paul SeniorClerk)
(can play Paul JuniorClerk)
(can play Pat JuniorClerk)
(assignment con
ict CheckCredTr IntCheck)
(role con
ict JuniorClerk SeniorClerk)

Figure 7.27: Banking scenario: instantiation input

TAKES ON ROLE(a : agent; r : role): agent a takes on all the rights and responsibilities
associated with role r;

SATISFIES(a : agent; r : role; g : goal): agent a playing role r satis�es goal g;

AND/OR DECOMPOSES n(a : agent; r : role; g; g1; :::; gn : goal): agent a playing role r
decomposes goal g into its n AND/OR-subgoals;

DELEGATES (a1 : agent; r1 : role; a2 : agent; r2 : role; g : goal): agent a1 playing role r1
depends for goal g on agent a2 playing role r2.

Role and assignment con
icts are taken into account when specifying the precondi-
tions of actions TAKES ON ROLE and SATISFIES as shown in Table 7.9. In the table,
pr satis�es(a : agent, r : role, g : goal) is a \trace predicate", which becomes true after an
action SATISFIES(a; r; g) is added to a plan.

TAKES ON ROLE(a : agent; r : role)

precondition:
can play(a; r)^
8r0 : roal :(play(a; r0) ^ role con
ict(r; r0; a))

e�ect:
plays(a; r)

SATISFIES(a : agent; r : role; g : goal)

precondition:
plays(a; r; g)^
wants(a; r; g)^
can satisfy(a; r; g)^
8g0 : goal:(con
ict(g; g0) ^ satis�ed(g0)) ^
8g0 : goal:(means ends(g0; g) ^ satis�ed(g0)) ^
8g0 : goal; r0 : role

:(pr satis�es(a; r0; g0) ^ assignment con
ict(g; g0; a))
e�ect:

satis�ed(g)^
:wants(a; r; g)

Table 7.9: Role assignment and satisfaction actions at the instance level

In the instantiation of the banking scenario, a possible solution generated by the
planner contains the actions presented in Figure 7.28.



CHAPTER 7. CUSTOMIZATIONS AND APPLICATIONS OF THE APPROACH 114

TAKES ON ROLE Mike Manager
TAKES ON ROLE Pat JuniorClerk
TAKES ON ROLE Paul SeniorClerk
TAKES ON ROLE Peter Consultant
TAKES ON ROLE Peter SeniorClerk
TAKES ON ROLE Chris Consultant

Figure 7.28: Banking scenario: (a fragment of) an instance level plan

The remaining plan actions are the instances of the class level plan presented in Fig-
ure 7.25. In this instance level model, Cid is served by Peter playing the role of a senior
clerk and Chris playing the role of a consultant, and Carol is served by Paul playing the
role of a senior clerk and Peter playing the role of a consultant. By construction, this
model satis�es all the instance level constraints.

Both organizational and instance level planning domains are implemented using PDDL
2.2 speci�cation language [50] and LPG-td planner [99]. The instantiation procedure,
which steps are explained in Section 7.4.4, is implemented in Perl scripting language.

7.5 Conclusive remarks

In this chapter, we have shown how the approach proposed in Chapters 3-5 of the thesis
can be customized to be used in a number of interesting application domains. We have
presented four applications of the framework, namely, secure and trusted systems design,
risk-driven design of safety critical systems, runtime recon�guration of socio-technical
systems, and instantiation and veri�cation of socio-technical designs.

The key idea this chapter intends to demonstrate is that the framework developed
in the thesis can be relatively easy customized to a vast range of application areas and
problems. This is due to the 
exibility of the underlying formalization (i.e., it can be
extended to take into account new organizational concepts, constraints and actions), the
use of a standard speci�cation language (PDDL [50]) to represent a planning domain,
generality of the proposed evaluation criteria and procedures, and the domain-independent
methodological process.



Chapter 8

Conclusion

One of the characteristic features of modern information systems is the involvement of
humans and organizations in their architecture and operation. These systems are intrin-
sically socio-technical, and thus, their analysis and design should not be limited only to
software and hardware components, but also address a vast range of social aspects. In this
thesis, we have studied the concept of a socio-technical system, the problems one faces
during the design of such systems, and the existing approaches. In particular, one of the
most di�cult tasks to be performed when analysing requirements for a socio-technical sys-
tem, is identifying optimal, or at least \good enough", design options among the available
alternatives. The number of alternative choices is usually high and the evaluation criteria
are not easy to de�ne. Therefore, there is a clear need for the automation support for the
task of exploring the space of socio-technical design alternatives, and for the concrete set
of criteria to guide the search.

In the thesis, we have formalized the problem of generating an acceptable socio-
technical design option as a planning problem, and proposed a systematic, tool-supported
requirements engineering process which aim is to support a designer in exploring and
evaluating alternative con�gurations of a socio-technical system. The process is based on
the use of AI planning techniques to construct design alternatives, and a set of evaluation
criteria to assess and compare the available options. We have customized the proposed
planning-based approach to several important application domains, such as secure and
trusted system design, self-con�guring socio-technical systems and some others. We have
reported on the evaluation of the approach through the work on a number of case studies,
and on the experiments we have performed to assess the scalability of our prototype tool
to realistic design problems.

To summarize, the main contributions of this thesis are the following.

� Formalization and implementation of the problem of generating socio-technical sys-
tem designs in terms of AI planning.

� A set of criteria for evaluating the optimality of a socio-technical design, and the
methodological guidelines on how to use these criteria.

� A structured tool-supported process for the requirements analysis of socio-technical
systems.

115



CHAPTER 8. CONCLUSION 116

� Customization of the proposed planning-based framework to the domains of secure
and trusted system design, safety critical systems, self-con�guring socio-technical
system, as well as to the problem of instantiating socio-technical designs.

� Validation of the approach through case studies and scalability experiments.

What concerns the possible future work directions, we are interested in addressing the
following problems:

� Adopt novel planning techniques that go beyond those we adopted and used in
our work; for example, use concepts from ConGolog [69] or planning with prefer-
ences [12].

� As discussed in Section 5.1, incorporate into the framework an existing approach
to quantitative and/or qualitative reasoning on non-functional system requirements,
which will allow evaluating and comparing alternatives in terms of their impact on
the satisfaction of NFR.

� Further explore criticality evaluation criteria discussed in Section 5.2, namely, de�ne
the criticality measures that characterize how di�cult it is to repair a plan when an
actor is removed from it; study the complexity issues related to these measures.

� Elaborate on the application of the planning-based approach to the problem of sys-
tem re-con�guration at runtime. In Section 7.3 we have presented the �rst results
along this direction, however, the work on the implementation and evaluation of the
proposed architecture is yet to be done.

� Work further on the evaluation of the approach using the real-life medium and large
scale case studies, and conduct more scalability experiments.

� Continue the development of the tool [122], presented in Section 6.1, to better sup-
port the proposed process.



Bibliography

[1] Specware: Automated Software Development System { http://www.specware.org/.

[2] JADE: Java Agent DEvelopment Framework website | http://jade.tilab.com/.

[3] FIPA: Foundation for Intelligent Physical Agents | http://www.�pa.org/.

[4] Susanne Albers, Stefan Eilts, Eyal Even-Dar, Yishay Mansour, and Liam Roditty.
On Nash Equilibria for a Network Creation Game. In SODA'06, pages 89{98, 2006.

[5] AMICE Consortium. Open System Architecture for CIM. Springer-Verlag New
York, Inc., 1993.

[6] John S. Anderson and Stephen Fickas. A Proposed Perspective Shift: Viewing
Speci�cation Design as a Planning Problem. In IWSSD'89, pages 177{184, 1989.

[7] Elliot Anshelevich, Anirban Dasgupta, Eva Tardos, and Tom Wexler. Near-Optimal
Network Design with Sel�sh Agents. In STOC'03, pages 511{520, 2003.

[8] Naveed Arshad, Dennis Heimbigner, and Alexander L. Wolf. A planning based
approach to failure recovery in distributed systems. In WOSS '04: Proceedings of
the 1st ACM SIGSOFT workshop on Self-managed systems, pages 8{12, New York,
NY, USA, 2004. ACM Press.

[9] Yudistira Asnar, Volha Bryl, and Paolo Giorgini. Using risk analysis to evaluate
design alternatives. In Lin Padgham and Franco Zambonelli, editors, AOSE, volume
4405 of Lecture Notes in Computer Science, pages 140{155. Springer, 2006.

[10] M. Bryce & Associates. PRIDE-EEM enterprise engineering methodology.
http://www.phmainstreet.com/mba/pride/eemeth.htm, 2006.

[11] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E. Landwehr. Ba-
sic concepts and taxonomy of dependable and secure computing. IEEE Trans.
Dependable Sec. Comput., 1(1):11{33, 2004.

[12] Jorge A. Baier, Fahiem Bacchus, and Sheila McIlraith. A Heuristic Search Approach
to Planning with Temporally Extended Preferences. In IJCAI'07, pages 1808{1815,
2007.

[13] Robert Balzer, Thomas E. Cheatham Jr., and Cordell Green. Software technology
in the 1990's: Using a new paradigm. Computer, 16(11):39{45, 1983.

117



BIBLIOGRAPHY 118

[14] Bernhard Bauer, J�org P. M�uller, and James Odell. Agent UML: A formalism for
specifying multiagent software systems. IJSEKE, 11(3):207{230, 2001.

[15] Carole Bernon, Marie Pierre Gleizes, Sylvain Peyruqueou, and Gauthier Picard.
ADELFE: A methodology for adaptive multi-agent systems engineering. In ESAW,
pages 156{169, 2002.

[16] Peter Bernus and Laszlo Nemes. A framework to de�ne a generic enterprise refer-
ence architecture and methodology. In IFAC/IFIP Task Force on Architectures for
Enterprise Integration, pages 179{191, 1994.

[17] Stefan Bi�, Ayb�uke Aurum, Barry Boehm, Hakan Erdogmus, and Paul Gr�unbacher.
Value-Based Software Engineering. Springer-Verlag New York, Inc., 2005.

[18] Joseph P. Bigus, Don A. Schlosnagle, Je� R. Pilgrim, W. Nathaniel Mills III, and
Yixin Diao. ABLE: A toolkit for building multiagent autonomic systems. IBM
Systems Journal, 41(3), 2002.

[19] Barry Boehm. A spiral model of software development and enhancement. Computer,
21(5):61{72, May 1988.

[20] Barry Boehm. Some future trends and implications for systems and software engi-
neering processes. Systems Engineering, 9(1):1{19, 2006.

[21] Barry Boehm. A view of 20th and 21st century software engineering. In ICSE '06:
Proceeding of the 28th International Conference on Software Engineering, pages
12{29. ACM, 2006.

[22] Barry Boehm, Prasanta Bose, Ellis Horowitz, and Ming-June Lee. Software require-
ments as negotiated win conditions. pages 74{83, 1994.

[23] Grady Booch, James E. Rumbaugh, and Ivar Jacobson. The Uni�ed Modeling
Language User Guide. Addison-Wesley, 1999.

[24] Paolo Bresciani and Paolo Donzelli. A practical agent-based approach to require-
ments engineering for socio-technical systems. In AOIS'03, pages 158{173, 2003.

[25] Paolo Bresciani, Paolo Giorgini, Fausto Giunchiglia, John Mylopoulos, and Anna
Perini. TROPOS: An Agent-Oriented Software Development Methodology. JAA-
MAS, 8(3):203{236, 2004.

[26] Paolo Bresciani, Paolo Giorgini, Haralambos Mouratidis, and Gordon Manson.
Multi-agent Systems and Security Requirements Analysis. Software Engineering
for Multi-Agent Systems II, pages 35{48, 2004.

[27] Volha Bryl, Fabiano Dalpiaz, Roberta Ferrario, Andrea Mattioli, and Adolfo Vil-
la�orita. Evaluating procedural alternatives: a case study in e-voting. To appear in
Electronic Government, 2009.



BIBLIOGRAPHY 119

[28] Volha Bryl and Paolo Giorgini. Self-con�guring socio-technical systems: Redesign at
runtime. International Transactions on Systems Science and Applications, 2(1):31{
40, 2009. Presented at SOAS'06 conference.

[29] Volha Bryl, Paolo Giorgini, and John Mylopoulos. Designing cooperative IS: Ex-
ploring and evaluating alternatives. In CoopIS'06, pages 533{550, 2006.

[30] Volha Bryl, Paolo Giorgini, and John Mylopoulos. Supporting requirements analysis
in Tropos: a planning-based approach. In PRIMA'07, 2007.

[31] Volha Bryl, Paolo Giorgini, and John Mylopoulos. Designing socio-technical
systems: From stakeholder goals to social networks. Requirement Engineering,
14(1):47{70, 2009.

[32] Volha Bryl, Fabio Massacci, John Mylopoulos, and Nicola Zannone. Designing
security requirements models through planning. In CAiSE'06, pages 33{47, 2006.

[33] Giovanni Caire, Wim Coulier, Francisco J Garijo, Jorge Gomez, Juan Pavon, Fran-
cisco Leal, Paulo Chainho, Paul E. Kearney, Jamie Stark, Richard Evans, and
Philippe Massonet. Agent oriented analysis using Message/UML. In Agent-Oriented
Software Engineering II, Second International Workshop, volume 2222, pages 119{
135. Springer, 2001.

[34] James Caldwell. Moving Proofs-as-Programs into Practice. In ASE-97, pages 10{17.
IEEEP, 1997.

[35] Luis Castillo, Juan Fernandez Olivares, and Antonio Gonzalez. Integrating Hier-
archical and Conditional Planning Techniques into a Software Design Process for
Automated Manufacturing. In ICAPS'03, pages 28{39, 2003.

[36] Luca Cernuzzi and Franco Zambonelli. Dealing with adaptive multi-agent organi-
zations in the Gaia methodology. In Workshop on Agent-Oriented Software Engi-
neering (AOSE 2005), pages 217{228, 2005.

[37] Betty H.C. Cheng and Joanne M. Atlee. Research directions in requirements en-
gineering. In FOSE '07: 2007 Future of Software Engineering, pages 285{303, Los
Alamitos, CA, USA, 2007. IEEE Computer Society.

[38] Lawrence K. Chung, Brian A. Nixon, Eric Siu-Kwong Yu, and John Mylopoulos.
Non-Functional Requirements in Software Engineering. Kluwer Publishing, 2000.

[39] John Clarke, Jose Javier Dolado, Mark Harman, Bryan Jones, Mary Lumkin, Brian
Mitchell, Kearton Rees, and Marc Roper. Reformulating software engineering as a
search problem. IEE Proceedings on Software, 150(3):161{175, June 2003.

[40] Chris W. Clegg. Sociotechnical principles for system design. Applied Ergonomics,
31:463{477, 2000.



BIBLIOGRAPHY 120

[41] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W.
Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki,
and S. F. Smith. Implementing mathematics with the Nuprl proof development
system. Prentice-Hall, Inc., 1986.

[42] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed Require-
ments Acquisition. Science of Computer Programming, 20:3{50, 1993.

[43] Rajdeep K. Dash, Nicholas R. Jennings, and David C. Parkes. Computational
Mechanism Design: A Call to Arms. IEEE Intelligent Systems, 18(6):40{47, 2003.

[44] Marina Davidson and Max Garagnani. Pre-processing Planning Domains Contain-
ing Language Axioms. In PlanSIG'02, pages 23{34, 2002.

[45] Aldo de Moora and Hans Weigandb. Formalizing the evolution of virtual commu-
nities. Inornation Systems, 32(2):223{247, 2007.

[46] Scott A. DeLoach and Eric Matson. An organizational model for designing adaptive
multiagent systems. In Proceedings of AAAI-04 Workshop on Agent Organizations,
pages 66{73, 2004.

[47] Virginia Dignum. A Model for Organizational Interaction, based on Agents, founded
in Logic. PhD thesis, University of Utrecht, 2003.

[48] Virginia Dignum, Liz Sonenberg, and Frank Dignum. Towards dynamic reorganiza-
tion of agent societies. In Workshop on Coordination in Emergent Agent Societies,
2004.

[49] Peter Drucker. Managing the Non-Pro�t Organization: Principles and Practices.
HapperCollins Publishers, 1990.

[50] Stefan Edelkamp and Jorg Ho�mann. PDDL2.2: The Language for the Classical
Part of the 4th International Planning Competition. Technical Report 195, Univer-
sity of Freiburg, 2004.

[51] Thomas Ellman. Speci�cation and Synthesis of Hybrid Automata for Physics-Based
Animation. In ASE'03, pages 80{93, 2003.

[52] Frederick E. Emery. Characteristics of socio-technical systems. London: Tavistock,
1959.

[53] Hugo Estrada Esquivel. A Service-oriented approach for the i* Framework. PhD
thesis, Valencia University of Technology, 2008.

[54] Jacques Ferber and Olivier Gutknecht. A meta-model for the analysis and design
of organizations in multi-agent systems. In ICMAS, pages 128{135, 1998.

[55] Anthony Finkelstein, Mark Harman, S. Afshin Mansouri, Jian Ren, and Yuanyuan
Zhang. "fairness analysis" in requirements assignments. In Proceedings of the 16th
IEEE International Requirements Engineering Conference (RE '08), 2008.



BIBLIOGRAPHY 121

[56] Ian Foster. What is the Grid? a three point checklist, 2002.

[57] Maria Fox and Derek Long. PDDL2.1: An Extension to PDDL for Expressing
Temporal Planning Domains. JAIR, 20:61{124, 2003.

[58] Robert France and Bernhard Rumpe. Model-driven development of complex soft-
ware: A research roadmap. In FOSE'07: Future of Software Engineering, pages
37{54, Washington, DC, USA, 2007. IEEE Computer Society.

[59] Xavier Franch. On the Quantitative Analysis of Agent-Oriented Models. In
CAiSE'06, pages 495{509, 2006.

[60] Ariel Fuxman, Paolo Giorgini, Manuel Kolp, and John Mylopoulos. Information
systems as social structures. pages 10{21, 2001.

[61] Michael J. Gallivan. Striking a balance between trust and control in a virtual
organization: a content analysis of open source software case studies. ISJ, 11(2):277,
2001.

[62] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[63] Gunter Gans, Matthias Jarke, Stefanie Kethers, and Gerhard Lakemeyer. Modeling
the Impact of Trust and Distrust in Agent Networks. In AOIS'01, pages 45{58,
2001.

[64] Massimiliano Garagnani. A Correct Algorithm for E�cient Planning with Pre-
processed Domain Axioms. Research and Development in Intelligent Systems XVII,
pages 363{374, 2000.

[65] Maddalena Garzetti, Paolo Giorgini, John Mylopoulos, and Fabrizio Sannicol�o. Ap-
plying Tropos Methodology to a real case study: Complexity and Criticality Analy-
sis. In WOA'02, pages 7{13, 2002.

[66] B. Cenk Gazen and Craig A. Knoblock. Combining the Expressivity of UCPOP
with the E�ciency of Graphplan. In ECP'97, pages 221{233, 1997.

[67] Alfonso Gerevini and Derek Long. Plan Constraints and Preferences in PDDL3.
Technical Report RT 2005-08-47, University of Brescia, Italy, 2005.

[68] Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott, Ashwin Ram,
Manuela Veloso, Daniel S. Weld, and David Wilkins. PDDL { The Planning Domain
De�nition Language. In AIPS'98, 1998.

[69] Giuseppe De Giacomo, Yves Lesperance, and Hector J. Levesque. ConGolog, a
Concurrent Programming Language Based on the Situation Calculus. Arti�cial
Intelligence, 121(1-2):109{169, 2000.

[70] Paolo Giorgini, Fabio Massacci, John Mylopoulos, and Nicola Zannone. Modeling
security requirements through ownership, permission and delegation. In RE'05,
pages 167{176, 2005.



BIBLIOGRAPHY 122

[71] Paolo Giorgini, Fabio Massacci, John Mylopoulos, and Nicola Zannone. Modelling
social and individual trust in requirements engineering methodologies. In iTrust-05,
volume 3477 of LNCS, pages 161{176, 2005.

[72] Paolo Giorgini, John Mylopoulos, Eleonora Nicchiarelli, and Roberto Sebastiani.
Reasoning with Goal Models. In ER'02, pages 167{181, 2002.

[73] Andreas Gregoriades, Jae-Eun Shin, and Alistair Sutcli�e. Human-centred require-
ments engineering. In RE'04, pages 154{163, 2004.

[74] Daniel Gross and Eric Siu-Kwong Yu. From Non-Functional Requirements to Design
through Patterns. Requirements Engineering, 6(1):18{36, 2001.

[75] Giancarlo Guizzardi, Gerd Wagner, Nicola Guarino, and Marten van Sinderen. An
ontologically well-founded pro�le for UML conceptual models. In CAiSE-04, volume
3084 of LNCS, pages 112{126. SV, 2004.

[76] Jon G. Hall and Andres Silva. A requirements-based framework for the analysis of
socio-technical system behaviour. In REFSQ'03, pages 117{120, 2003.

[77] Brian Henderson-Sellers and Paolo Giorgini, editors. Agent-Oriented Methodologies.
Idea Group Publishing, 2005.

[78] Jim Highsmith and Martin Fowler. The agile manifesto. Software Development
Magazine, 9(8):29{30, 2001.

[79] Bryan Horling and Victor Lesser. A survey of multi-agent organizational paradigms.
Knowl. Eng. Rev., 19(4):281{316, 2004.

[80] Jomi Fred Hubner, Jaime Simao Sichman, and Olivier Boissier. A model for the
structural, functional, and deontic speci�cation of organizations in multiagent sys-
tems. In SBIA'02: Proceedings of the 16th Brazilian Symposium on Arti�cial Intel-
ligence, pages 118{128, London, UK, 2002. Springer-Verlag.

[81] Jomi Fred H�ubner, Jaime Sim~ao Sichman, and Olivier Boissier. Using the Moise+
for a cooperative framework of MAS reorganisation. In SBIA, pages 506{515, 2004.

[82] Markus C. Huebscher and Julie A. McCann. A survey of autonomic computing -
degrees, models, and applications. ACM Comput. Surv., 40(3), 2008.

[83] IBM. Autonomic computing: IBM's perspective on the state of information tech-
nology, 2001.

[84] Carlos A. Iglesias, Mercedes Garijo, Jos C. Gonzlez, and Juan R. Velasco. Analysis
and design of multiagent systems using MAS-CommonKADS. Intelligent agents IV,
pages 313{326, 1998.

[85] Hoh Peter In and David Olson. Requirements negotiation using multi-criteria pref-
erence analysis. Journal of Universal Computer Science, 10(4):306{325, 2004.



BIBLIOGRAPHY 123

[86] Sara Jones, Neil A. M. Maiden, Sharon Manning, and John Greenwood. Inform-
ing the speci�cation of a large-scale socio-technical system with models of human
activity. In REFSQ'07, pages 175{189, 2007.

[87] Frederick P. Brooks Jr. No silver bullet: Essence and accidents of software engi-
neering. Computer, 20(4):10{19, 1987.

[88] Haruhiko Kaiya, Daisuke Shinbara, Jinichi Kawano, and Motoshi Saeki. Improving
the Detection of Requirements Discordances Among Stakeholders. Requirements
Engineering, 10(4):289{303, 2005.

[89] Joachim Karlsson and Kevin Ryan. Supporting the selection of software require-
ments. In IWSSD '96: Proceedings of the 8th International Workshop on Software
Speci�cation and Design, pages 146{149, Washington, DC, USA, 1996. IEEE Com-
puter Society.

[90] Je�rey O. Kephart and David M. Chess. The vision of autonomic computing. Com-
puter, 36(1):41{50, 2003.

[91] Jana Koehler, Bernhard Nebel, J�org Ho�mann, and Yannis Dimopoulos. Extending
Planning Graphs to an ADL Subset. In ECP'97, pages 273{285, 1997.

[92] Manuel Kolp, Paolo Giorgini, and John Mylopoulos. Organizational patterns for
early requirements analysis. In CAiSE'03, pages 617{632, 2003.

[93] Elias Koutsoupias and Christos Papadimitriou. Worst-Case Equilibria. In
STACS'99, pages 404{413, 1999.

[94] Je� Kramer. Distributed software engineering. In ICSE, pages 253{263, 1994.

[95] Kevin Lai, Michal Feldman, Ion Stoica, and John Chuang. Incentives for Coopera-
tion in Peer-to-Peer Networks. InWorkshop on Economics of Peer-to-Peer Systems,
2003.

[96] Emmanuel Letier and Axel van Lamsweerde. Reasoning about Partial Goal Sat-
isfaction for Requirements and Design Engineering. SIGSOFT Softw. Eng. Notes,
29(6):53{62, 2004.

[97] Magnus Ljungberg and Andrew Lucas. The OASIS air-tra�c management system.
In PRICAI'92: In Proceedings of the Second Paci�c Rim International Conference
on Arti�cial Intelligence, 1992.

[98] Michael Lowry, Andrew Philpot, Thomas Pressburger, and Ian Underwood. A
formal approach to domain-oriented software design environments. pages 48{57,
1994.

[99] LPG Homepage. LPG-td Planner. http://zeus.ing.unibs.it/lpg/.

[100] Niklas Luhmann. Trust and Power. Wisley, 1979.



BIBLIOGRAPHY 124

[101] Zohar Manna and Richard Waldinger. A Deductive Approach to Program Synthesis.
TOPLAS, 2(1):90{121, 1980.

[102] Fabio Massacci, Marco Prest, and Nicola Zannone. Using a security requirements
engineering methodology in practice: The compliance with the italian data protec-
tion legislation. CSI, 27(5):445{455, 2005.

[103] Jose Luis Mate and Andres Silva. Requirements Engineering for Sociotechnical
Systems. Infoscl, London, 2004.

[104] Mihhail Matskin and Enn Tyugu. Strategies of Structural Synthesis of Programs
and Its Extensions. CI, 20:1{25, 2001.

[105] Alistair Mavin and Neil Maiden. Determining socio-technical systems requirements:
Experiences with generating and walking through scenarios. In RE'03, pages 213{
222, 2003.

[106] Thomas Moscibroda, Stefan Schmid, and Roger Wattenhofer. On the Topologies
Formed by Sel�sh Peers. In PODC'06, pages 133{142, 2006.

[107] M. E. J. Newman. The Structure and Function of Complex Networks. SIAM Review,
45(2):167{256, 2003.

[108] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: A roadmap.
In ICSE'00: Proceedings of the Conference on The Future of Software Engineering,
pages 35{46. ACM, 2000.

[109] Object Management Group. Model Driven Architecture (MDA).
http://www.omg.org/docs/ormsc/01-07-01.pdf, July 2001.

[110] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. MIT Press,
1994.

[111] Leon J. Osterweil. A future for software engineering? In FOSE '07: 2007 Future of
Software Engineering, pages 1{11, Los Alamitos, CA, USA, 2007. IEEE Computer
Society.

[112] Joachim Peer. Web Service Composition as AI Planning { a Survey. Technical
report, University of St. Gallen, 2005.

[113] Axel Polleres. Advances in Answer Set Planning. PhD thesis, Vienna University of
Technology, Austria, 2003.

[114] Colin Potts and Wendy C. Newstetter. Naturalistic inquiry and requirements engi-
neering: Reconciling their theoretical foundations. In RE'97, page 118, 1997.

[115] Bj�orn Regnell, Martin H�ost, Johan Natt och Dag, Per Beremark, and Thomas
Hjelm. An industrial case study on distributed prioritisation in market-driven re-
quirements engineering for packaged software. Requirements Engineering, 6(1):51{
62, 2001.



BIBLIOGRAPHY 125

[116] Steve Roach and Je�rey Baalen. Automated Procedure Construction for Deductive
Synthesis. Automated Software Engineering, 12(4):393{414, October 2005.

[117] Gunter Ropohl. Philosophy of socio-technical systems. In In Society for Philosophy
and Technology 4(3), 1999.

[118] Winston Royce. Managing the development of large software systems. In IEEE
WESCOM, 1970.

[119] Walt Scacchi. Socio-technical design. In In W. S. Bainbrigde (Ed.), The Encyclo-
pedia of Human Computer Interaction. Berkshire Publishing Group, 2004.

[120] Reto Schmid, Johannes Ryser, Stefan Berner, Martin Glinz, Ralf Reutemann, and
Erwin Fahr. A survey of simulation tools for requirements engineering. Technical
Report 2000.06, Institut fur Informatik, University of Zurich, 2000.

[121] Roberto Sebastiani, Paolo Giorgini, and John Mylopoulos. Simple and minimum-
cost satis�ability for goal models. In CAISE'04: In Proceedings International Con-
ference on Advanced Information Systems Engineering, volume 3084, pages 20{33.
Springer, June 2004.

[122] Security and Dependability Tropos Tool. http://sesa.dit.unitn.it/sistar tool/.

[123] Serenity: System Engineering for Security and Dependability. Deliverable A1.D2.1.
Security and Privacy Requirements at Organizational Level. http://www.serenity-
forum.org/Work-package-1-2.html.

[124] Herbert A. Simon. Administrative Behavior: 2nd edition. Macmillan, 1957.

[125] Herbert A. Simon. The Science of the Arti�cial. MIT Press, 1969.

[126] Ian Sommerville. Software engineering (7th ed.). Addison-Wesley, 2004.

[127] Jussi Stader. Results of the enterprise project. In Proceedings of 16th Annual
Conference of the British Computer Society Specialist Group on Expert Systems,
1996.

[128] Alistair G. Sutcli�e and Shailey Minocha. Linking Business Modelling to Socio-
technical System Design. In CAiSE'99, pages 73{87, 1999.

[129] Eva Tardos. Network Games. In Proceedings of the Annual ACM Symposium on
Theory of Computing, 2004.

[130] Walter F. Truszkowski, Michael G. Hinchey, James L. Rash, and Christopher A.
Rou�. Autonomous and autonomic systems: A paradigm for future space explo-
ration missions. IEEE Transactions on Sysystems, Man and Cybernetics, 36(3):279{
291, 2006.

[131] Roy M. Turner and Elise H. Turner. A two-level, protocol-based approach to con-
trolling autonomous oceanographic sampling networks. IEEE Journal of Oceanic
Engineering, 26(4):654{666, 2001.



BIBLIOGRAPHY 126

[132] Axel van Lamsweerde. Requirements Engineering in the Year 00: a Research Per-
spective. In ICSE'00, pages 5{19, 2000.

[133] Guy H. Walker, Neville A. Stanton, Paul M. Salmon, and Daniel P. Jenkins. A
review of sociotechnical systems theory: a classic concept for new command and
control paradigms. Theoretical Issues in Ergonomics Science, 2008.

[134] Michael Weiss, Daniel Amyot, and Gunter Mussbacher. Formalizing Architectural
Patterns with the Goal-oriented Requirement Language. In VikingPLoP'06, 2006.

[135] Daniel S. Weld. Recent Advances in AI Planning. AI Magazine, 20(2):93{123, 1999.

[136] Keith Williamson and Michael Healy. Industrial applications of software synthesis
via category theory. pages 35{43, 1999.

[137] Tom De Wolf and Tom Holvoet. Towards a methodology for engineering self-
organising emergent systems. Self-Organization and Autonomic Informatics (I),
135(1):18{34, November 2005.

[138] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and prac-
tice. Knowledge Engineering Review, 10:115{152, 1995.

[139] Rosalinde Klein Woolthuis, Bas Hillebrand, and Bart Nooteboom. Trust, Contract
and Relationship Development. Organization Studies, 26(6):813{840, 2005.

[140] Eric Siu-Kwong Yu. Modelling Strategic Relationships for Process Reengineering.
PhD thesis, University of Toronto, 1996.

[141] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Developing
multiagent systems: the Gaia methodology. ACM Transactions on Software Engi-
neering and Methodology, 12(3):417{470, 2003.

[142] Nicola Zannone. A Requirements Engineering Methodology for Trust, Security, and
Privacy. PhD thesis, University of Trento, 2006.

[143] Yuanyuan Zhang, Anthony Finkelstein, and Mark Harman. Search based require-
ments optimisation: Existing work and challenges. In REFSQ'08, pages 88{94,
2008.


