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Abstract. At the early stages of the cooperative information system develop-
ment one of the major problems is to explore the space of alternative ways of as-
signment and delegations of goals among system actors. The exploration process
should be guided by a number of criteria to determine whether the adopted alter-
native is good-enough. This paper frames the problem of designing actor depen-
dency networks as a multi-agent planning problem and adopts an off-the-shelf
planner to offer a tool (P-Tool) that generates alternative actor dependency net-
works, and evaluates them in terms of metrics derived from Game Theory litera-
ture. As well, we offer preliminary experimental results on the scalability of the
approach.

1 Introduction

During the requirements analysis and design of cooperative information systems one
has to cope with the fundamental problem of planning, i.e. finding optimal/good-enough
delegations to a set of system actors which collectively fulfill a given set of goals. These
goals are initially assigned to the actors which may not have enough capabilities to
satisfy them, so they are decomposed and delegated to other actors, thereby creating
networks of delegations. The process ends when all initial goals can be fulfilled if all
system actors deliver on their delegations.

Exploring the space of alternative dependency networks is a difficult design task.
This is so because such networks represent complex socio-technical systems where or-
ganizational, human and system actors depend on each other to fulfill root-level goals.
Moreover, there are no generic criteria to guide the design process by determining
whether a solution is good-enough, or even optimal. Our ultimate goal is to identify
suitable metrics for evaluating alternative sets of delegations to help a designer to select
the best one.

The purpose of this paper is to propose a framework for the automatic selection and
evaluation of alternative dependency networks, or design alternatives. The framework
supports both the generation and evaluation of alternatives. Specifically, the framework
adopts multi-agent planning techniques and uses an off-the-shelf planning tool. Alter-
natives are evaluated with respect to individual interests of system actors (i.e. their own
goals). Ideas from Game Theory [14] are used to determine whether an alternative is
an equilibrium. In particular, an alternative is an equilibrium if no actor can do better



with respect to its own goals by adopting a different strategy for delegating and ac-
cepting delegations. When combined together, these two steps support the designer of
an information system in selecting alternatives that are in equilibrium with respect to
the local strategies of each actor. An early version of this idea is used in [3] to pro-
pose a framework to generate alternative designs for secure systems. This paper goes
further by describing a prototype tool that generates alternatives, presents some exper-
imental results, and also proposes the evaluation techniques for alternatives based on
game-theoretic notions.

The process of the best alternative selection consists of the following steps:

1. Identify system and human actors, goals and their properties. Define goal decom-
positions and dependency relationships among actors.

2. For each actor identify criteria to evaluate alternatives.
3. Automatically explore the space of alternatives “on the upper level” to identify

assignments of coarse-grained goals to actors.
4. Separately for each actor, automatically explore the alternative ways to satisfy the

goals the actor was assigned at step 3. According to the above identified evaluation
criteria, select “the best” alternative for each actor. During this step, alternative
refinements of coarse-grained goals and delegation dependencies among actors are
explored.

5. Evaluate the combined solution consisting of alternatives identified at step 4. In
case it does not satisfy one or several system actors (e.g. they are overloaded with
respect to others), return to step 4 to search for another alternative.

Ideally, the process stops after a number of iterations when the system structure is
optimized enough to comply with the individual interests of the system actors. If no
satisfactory alternatives can be generated at some step, the designer should return to
steps 1 or 2, and revise either the initial structure, or the evaluation criteria.

Figure 1a presents a simple example of the problem of exploring design alterna-
tives. Note that in this paper we use thei* -like graphical notation [20]. Thei* modeling
framework and an associated requirements analysis process (Tropos [2]) are based on
the intentional concepts of an actor, a goal and a social dependency, and supports mod-
eling and analysis during the requirements and design phases. So, in the exampleActor
1 has to achieve aGoal, which can be refined into two subgoalsSubgoal 1andSub-
goal 2. The actor can decide to achieve the goal by itself or delegate it toActor 2. In
both cases, there are a number of alternative ways that can be adopted. So, for instance,
Actor 1 can decide to delegate toActor 2 the wholeGoal (Figure 1b), or a part of it
(Figure 1c). Shaded goal in the circle of an actor means that the goal is the responsibil-
ity of this actor. Even for this primitive example, exploring all the alternatives is quite
tedious, and a support for alternative generation and evaluation would be beneficial.

The rest of the paper is structured as follows. In the next section we introduce the
example we use through the paper to describe our framework. In Section 3 the issue
of alternative generation and evaluation is detailed. Section 4 describes the P-Tool, an
implemented prototype tool to support the exploration of alternatives, and reports some
experimental results. Finally, in Section 5 we describe the related work, and discuss
conclusions and future work directions in Section 6.



(a) Sample problem

(b) 1st alternative

(c) 2nd alternative

Fig. 1.Sample problem and two alternative solutions

2 SDS System Example

Let us consider a small software development company, which typical projects are
medium-scale web based information systems (like, e.g., online library catalog, or travel
agency home page with online trip booking, etc.). Within the company there are three
teams of developers each focused on its area: GUI development, web design, and data-
base support. Each team can develop subcomponents and/or consult other teams on
questions related to their expertise. A manager is supposed to divide the project into
meaningful parts and perform the assignment of goals to achieve to the development
teams. Note, that a manager can assess how the project goals are refined and what skills
are required to satisfy each subgoal only on the coarse-grained level.

The company has decided to use a software development support system (SDS sys-
tem or supporting system in the following), which will facilitate and report commu-
nication among actors, archive a library of reusable components, organize the search
for such components, store and provide the information specific to the project under



Fig. 2. Goal tree for eBooking project

development (e.g. contain a glossary of domain specific terms, store domain specific
classifications, etc.). Communication between manager and members of the develop-
ment teams is supposed to be carried out only through the supporting system. Teams
can communicate with each other in two cases: when one team wants to redirect a sub-
goal which requires the development skills these team does not possess to another team,
and when one team needs to consult another one. The first type of communication is
possible only through the supporting system, while the communication on consultancy
can be done both through the supporting system and e-mail (or even personal commu-
nication).

To analyze the above described system let us consider a typical project it might
deal with: web based eBooking system for the travelling agency. As it is represented
in Figure 2, the high-level goalprovide eBooking systemis refined into three subgoals:
provide user interface, support communication with DBandprovide web page. In order
to fulfil the high-level goal, all three subgoals should be satisfied. Two subgoals are
further refined, e.g.provide user interfacesubgoal can be reached in two alternative
ways: by developing eBooking GUI and consulting web designers to adopt it for web
environment, or by developing web booking interface together with consulting GUI
team on which standard components to use.

The OR-decomposition of the subgoalsprovide user interfaceanddesign web page
introduces alternative solutions for the development of the eBooking system. One of the
alternatives to achieveprovide user interfacesubgoal is depicted in Figure 3. The goal
is decomposed byGUI teamactor, which selects one of the alternatives among the two
or-subgoals. The selected subgoal is further decomposed into two subgoals:consult on
standard GUI componentsandprovide booking web interface. The former is satisfied
by GUI team, while the latter is delegated toWeb design team.



Fig. 3. An alternative way to achieveprovide user interfacesubgoal

3 Exploring and Evaluating Alternatives

3.1 Formalization of the Planning Problem

As it was discussed in the Introduction, requirements to the information systems are
conceived as networks of delegations among actors – at least within the frameworks
such asi* [20], Tropos [2] and the like. Every delegation involves two actors, where
one actor delegates to the other the fulfillment of a goal. The delegatee can either fulfill
delegated goal, or further delegate it, thus creating another delegation relation in the
network. Intuitively, these can be seen as actions that the designer/requirements engi-
neer ascribes to the members of the organization and the system-to-be. Further, the task
of constructing such networks can be framed as a planning problem: selecting a suitable
system structure corresponds to selecting a plan that satisfies the goals of human and
software agents.

Thus, we have chosen the AI (Artificial Intelligence) planning approach to support
the designer/requirements engineer in the process of selecting the best design alterna-
tive. The basic idea behind planning approach is to automatically determine the course
of actions (i.e. a plan) needed to achieve a certain goal where an action is a transition
rule from one state of the system to another [19, 15]. Actions are described in terms of
preconditions and effects: if the precondition is true in the current state of the system,
then the action is performed. As a consequence of an action, the system will be in a new
state where the effect of the action is true.

Planning approach requires a specification language to represent the planning do-
main, i.e.

– the initial state of the system;
– the goal of the planning problem (i.e. the desired final state of the system);
– the description of actions;



– the axioms of background theory.

Once the domain is described, the solution to the planning problem is the (not necessar-
ily optimal) sequence of actions that allows the system to reach the desired state from
the initial state.

To describe the initial state of the system we should specify actor and goal proper-
ties, and social relations among actors. We propose to represent the initial state in terms
of predicates that correspond to

– the possible ways of goal decomposition;
– actor capabilities and desires to achieve a goal;
– possible delegation relations among actors.

The desired state of the system (or the goal of the planning problem) is described
through the conjunction of predicates derived from the description of actor desires in
the initial state. Essentially, for each desired goal a predicate is added to the goal of the
planning problem.

Different types of logic could be applied for this purpose, e.g. first order logic is
often used to describe the planning domain with conjunctions of literals specifying the
states of the system. In Table 1 predicates used to describe the domain of information
system design are introduced. Predicates take variables of three types: actors, goals
and goal types. To typify goals,typepredicate is used. Actor capabilities are described
with can satisfyandcan satisfygt predicates, which means that an actor has enough
capabilities to satisfy a specific goal or any goal of a specific type, accordingly. So-
cial dependencies among actors are reflected bycan dependon andcan dependon gt
predicates, which means that one actor can delegate to another actor the fulfilment of
any goal or, in the latter case, any goal of a specific type. Predefined ways of goal re-
finement are represented usingdecompositionpredicates, while withcan decomposegt
the scope of each actor can be represented: an actor can refine, or knows how to refine,
only goals within his scope. Initial actor desires are represented withwantspredicate.
When the goal is fulfilledsatisfiedpredicated becomes true for it.

In Figure 4, a part of SDS System example formalization is presented. The goal
typestConsult, tWDDevelandManagScopeare used.

In i* /Tropos approach, when drawing the model of a system, the de-
signer/requirements engineer assigns goals to actors, defines delegations of goals from
one actor to another, and identifies appropriate goal refinements among the predefined
alternative refinements. Thus, the following actions will be used by a planner to find a
way to fulfill the goals of the system actors.

Goal satisfaction. An actor can satisfy a goal only if the achievement of the goal is
among its desires and it can actually satisfy it. The effect of this action is the ful-
fillment of the goal.

Goal delegation. An actor may have not enough capabilities to achieve its goals by
itself, and so it has to delegate their satisfaction to other actors. This passage of
responsibilities is performed only if the delegator wants a goal to be achieved and
can depend on the delegatee to achieve it. The effect of this action is that the delega-
tor does not worry any more about the satisfaction of the goal, while the delegatee



Goal Properties
type(g : goal, gt : gtype)
subtype(child : gtype, parent : gtype)
and decompositionn(g : goal, g1 : goal, . . . , gn : goal)
or decompositionn(g : goal, g1 : goal, . . . , gn : goal)
satisfied(g : goal)

Actor Properties
can satisfy(a : actor, g : goal)
can satisfy gt(a : actor, gt : gtype)
can decompose gt(a : actor, gt : gtype)
wants(a : actor, g : goal)

Actor Relations
can depend on(a : actor, b : actor)
can depend on gt(a : actor, b : actor, gt : gtype)

Table 1.Primitive predicates

type (ConsultOnGUIToWebAdoption, tWDConsult)
subtype (tWDConsult, tConsult)
can depend on gt (GUITeam, WDTeam, tConsult)
can depend on gt (WDTeam, GUITeam, tConsult)

type (ProvideBookingWebInterface, tWDDevel)
type (DesignFromScratch, tWDDevel)
type (ProvideRegistrationForm, tWDDevel)
can satisfy gt (WDTeam, tWDDevel)

type (ProvideEBookingSystem, tManagScope)
can decompose gt (Manager, tManagScope)

Fig. 4. Predicates for SDS System example

takes the responsibility for the fulfillment of the goal and so it becomes its own
desire to achieve it. The delegator does not care how the delegatee satisfies the goal
(e.g. by its own capabilities or by further delegation), it is up to the delegatee to
decide it.

Goal decomposition/refinement.As in different goal-oriented modeling frameworks
(e.g. as in Tropos and KAOS [5]) two types of goal refinement are supported: OR-
decomposition, which suggests the list of alternative ways to satisfy the goal, and
AND-decomposition, which refines the goals into subgoals which all are to be sat-
isfied in order to satisfy the initial goal. An actor can decompose a goal only if it
wants it to be satisfied, and only in the way which is predefined in the initial state
of the system. The effect of decomposition is that the actor which refines the goal
focuses on the fulfillment of subgoals instead of the initial goal. It is assumed that
different actors can decompose the same goal in different ways.



In addition to actions, axioms of the planning domain can be defined. These are
rules that hold in every state of the system and are used to complete the description of
the current state. For example, to propagate goal properties along goal refinement the
following axiom is used: a goal is satisfied if all its and-subgoals or at least one of the
or-subgoals are satisfied.

3.2 Evaluation Procedure

The alternative designs generated by the planner should be evaluated, amended and ap-
proved by the designer. The tricky point here is the solution evaluation which can be
complex enough even for experienced designers with considerable domain expertise.
Alternative requirements structures can be evaluated both from global and local per-
spectives, i.e. from the designer’s point of view and from the point of view of individual
actors. The optimality of a solution in the global sense could be assessed with respect
to the following.

– Length of the obtained plan.The number of actions in the obtained plan is often
the criteria for the planner itself to prefer one solution to another. Thus, it can be
assumed that the obtained plan is already (locally) optimal in the sense of the length
minimization.

– Overall plan cost.This is closely related with the idea of plan metrics introduced
in PDDL 2.1 [8]. Plan metrics specify the basis on which a plan is evaluated for
a particular problem (e.g. action costs or duration), and are usually numerical ex-
pressions to be minimized or maximized. However, the complexity of the problem
of optimizing a solution with respect to the defined metrics is very high and the
feature is still poorly supported by the available planning tools [8].

– Degree of satisfaction of non-functional requirements.E.g. in [12], a set of rules
is proposed to identify application-specific parameters and functions to quantify
impacts of different explored alternatives on non-functional goals (e.g. security,
performance, usability) satisfaction.

In this paper we are not dealing with the global evaluation of generated alternatives.
However, the first point, (sub)optimality of the solution with respect to the plan length,
is automatically taken into account by the planner.

Local evaluation of the obtained plan is a much more complex task. Indeed, a chal-
lenging characteristic of modern information system design is that the human agents
should be taken into account. They can be seen as players in a game theoretic sense
as they are self-interested and rational. This means they want to minimize the load im-
posed personally on them, e.g. they want to constraint the number and the complexity
of actions they are involved in1. In a certain sense non-human agents, i.e. system com-
ponents, are players as well as it is undesirable to overload them. Each player has a
set of strategies he could choose from, e.g. he could decide whether to satisfy a goal
himself or to pass it further to another system actor. Strategies are based on the player’s
capabilities and his relations (e.g. subordination, friendship, or trust – all represented as

1 In this work we focus on the load constraints only, and do not consider other factors which
influence the player’s decision to deviate, e.g. risk concerns.



Action Cost Actors and Goals
Satisfy 3 goals of typetConsult for WDTeam, GUITeamand DBTeam;

goalFindStandardTemplatefor SupportingSystem
4 goals of typetWDDevelfor WDTeam, goalProvideBookingGUI

for GUITeam; goalSupprtDBCommunicationfor DBTeam
Delegate1 SupportingSystem; delegations betweenWDTeam, GUITeam

andDBTeam
2 all other actors and goals

Refine 2 all actors and goals
Table 2.Costs for the SDS System example

possible dependencies in our framework) with other human and artificial agents in the
system.

The substantial difficulty in applying game theoretic ideas to our problem is that
all actors of an information system should work cooperatively as a solid mechanism
satisfying the overall organizational goal. Differently from classical non-cooperative
game theory, where all players choose their strategies independently and simultaneously
before the game, in our problem actors’ choices are closely interrelated. A player cannot
independently change his strategy because the new action sequence will very likely be
unsatisfactory, i.e. it will not be a solution anymore. Thus, to satisfy the system goals
it will be necessary to impose some additional load (to compensate the load this player
tries to avoid) on some other actors – and it might happen that they will not be satisfied
with the new solution, and will try to deviate from the strategy they were imposed, and
so on and so forth. Thus, if one actor wants to deviate from the generated solution, the
re-planning is needed to search for another alternative option, which is then evaluated,
possibly, to be re-plan again. The process stops when a (sub)optimal alternative option is
found. In our framework the following “replan-towards-optimality” procedure is used.

First, for all actorsai, i = 1, n and all goalsgk, k = 1,m, wheren andm are the
number of actors and goals, respectively, the costs are defined:

– csik is the cost for the actorai of satisfying the goalgk;
– crik is the cost for the actorai of refining the goalgk;
– cdijk is the cost for the actorai of delegating a goalgk to the actorbj .

In Table 2 the costs of actions for actors from the SDS System example are defined.
Then, the cost of a given alternativeP for the actorai is calculated by summing up

the costs of actions inP whichai is involved in, and is denoted by

c (P, ai) =
∑

delegate(ai,bj ,gk)∈P

cdijk+

∑

decomposel(ai,gk,gk1,...,gkl)∈P

crik +
∑

satisfy(ai,gk)∈P

csik,

wheredecomposel(ai, gk, gk1, ..., gkl) stands for the decomposition ofgk into l sub-
goalsgk1, ..., gkl.



If P is the alternative depicted in Figure 3, thenc (P, GUITeam) = 2+2+3+2 =
9, c (P, WDTeam) = 2 + 4 = 6 andc (P, SupportingSystem) = 1 + 1 = 2.

Note, that in our framework we do not use the notion of utility, which is an important
game theory construct. This is done mainly for the simplicity reasons. The utility of an
alternativeP for the actorai can be defined as the difference between maximum upper
bound for the solution cost for actorai andc (P, ai). Basically, utility says how much
an actor “saves” with the alternativeP being selected.

After the costs are computed, for each actor the conditions are defined upon which
an actor decides whether to deviate from an alternativeP or not. The conditions could
be either one of the following, or both.

– Actor ai whose predefined upper cost boundcup
i is less thanc (P, ai) is willing to

deviate from P.
– Actor ai whose predefined upper boundcdevup

i on cost deviation is less than
c (P, ai)− avgi(c (P, ai)) wants to deviate fromP .

In this work we consider only the first deviation condition – predefined upper cost
bounds.

Finally, the evaluation procedure is the following.

– An alternativeP is generated with the help of a planner.
– Costc (P, ai) is calculated for eachai.
– Actor amin is identified which value ofc (., .) is minimal among all actors which

want to deviate fromP .
– The first most expensive actiondworst (the one with the highest cost) is identified

among actions ofP in whichamin is involved.
– Negation ofdworst is added to the initial planning problem, and replanning is per-

formed. If no plan can be found, the nextdworst is identified.

The process stops when an equilibruium-like solution is found, i.e. no actors are willing
to deviate from it and the designer approves this solution. The designer remains in
the process all the time, and can stop the iterations whenever he thinks the satisficing
alternative is generated.

This evaluation procedure is used at the following steps of the selection of the best
alternative, defined in the Introduction.

– At step 3, while selecting the best assignments of coarse-grained goals to actors.
– At step 4, separately for each actor, when exploring the ways to satisfy the goals

the actor was assigned.
– At step 5, when evaluating the combined solution consisting of alternatives iden-

tified at step 4. Here the replanning is performed only for the alternative to which
dworst belongs to.

4 P-Tool and Experiments

4.1 Choosing the Planner

One important step we have performed during the implementation of the proposed
framework, is choosing the “right planner” among off-the-shelf tools available. In the



(: action Satisfies
: parameters(?a− t actor, ?g − t goal
: precondition (and

(or(can satisfy?a?g)
(exists(?gt− t gtype)(and(type?g?gt)

(can satisfy gt?a?gt)))
(wants?a?g)

: effect (and
(satisfied?g)
(not(wants?a?g))))

(: derived
(type?g − t goal?parent− t gtype)
(exists(?child− t gtype)

(and(subtype?child?parent)(type?g?child))))

Fig. 5. Domain description using PDDL

last years many planners have been proposed [15]. In order to choose one of them the
following requirements were considered:

– The planner should not produce redundant plans. Under non-redundant plan we
mean that, by deleting an arbitrary action of the plan, the resulting plan is no more
a “valid” plan (i.e. it does not allow to reach the desired state from the initial state).

– The planner should use PDDL (Planning Domain Definition Language) since it is
becoming a “standard” planning language and many research groups work on its
implementation.

– The language should support a number of “advanced” features (e.g. derived predi-
cates) that are essential for implementing our planning domain, i.e. it should be at
least PDDL 2.2. [6].

The first requirement is related to the question of the optimality of the generated
design decisions. We argue that it is not necessary to focus on the optimal design: human
designers do not prove that their design is optimal, why should a system do it? Instead,
in our framework the plan is required to be non-redundant, which guarantees at least
the absence of alternative delegation paths since a plan does not contain any redundant
actions.

We have compared a number of planners with respect to above requirements (see
[3] for the details). Finally, we have chosen LPG-td [13], a fully automated system for
solving planning problems, supporting PDDL 2.2 specification for implementing our
planning domain.

Then, we have implemented our planning domain in PDDL 2.2. Figure 5 presents
the specification of one action and one domain axiom in PDDL 2.2.

Figure 6 shows the plans generated by LPG-td for satisfyingprovide user interface
andprovide web pagesubgoals. The former plan is illustrated in Figure 3, the latter –
in Figure 7.



(OR DECOMPOSES GUITeam ProvideUI ProvideUI1 ProvideUI2)
(AND DECOMPOSES GUITeam ProvideUI1

ProvideBookingWebI ConsultStandGUI)
(SATISFIES GUITeam ConsultStandGUI)
(PASSES GUITeam SupportingSystem ProvideBookingWebI)
(PASSES SupportingSystem WDTeam ProvideBookingWebI)
(SATISFIES WDTeam ProvideBookingWebI)

(a) Provide user interface

(AND DECOMPOSES WDTeam ProvideWebPage
DesignWebPage ProvideRegistrProc)

(AND DECOMPOSES WDTeam ProvideRegistrProc
ProvideRegForm ConsultOnStoreUData)

(SATISFIES WDTeam ProvideRegForm)
(OR DECOMPOSES WDTeam DesignWebPage

DesignFromScratch FindStandardTemplate)
(SATISFIES WDTeam DesignFromScratch)
(PASSES WDTeam DBTeam ConsultOnStoreUData)
(SATISFIES DBTeam ConsultOnStoreUData)

(b) Provide web page

Fig. 6. Plans forProvideUIandProvideWebPagesubgoals

Fig. 7. Diagram for the plan forProvideWebPagesubgoal

Preliminary experiments were conducted to test the scalability of the approach. A
very simple “core” problem was considered, with three actorsA, B andC and two
goals,G1 andG2, whichA wants to be achieved, andB andC can satisfy. Then “ad-
ditional” actors with the dependencies among them were added to the problem, but



they did not interfere at all with “core” subproblem. The idea was to check whether the
search time of the plan to achieveG1 andG2 depends on the number of “additional” ac-
tors and dependencies among them. The experiments showed that, at least with respect
to this example, the approach is scalable. Basically, the search time for the problem
with 10 and with 120 “additional” actors is the same (less than one second), only the
parsing time increases insignificantly. At the same time, search time for the plan with
long delegation chains (more than 30 steps) is much greater (around 15 seconds). Of
course, the scalability issue should be explored much more carefully (actually, this is
one of our future work plans), but the above reported preliminary experiments have
shown promising results.

4.2 P-Tool

We have developed P-Tool, an implemented prototype to support the de-
signer/requirements engineer in the process of exploring and evaluating alternatives.
The tool has the interface for the input of actors, goals and their properties, which can
be seen in Figure 8a. LPG-td is built in the tool, and is used to generate design alter-
natives, which are then represented graphically usingi* notation, see Figure 8b for an
example.

In the following we will illustrate how the steps 3–5 of our approach (see Intro-
duction) could be supported by the P-Tool. For the sake of simplicity we will leave out
some details. Steps 1 and 2 are illustrated in Section 3. Predefined upper cost boundcup

i

for all actorsai, i = 1, n is equal to 14 units on step 4, and 18 units on step 5 (if no
solution can be found at step 4, the constraints could be relaxed by increasing the upper
cost bound up to 18).

Step 3. First, the planning “on the upper level” forManageractor is performed. We
will skip the process description. The resulting alternative can be seen in the screen-
shot in Figure 8b.ManagerdecomposesProvideEBookingSystemgoal intoProvideUI,
ProvideWebPageandSupportDBCommunicationsubgoals, and passes them through the
SupportingSystemto GUITeam, WDTeamandDBTeam, respectively.

Step 4. We will illustrate this step with exploring alternatives for the subgoal
ProvideWebPageassigned toWDTeamactor. Firstly, an alternative presented in Figure 6
and Figure 7 is generated. For this alternativec (P1,WDTeam) = 2+2+2+4+4+1 =
15, which does not satisfyWDTeamactor (cup

i = 14 < 15), so it tries to decrease the
imposed load. According to the evaluation procedure described in Section 3.2, the ac-
tion (SATISFIES WDTeam ProvideRegForm) is selected asdworst. When this action
is negated, the planner is not able to find a solution. Thus, the nextdworst is identified,
which is (SATISFIES WDTeam DesignFromScratch). New alternative is generated,
see Figure 9, for whichc (P2,WDTeam) = 2 + 2 + 2 + 4 + 2 + 1 = 13. This last
alternative is then fixed as it satisfiesWDTeamactor.

Step 5. When partial plans are combined into the planP and evaluated, it appears
thatc (P, GUITeam) = 9 andc (P, WDTeam) = 13 + 6 = 19. Actor WDTeamtries
to deviate from the alternativeP , and(SATISFIES WDTeam ProvideBookingWebI)
of the plan depicted in Figure 6 is identify asdworst and negated. By replanning we get
an alternative presented in Figure 10, for whichc (P ′, GUITeam) = 2+2+1+2 = 9
andc (P ′,WDTeam) = 1 + 3 = 4, thus the overall cost of a new combined solution



(a) Identifying actor properties

(b) i* diagram for the generated alternative

Fig. 8. P-Tool

for WDTeam being equal to4 + 13 = 17 < 18. This new alternative satisfies both
GUITeamandWDTeamactors.

5 Related Work

Modeling requirements and designing information systems and organizations in terms
of goals and their interdependences has been a topic of considerable research interest



(AND DECOMPOSES WDTeam ProvideWebPage
DesignWebPage ProvideRegistrProc)

(AND DECOMPOSES WDTeam ProvideRegForm
ConsultOnStoreUData)

(SATISFIES WDTeam ProvideRegForm)
(PASSES WDTeam DBTeam ConsultOnStoreUData)
(SATISFIES DBTeam ConsultOnStoreUData)
(OR DECOMPOSES WDTeam DesignWebPage

DesignFromScratch FindStandardTemplate)
(PASSES WDTeam SupportingSystem FindStandardTemplate)
(SATISFIES SupportingSystem FindStandardTemplate)

(a) Plan

(b) Diagram

Fig. 9. New plan forProvideWebPagesubgoal

during the last decades [18]. A number of goal-oriented approaches for requirements
representation and reasoning were introduced, e.g. KAOS [5]. Requirements engineer-
ing is considered to be a crucial part of software development process [18]. Careful
elicitation and analysis of requirements help to develop a system that meets user’s ex-
pectations, is trustful and robust.

The field of AI planning has been intensively developing during the last decades,
and has found a number of applications (robotics, process planning, autonomous agents,
etc.). Planning approach recently has proved to be applicable in the field of automatic
Web service composition [15]. There are two basic approaches to the solution of plan-
ning problems [19]. One is graph-based planning algorithms in which a compact struc-
ture, called Planning Graph, is constructed and analyzed. In the other approach the
planning problem is transformed into a SAT problem and a SAT solver is used.



(OR DECOMPOSES GUITeam ProvideUI ProvideUI1 ProvideUI2)
(AND DECOMPOSES GUITeam ProvideUI2

ProvideBookingGUI ConsultOnGUIToWebAdoption)
(SATISFIES GUITeam ProvideBookingGUI)
(PASSES GUITeam WDTeam ConsultOnGUIToWebAdoption)
(SATISFIES WDTeam ConsultOnGUIToWebAdoption)

(a) Plan

(b) Diagram

Fig. 10.New plan forProvideUIsubgoal

There exist several ways to represent the elements of a classical planning problem,
i.e. the initial state of the world, the system goal, or the desired state of the world, and
the possible actions system actors can perform. The widely used, and to the certain
extend standard representation is PDDL (Planning Domain Definition Language), the
problem specification language proposed in [10]. Current PDDL version, PDDL 2.2
[6] used during the last International Planning Competition [11], supports many useful
features, e.g. derived predicates and timed initial literals.

A few works can be found which relate planning techniques with information sys-
tems requirements analysis and design. In [1] a program called ASAP (Automated
Specifier And Planner) is described, which automates a part of the domain-specific soft-
ware specification process. ASAP assists the designer in selecting methods for achiev-
ing user goals, discovering plans that result in undesirable outcomes, and finding meth-
ods for preventing such outcomes. The disadvantage of the approach is that the designer
still performs a lot of work manually while determining the combination of goals and
prohibited situations appropriate for the given application, defining possible start-up
conditions and providing many other domain-specific expert knowledge.

Castillo et al. [4] present an AI planning application to assist an expert in design-
ing control programs in the field of Automated Manufacturing. The system they have
built integrates POCL, hierarchical and conditional planning techniques (see [4, 15] for
references). The authors consider standard planning approaches to be not appropriate
with no ready-to-use tools for the real world, while in our paper the opposite point of
view is advocated. Another recent application of the planning approach to the design



of the secure systems is proposed by Gans et al. [9]. The work is based oni* modeling
approach [20] and ConGolog (see [15] for description and references), a logic-based
planning language. However, the authors focus more on representing/modeling trust in
social networks, than on the design automation, and do not go far in explaining how
they exploit the planning formalism.

Game theory is an established discipline which deals with conflicts and cooperation
among rational independent decision-makers, or players. The key concept in classical
game theory is the notion of equilibrium [14] which defines the set of strategies, one
for each player, which none of the independent rational players wants to deviate from.
By playing an equilibrium each player maximizes his utility locally, given some con-
straints. For example, playing the Nash equilibrium means that no player can benefit
when deviating from his equilibrium strategy given that all other players play the equi-
librium.

Game theory is applied in various areas, especially in economics (modeling mar-
kets, auctions, etc.), corporate decision making, defense strategy, telecommunications
networks and many others. Among the examples are the applications of game theory
to so called network games (e.g. routing, bandwidth allocation, etc.), see [17] for refer-
ences.

6 Conclusions

We have proposed a framework for automatic exploration of the space of alternative ac-
tor dependency networks that satisfy an initial set of system actor goals. The framework
uses planning techniques to explore the space of design alternatives. A prototype tool
(P-Tool) with a built-in off-the-shelf planner is used to generate alternatives. These are
evaluated in terms of criteria founded on game-theoretic notions.

This is clearly a first step towards making more systematic and tool-supported the
process of designing actor dependency models for a given set of initial stakeholder
goals. More needs to be done to ensure the scalability of the P-Tool. In particular, we
would like to include the use of heuristic (e.g.,A*-like [16]) techniques to reduce the
space of alternatives under considering by filtering away early on alternatives that look
bad. We would also like to adopt proposals for better structuring actor dependency
models. One such proposal [7] is to makei* models “service-oriented” by encapsulating
composite actors and allowing delegations to it only through a well-defined service
interface. Such proposals reduce dramatically the number of possible solutions to a
given multi-actor planning problem.
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