UNIVERSITA DEGLI STUDI
DI TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38100 Povo — Trento (ltaly), Via Sommarive 14
http://dit.unitn.it/

R-EVO
A REACTIVE EVOLUTIONARY ALGORITHM
FOR THE MAXIMUM CLIQUE PROBLEM

Roberto Battiti, Mauro Brunato

June 6, 2007

Technical Report # DIT-07-034






R-EVO: a Reactive Evolutionary Algorithm for the
Maximum Cliqgue Problem

Roberto Battiti and Mauro Brunato

Abstract—An evolutionary algorithm with guided mutation
(EA/G) has been proposed recently for solving the maximum
cligue problem. In the framework of estimation-of-distribution
algorithms (EDA), guided mutation uses a model distributio
to generate the offspring by combining the local informatian of
solutions found so far with global statistical information. Each
individual is then subjected to a Marchiori’s repair heuristic,
based on randomized extraction and greedy expansion, to em®
that it represents a legal clique.

The novel reactive and evolutionary algorithm (R£vo) pro-
posed in this paper starts from the same evolutionary framewrk
but considers more complex individuals, which modify tentsive
solutions by local search with memory, in the reactive seafc
framework. In particular, the estimated distribution is used to
periodically initialize the state of each individual basedon the
previous statistical knowledge extracted from the populabn.
We demonstrate that the combination of the estimation-of-
distribution concept with reactive search produces signiftantly
better results than EA/G and is remarkably robust w.rt. the
setting of the algorithm parameters.

R-Evo adopts a drastically simplified low-knowledge version
of reactive local search (RLS), with a simple internal divesi-
fication mechanism based on tabu-search, with a prohibition
parameter proportional to the estimated best clique size. R
EVO is competitive with the more complex full-knowledge RLS-
EVO which adopts the original RLS algorithm. For most of
the benchmark instances, the hybrid scheme version produse
significantly better results than EA/G for comparable or smdler
CPU times.

Index Terms—Maximum Clique, Reactive Search, Estimation
of Distribution, guided mutation

I. INTRODUCTION

ROBLEM-solving systems, both natural and artificial
can be made more efficient by working along differe
directions. One direction measures the complexity of aleingb
problem-solving entity (an individual in the population in
GA terms), another one is the number of individuals and trtl

amount of their mutual interaction. For example, an indiald

may be very simple, leaving to mutation, cross-over anccsel

tion the work of exploring and exploiting the fithess surfame

it may become more complex, embodying for example repalr

procedures [1], or elements of local search, asmiemetic

algorithms [2], [3]. The interaction in the population ca
be indirect, based on the current fitness of the individu
which influences the reproduction, or more direct and bas
on both global and local information, see for example the
“particle swarm” technique where each member of the swar

is updated based on the global best position and the ingividl both clique sizes and CPU times are considered,

best [4]. Interaction through explicit statistical moded$
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the promising solutions is advocated in the “estimation of
distribution algorithms” (EDA), see for example [5]-[9h kA
different community, methods to combine solutions havenbee
designed with the term “scatter search” [10], [11], showing
the advantages provided by intensification and diversiinat
mechanisms that exploit adaptive memory, drawing on foun-
dations that link scatter search to tabu search [12].

While a complete coverage of the tradeoffs between com-
plexity of the individual population members and complexit
of their interaction is beyond the scope of this paper (some
useful historical references can be found in the cited gper
this work is motivated by a recent evolutionary algorithnthwi
guided mutation for the maximum clique proposed in [13],
where the authors obtain state-of-the-art results in tlea ar
of evolutionary algorithms for the problem, by improving
upon Marchiori’s results [1], [14] and upon an advanced EDA
algorithm like MIMIC [15].

The Maximum Clique problem in graphs (MC for short)
is a paradigmatic combinatorial optimization problem with
relevant applications [16], including information retr,
computer vision, and social network analysis. Recent 4inter
est includes computational biochemistry, bio-informaténd
genomics, see for example [17], [18]. The problem is NP-
hard and strong negative results have been shown about its
approximability [19], making it an ideal test-bed for sdarc
heuristics.

Let G = (V, E) be an undirected grapl; = {1,2,...,n}
its vertex setE C V x V its edge set, and(S) = (S, EN
S x S) the subgraph induced by, where S is a subset of
V. A graphG = (V,E) is completeif all its vertices are

rﬁairwise adjacent, i.eVi, j € V, (i,j) € E. A clique K

IS a subset ol such thatG(K) is complete. The Maximum
lique problem asks for a cligue of maximum cardinality.
The initial motivation of this work was to assess whether
fe incorporation of Reactive Search ideas developed iy [20

e¥21] into an evolutionary approach could lead to a compsgtiti

echnigue. Furthermore, we wanted to confirm whether the
advantage of the technique persisted after radical simplifi
cations of the Reactive Search algorithm. The simplificatio

has been motivated by a note in the cited paper [13], stating

ggat, while more effective, “reactive local search is muabren

ggmplicated and sophisticated than EA/G”. We propose here a
radically simplified reactive scheme, hybridized with anAD
%[')qproach, which maintains a significant advantage over EA/G

Reactive Search, see [22], [23] for seminal papers, adescat
the use ofmachine learningo automate the parameter tuning
process and make it an integral and fully documented part
of the algorithm. Learning is performed on-line, and theref



task-dependent and local propertiekthe configuration space )

can be used. In this way a single algorithmic framework
maintains the flexibility to deal with related problems thgh
an internal feedback loop that considers the previous flyisto

of the search. . / | — Function
The main novelties introduced by the R/ algorithm are: } | A | - model,
« While guided mutation is used to generate new individ- § § L model,

uals in EA/G, individuals which are then subjected to 3 § ! 3 O Sampled points
. - . . i ! i n ® Unknown optimum

a repair heuristics to create a legal clique, the model

obtained by estimation of distribution is used to create ; 1 1

new individuals in REvO | R T
« Memetic evolution: each individual is subjected to a short e | e ‘

run of intelligent local search (prohibition-based reaeti

search) which considers the given individual as a starting

Y SR

point. ) L ) Fig. 1. Model-based search: one generates sample poimsrirodel and
o Extreme simplification through the design of a lowupdates the generative model to increase the probabilityodint with low

knowledge version of the reactive local search algorithrf@st values (see modgl In pathological cases, optimal poiatruns the risk
. P . of becoming more and more difficult to generate (figure fror]f2
instead of the complete memorization of previous so-
lutions, only the best cliques (up to a given tolerance
parameterA) are used to derive a probabilistic model
of the fittest individuals and to self-tune the prohibition
period on a specific instance.
« Simplification of the model derivation. The model is
not obtained through an exponentially weighted moving
average but in a parameter-less manner from the best
previous solutions (within tolerance paramesey. ('T::r?]?ﬁg)
« Proposal of number of iterations and prohibition period
scaled according to the best clique-size estimated at run-

time on a specific instance.

Generation

Long-term memor

(Sample) - wemory )

1. EVOLUTION WITH GUIDED MUTATION ) ) ) ) )
. . o . . Fig. 2. Model-based architecture: a generative model istgobafter learning
Estimation of Distributions (EDA) algorithms [5]—[9], [24 from the last generated samples and the previous long-teemary (figure

have been proposed in the framework of evolutionary corfiom [21])-

putation for modeling promising solutions in a probabitist

manner, and for using such models to produce the next genera- = o ] ]

tion. A survey in [25] considers population-based probiatid P& Minimized. An initial model (the dashed line) provides

search algorithms based on “modeling promising solutigns B Prior probability distribution for the minimum (in case of

estimating their probability distribution and using the dgb NO Prior knowledge, a uniform distribution can be assumed).

to guide the exploration of the search space.” The main ifleaBSed on this estimate, some candidate minima are generated

model-based optimization is to create and maintaimadel (Peintsa throughd), and the corresponding function values

of the problem, whose aim is to provide some clues abo®€ computed. The model is updated (dotted line) to take into

the problem’s solutions. If the problem is a function to paccount the latest findings: the global minimum is more Yikel

minimized, for instance, it is helpful to think of such modef® 0ccur around: andd, rather tham andb. Further model-

as asimplified versiorof the function itself; in more general9uided generations and tests shall improve the distributio

settings, the model can be a probability distribution defjni €ventually the region around the global minimunshall be

the estimated likelihood of finding a good quality solutidn gliScovered and a high probability density shall be assigoed

a certain point. its surroundings. The same example also highlights a plessib
To solve a problem, we resort to the model in order tgrawback of naif applications of the technique: assigrang

generate a candidate solution, then check it. The result iigh probability to the neighborhood efand d could lead

the check shall be used to refine the model, so that tfx@ negligible probability of selecting a point nearso the

future generation is biased towards better and better dated 90P@l minimum would never be discovered. The emphasis is

solutions. Clearly, for a model to be useful it must provige & intensification(or exploitatior) of the search. This is why,

much information about the problem as possible, while beiffg Practice, the models are corrected to ensure a significant

somehow “more tractable” (in a computational or analytic&robability of generating points also in unexplored region

sense) than the problem itself. The scheme of a model-based search approach, see
Although model-based techniques can be used in bai§o [26], is presented in Fifl 2. Represented entities are:

discrete and continuous domains, the latter case bettposisp « a model used to generate sample solutions,

our intuition. In Fig.[1 a function (continuous line) must « the last samples generated,




« @ memory containing previously accumulated knowledd)é
about the problem (previous solutions and evaluations).

The process develops in an iterative way through a feedback +
loop were new candidates are generated by the model, and
their evaluation —together with memory about past states— B
is used to improve the model itself in view of a new generation o

The design choices consist of defining a suitable generative ’
model, and an appropriate learning rule to favor generation
of superior models in the future steps. The simple model
considered in this paper is as follows. The search space
X ={0,1}" is the set of all binary strings of length, the
generation model is defined by antuple of parameters

Good quality

p(t +1) solutions

_ Bad quality solutions
p=(p1,---,pn) € [0,1]",

wherep; is the probability of producing as thei-th bit of the

string and every bit is independently generated. One way o’ P

look at the model is to “remove genetics from the standard o ., _ ,

genetic algorithm” [6]: instead of maintaining implicitlg Eéglut?énspabéﬁ?;ivgr%fﬂﬁeviic;(;g %E?nde“nﬂl%nssr;'_ﬁs towards good quality

statistic in a GA populatiorstatistics are maintained explicitly

in the vector(p;).

The initial state of the model corresponds to indifference
with respect to the bit valueg; = 0.5, 7 = 1,...,n. In the
Population-Based Incremental Learning (PBIL) algorittéh [
the following steps are iterated:

is extracted through EDA from the previous search and
represented as a probability model (a vegfpcharacter-
izing the distribution of promising solutions in the search
space. A new individual is moved in a stochastic manner

1 Initialitze p; towards the center of the model. In detail, for each bit of
2. repeal . . i P . .
. Generate a sample stusing the vectop; th.ehb;]nary string d.cle_scrlb;nr? the mdmdual,r:)ne fI|p§f.a coin
4 Extract a fixed numbe§' of the best solutions frons; W't ead prpbabl ity3. I ead turns up, t_ e specific bit

s for each samples = (s1,.. ., sn) € S is set to 1 with probabilityp;, to O otherwise. If5 = 1,

6 p— (1=XN)p+ s, the string is sampled from the probability mogel

where \ is a learning rate parameter (regulating exploration * US€ of a lower bound on the maximum clique (size of
versus exploitation). The moving vectgr can be seen as best clique found so far) to search for progressively larger

representing an exponentially weighted moving averageef t cliques. .. . _
best samples, a prototype vector placed in the middle of the® Use of Marchiori’s repair heuristic [1] to create a legal

cluster providing the recently-found best quality solatioAs clique (some of the internal connections can be missing
a parallel with machine learning literature, the update fil in the individual created with guided mutation) and to
similar to that used in Learning Vector Quantization, sed.[2 extend it in a greedy manner until a maximal clique is

Variations include moving away from bad samples in addition ~ "¢ached.

to moving towards good ones. A schematic representation isFig. @ outlines the EA/G code. The algorithm accepts as
shown in Fig[B. input the population sizeV and some parameters described
Estimates of probability densities for optimization calesi below. The guided mutation operator described above is im-
ing possible dependencies in the form of pairwise condiionplemented in functiorMut at i on, while Marchiori's repair
probabilities are studied in [15]. Their MIMIC techniqueneuristic is performed by functioRepai r. The algorithm
(Mutual-Information-Maximizing Input Clustering) aimst a works by maintaining a population of siz&. At each step,
estimating a probability density for points with value belo the M (equal toN/2 in the cited paper) fittest individuals are
a given threshold (remember that the function is tontie- kept, while the others are replaced by repaired mutations of
imized. These more complex models have been consideng@ fittest individual. This is achieved in the pseudo-coge b
for the maximum clique problem in [13], which demonstratesorting individuals according to their fitness (liig@ 15) dnd
inferior performance with respect to the simpler PBIL, it&p using the first oneg!, for generation of others (lin€s1B320).
of added computational overhead. Elementsr?, ..., 2™ do not generate offspring, but participate
The EA/G algorithm proposed in [13] for the maximumpo the PBIL model update (lifg1L7). If a new population is to
clique problem is based on the following principles: be generated (for instance, when a larger clique is found, or
« Use of the PBIL algorithm [5] to create a model of thgopulation converges to a single individual), new indiatiu
fittest individuals created in the population. are selected among strings of leng®Best+ 1...Shest + A
o Use of a guided mutation operator to produce the offwhere Spestis the lower bound on the maximum clique size,
spring. This is motivated by the “proximate optimalityi.e., the size of the best clique found so far) and the
principle” [28] which assumes that good solutions tendistribution is reset (lindd 8=11.3). The PBIL model is irliiad
to have similar structures. Global statistical informatioat line[I3 and updated by a moving average atllide 17.



+ function EAIG (N, M, A, A, 3, @) @ossible additions (PA

2. B ﬁ.<— O, .
3. pick = € Q;
4. Qpest — Repai r (z, a);
5. Shest — |U|; °
6. restart « true
1 repeat
8. ™ if restart or all 2'’s are equal
9. r fori—1,....N
w0 pick z € Uffgf:eil Qj; °
1 z' « Repai r (z, a); °
12. fOfi<—1,...,7’L
, N 5/
) r eftl ;tzi:]}afééN, ® current clique (Q)
14.
15 SortBySize (z%, i =1,...,N); oneMissing P
1. fori—1,...,n
17 pi — (1 _ )\)pi + )‘ZM . mJ/M Fig. 5. Neighborhood of current clique.
: @l /M;
18. fori — M+1,...,N .
10 x — Mitate (!, (), B): L flinctlon RLS o
2. z' — Repair (z, a); 2 t— 0T« 1;tp < 0 Initialization
2 if (size of fittest individual) > Spest . Q — 05 Qoest— 0; Shest — 0; tp — O;
2. Qbest — New maximum clique; - repeat .
23. Spest < |Qbest; > T I\/tarmryReact Fon (@, T);
25. L t—t+1 7. ?‘_t“l‘l;
% | until stopping condition 8. if f(Q) > Sbest
8. Qbest — Q;
Fig. 4. The EA/G algorithm for the Maximum Clique problem. 10 Sbest — [Q;
11 ty — t;
12. if t— max{tb,tR} > A
I1l. A LOW-KNOWLEDGE REACTIVE LOCAL SEARCH 13 [ tr — 1
ALGORITHM 1. _ Res_t art ();
A Reactive Local Search (RLS) algorithm for the solution of’ until Seestis acceptable
or maximum iterations reached;

the Maximum-Clique problem is proposed in [20], [29] and”
obtains state-of-the-art results in computational teststhe
second DIMACS implementation challeme

RLS is based on local search complemented by a feed-
back (history-sensitive) scheme to determine the amount of _ . . )
diversification. The reaction acts on the single paraméitatr tcal_ls theBest Ne|_ ghb(_)r fun_ct|on that provides the flttes_t
decides the temporargrohibition of selected moves in the nelghbo_rmg conf|gur<'_at|on,_ given the current one. Function
neighborhood. In detail, given the prohibition parameigr Best_Ne| ghbor, outlined in Flg.EY,. alternates between ex-
after being moved (added to the clique or dropped from i ansion and plateau phases, and it selects the nodes among

a node remains prohibited for the néktiterations. We shall the _allowed ones Wh'Ch have the highest degred/n In_ .
refer to non-prohibited nodes aiowed nodes part|c_ular, the_ function searche_s fo_r an aI_Iowed node withi
In local search algorithms for MC, the basic moves consigfa‘ with the_ h|ghe_st degree V.v'th.'ﬁA itself (lines3EL). If no
of the addition to or removal of single nodes from the currefHCh N0de is available, then it tries to remove an allowednod

cligue. A swap of nodes can be trivially decomposed into t om the clique which would m_a>.<|maIIy mclrea@é\ (Imes[j])—
separate moves. The local changes generate a searchotngje ). If all such nodes are pl‘(.)hlblte.d, then it proceeds rengov
X{t}, the current clique at different iteratiorts Two sets 2 random node f“?m the F:Ilque (Iie]13).

are involved in the execution of basic moves: the set of the "€ part that differentiates RLS from other local search
possible additiongPA) which contains nodes connected to alfifechanisms is functiokenor yReact i on, which maintains
the elements of the clique, and the set of liaeel neighbors the history of the search by storing each visited cliguéor

oneM ssi ng containing the nodes connected to falit one & suitable fingerprint) into a dictionary structure, e.ghash
element of the clique, see Fig. 5. table, together with some details, such as the number otame

The RLS algorithm [20] is presented in Figl 6. igiven clique was found and the last time it has been generated
consists of a local search loop; every iteration basicalfich information is used to adjust the prohibition tiffie
if MenoryReact i on detects that the same clique has been
lhttp: //di macs. rut gers. edu/ Chal | enges/ visited too often (a hint that the search is trapped insidecall

Fig. 6. The RLS algorithm for the Maximum Clique problem.



. function Best Nei ghbor (Q) 04

. [ type — not Found; B
5 if {allowedv € PA} # () 03 o T
a.  type «— addMove; 2 0s ﬁjt I
5. Diax — maxde allowedv € PA}); A s N P [
'max gG(PA)({ }_) S TR S | O 1 s r ] ]
6 L pick v € {allowedw € PA|deggpp) (w) = Dmax}; 2 it SR RS B e (
7 if t ype = not Found P, g B 1
5. © type « dr opMove; 3 }
o if {allowedv € Q} #0 £ o
10, Amax < max{Apalj]|j € Q A j allowed}; s |
. pick v € {allowedw € Q|Apa[w] = Amax}; R ¥
12, else 005 |-
13. L ple v € Q; : N B—
. p*ka - PR
14. I ncr errent a'l Upda’t e (U’ t ype)’ 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
15. if type = addMbve Iterations
1 return QU {v} Fig. 9. Dynamic evolution of the prohibitio’(t) as a function of the
17. else iteration for runs onQpest y-values are ratios between prohibition and best
T return Q \ {v} clique sizeT'(t)/Qpes(t).
Fig. 7. Search for the best neighboring configuration in RLS. 95 —F 5 1 . P—hagigg?;jg —
90 k —+
30 — 7] 1

85

25

80

20

75

Best clique found

70

15 e

Prohibition period

65

10 H- . .
- 60 e

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Prohibition period to max clique ratio

i

0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000  Fig. 10. FinalQpest results obtained after a run of s-RLS (simplified RLS)
fterations of 2000 iterations, as a function of theparameter. Error bars are #io.

Fig. 8. Dynamic evolution of the prohibitio’(t) as a function of the
iteration for three different runs on C1000.9 (with diffeteandom seeds).

representative significant graphs. To make the approximate
proportionality to the cligue dimension clear we plot dihec

minimum), it can try to improve differentiation by increagi the ratio between the currefit value and the size of the best
the prohibition periodT’, thus forcing a larger Hamming clique found at iteration, called Qpes(t).
distance in subsequent steps. Restarts are executed oety wh After confirming the hypothesis of a parametErbeing
the algorithm cannot improve the current configuration imith adapted to approximately a fraction 6Jpes{t) We exper-
a number of iterationsA from either the last restart or theimented with a simplified reactive scheme which sets the
last improvement in clique size. Additional and more receptohibition valueT'(¢) equal to7 - Ques(t). This version is
implementation details are described in [30]. called alow-knowledgereactive scheme because the only

Let us now come to the extreme simplification of the RL&formation used from the previous history of the search is
algorithm. By analyzing the evolution of the prohibitiorrjpel  given by the size of the best clique.
T during runs on different instances we noted a tendency ofThe average results obtained Qgest in ten different runs
the T" values during the run to grow as a function of the sizare plotted in Fig[Zll0. It can be observed that a small value
of the maximum cliques contained in the graph. for the proportionality constant is associated to the best

The evolution off” for the graph C1000.9 on three differentesults obtained. Furthermore, one observes a robust inehav
RLS runs is shown in Fidd8. One observes a transient periofl the results as a function of, provided that its value
whenT grows from the initial valuel to a value which then ranges approximately betweehl5 and 0.25. After these
tends to remain approximately stable during the run (apatperimental results, confirmed also on the other graphs, we
from random fluctuations caused by the reactive mechanismgcided to fixr = 0.2 for all cases.

In Fig. @ we show the evolution of’ for a couple of  The difference is coded in thigenor yReact i on mech-



.. function R-EVO (N) in EA/G requires a sequence of node additions and removals,

2 [ forie—1,....N Generate population \yhile an REevo iteration only performs one node addition

3 R; — new RLS searcher; _ or removal, so a direct comparison is not possible. To solve
- fori —1,....n Initialize model uniformly ;g problem, two series of experiments have been performed
5 pi 0.5 one with a fixed but larger number of iterations, another with
6 repeat a number of iterations proportional to the maximum clique
7 [ fori—1,....N Iterate through solvers tqnd. Both choices are motivated in the following sections

d [ execute one step df;; Our experiments were executed on a Dual Xeon 3.4GHz
° Qi — best clique ofFz;; machine with 6GB RAM and Linux 2.6 operating system.
10 Smax < max{|@Q;| : i=1,...,N} However, all tested algorithms were implemented as mono-
1 B—{Qi:i=1,..., NN|Qi| = Smax— A; lithic processes, so only a single processor core was intuse a
12 fori—1,....,n Update PBIL model 4y time, and no CPU core parallelism has been exploited. To
3. L pi — (L= N)p; + )‘ZQEB xq(#)/|Bl; take hardware differences into account, some runs of EA/G
14. until Smax is acceptable have been reproduced and their average execution times were
s | or maximum iterations reached; used to obtain the).85 speedup factor used to re-estimate

execution times in the EA/G time columns.
Fig. 11. The RLSEVvo algorithm for the Maximum Clique problem. The
R-evo simplified version only differs in the implementation of tR&S step, A. Fixed number of iterations
so the pseudo-code fits Rvo as well. )
The first series of tests was performed oneRRe with

200, 000 solver steps20, 000 steps per solver). The number
anism: the simplified version does not need to maintaindd iterations has been chosen in order to approach the amount
history structure, and the only action is to update the valeé work that the EA/G heuristic performs at every iteration.
of T according to the size of the largest clique found up t@/ith this choice the execution times of R+0 are significantly

that moment. lower than those allowed for EA/G, therefore the comparison
is unbalanced in favor of EA/G.

IV. THE HYBRID EVOLUTIONARY AND REACTIVE Results are reported in Tak:l[b I. The first set of columns

ALGORITHMS (R-EVO) reports the average maximum clique found (with the corre-

To distinguish the new and simplified version of RLS, th(sapondlng standard error), the overall maximum and the geera

hybrid algorithm is called Revo, while the hybrid algorithm ©X€cution time for 10 runs of the EA/G algorithm; the second
adopting the original RLS method is called RIES©. Both set of columns contains the corresponding results for the R-

. . vo algorithm. Finally, the results of a Student's t-test for
algorithms have the same overall structure, shown in[E. 1e uality of means with unequal sample variance [31] has
The pool of searching individualéR;) is created with an q y q P

empty clique, and the initial estimate;) of the node dis- been applied in order to test the equality of the two clique

tribution in the clique is set to a uniform value (each nodg S averages (last column contains the significance of the

. hy L . . null hypothesis, i.e., that the two distributions have thene
having a50% probability of appearing in a maximum clique).
. i i . . o average). Note that some tests could not be performed due to
Every iteration of the algorithm consists of a single itenat null variance in both alaorithms
of each individual searcher (linEK[T-9). After all searstwve g )

. ) esults show that the Rvo algorithm has a significant
been executed, the model is updated. The average is Comp%ﬁgeriority to EA/G in the case of dense random graphs (the

by counting, for each nod¢ how many searchers mcludec*_ 9 andDSIC+ lines), for example the average size7i

nodei in their maximum clique. In ord_er to reduce noise, On%etter inC2000. 9; for the small instances both algorithms
searchers providing cliques whose size is comparable ifwith ways locate the maximum clique. The orgen= -type in-

a toleranceA € N) with the largest one are taken into accounf;}tance (random graphs embedding a known clique) which was
The model(p;) is used within functiorRest art (see the grap g g

o . . N .~ not always solved by both algorithms is the 400-node graph
RLS pseudo-code in Fi@ 6) in order to build an initial C“qu.%vith 55-node clique, where Rvo outperforms EA/G. Also

with the most probable nodes. In detail, the initial cliqge i . . .
built in a greedy fashion, where candidate nodes at evepy S{Qe p_hat 1500- instances (random graphs with higher

are selected with probability proportional to model valges. spread in node degree) and thami ng+ instances (graphs

The model is the only data which is globally shared by aﬂf bit stLlngs er.h r?onnect_lor?s b;:‘tweerj Wﬁrds if theﬁ: are far
searchers. apart) show a slight superiority of Rvo in the cases that are

not optimally solved by both algorithms.
The performance tends to be more difficult to assess in
V. COMPUTATIONAL EXPERIMENTS the Brockington-Culberson graphs (theock+ lines), where
All experiments have been performed with the followinghe best clique is hidden in a very effective manner so that
parameters, derived from [13]: population &f= 10 individ- intelligent techniques tend to be not competitive with extp
uals, 10 runs per problem instance, model defstk= 3; the to brute force local search (in fact, the camouflaging preces
restart parameted in Fig.[d is 100 - Qpes: The EA/G data are is designed tdool intelligent techniques).
obtained from [13], where 20000 calls of the repair operator The REVO algorithm does not perform at the EA/G level
per run were considered. The construction of a new individuan Steiner Triple Problem graphs (tMANN+ lines), however



TABLE |
COMPARISON BETWEENEA/G AND R-EVO FOR A FIXED NUMBER OF ITERATIONS

EA/G R-EVO (200000) t-test
Avg. (std) | Best [ Time (s) Avg. (std) | Best | Time (s) t sig.
C125.9 34.0 (0.0) 34 1.3 34.0 (0.0) 34| 0.464 - -
C250.9 44.0 (0.0) 44 2.5 440 (0.0)) 44 | 0491 - -
C500.9 55.2 (0.9) 56 4.8 57.0 (0.0)) 57 | 0.719 6.325 | 0.000
C1000.9 64.4 (1.4) 67 18.0 67.3 (0.5 68| 1.189 6.169 | 0.000
C2000.9 70.9 (1.0) 72 38.4 75.8 (0.6)) 77 | 2.900 13.287 | 0.000
DSJC5005 13.0 (0.0) 13 4.0 13.0 (0.0) 13 | 1.206 - -
DSJC10005 145 (0.3) 15 10.3 15.0 (0.0) 15| 3.107 5.270 | 0.000
C2000.5 149 (0.7) 16 24.3 16.0 (0.0) 16 | 4.372 4.969 | 0.001
C4000.5 16.1 (0.3) 17 51.9 17.0 (0.0) 17 | 9.342 9.487 | 0.000
MANN _a27 126.0 (0.0) 126 | 10.3 125.6 (0.5) 126 | 0.651 2.530 | 0.026
MANN_a45 343.7 (0.7) 345 | 68.2 342.2 (0.4) 343 | 2.852 5.883 | 0.000
MANN_a81 1097.2 (0.6) 1098 | 705.1 1096.9 (0.6) 1098 | 5.754 1.118 | 0.208
brock20Q 2 12.0 (0.0) 12 1.5 115 (0.5 12| 0.844 3.162 | 0.009
brock2004 16.5 (0.5) 17 1.7 16.1 (0.3)) 17 | 0.500 2.169 | 0.044
brock40Q 2 247 (0.4) 25 3.1 25.0 (0.0)) 25| 0.722 2.372 | 0.034
brock400.4 25.1(2.6) 33 3.3 25.8 (2.5 33| 1.158 0.614 | 0.323
brock80Q 2 20.1 (0.4) 21 7.6 21.0 (0.0)) 21 | 1.430 7.115 | 0.000
brock800 4 199 (05) 21 7.6 21.0 (0.0) 21 | 2.253 6.957 | 0.000
gen200Qp0.9 44 44.0 (0.0) 44 1.8 44.0 (0.0)) 44 | 0.402 - -
gen200p0.9 55 55.0 (0.0) 55 3.3 55.0 (0.0)) 55 | 0.586 - -
gen400p0.9 55 51.8 (0.7) 55 3.6 54.0 (1.1)) 55| 0.621 5.336 | 0.000
gen400p0.9 65 65.0 (0.0) 65 3.6 65.0 (0.0)) 65 | 0.940 - -
gen400p0.9 75 75.0 (0.0) 75 3.7 75.0 (0.0)) 75| 0.948 - -
hamming8-4 16.0 (0.0) 16 1.7 16.0 (0.0)) 16 | 0.597 - -
hamming10-4 39.8 (0.6) 40 14.2 40.0 (0.0)) 40 | 1.427 1.054 | 0.217
keller4 11.0 (0.0) 11 1.3 11.0 (0.0)) 11 | 0.730 - -
keller5 26.9 (0.3) 27 9.1 26.9 (0.3 27| 1.275 0.000 | 0.393
keller6 53.4 (1.2) 56 53.6 53.3(0.7)) 54 | 6.210 0.228 | 0.381
p_hat300-1 8.0 (0.0) 8 2.0 8.0 (0.0) 8 | 1.191 - -
p_hat300-2 25.0 (0.0) 25 2.0 25.0 (0.0)) 25 | 0.705 - -
p_hat300-3 36.0 (0.0) 36 2.3 36.0 (0.0)) 36 | 0.972 - -
p_hat700-1 11.0 (0.0) 11 5.6 11.0 (0.0) 11 | 1.772 - -
p_hat700-2 44.0 (0.0) 44 7.6 44.0 (0.0)) 44 | 1.407 - -
p_hat700-3 62.0 (0.0) 62 11.1 62.0 (0.0)) 62 | 1.233 - -
p_hat1500-1 11.1 (0.3) 12 16.8 11.7 (0.5) 12 | 3.933 3.254 | 0.006
p_hat1500-2 65.0 (0.0 65 24.6 65.0 (0.0)) 65| 4.182 - -
p_hat1500-3 93.7 (0.5) 94 29.2 94.0 (0.0)) 94 | 2.408 1.897 | 0.072

the t-test figures are uncertain in the larger case, wheie b@t Internal comparison betweeR-evo and RLS-EvO
techniques could find a (non-optimal, however) 1098-node
cligue. Finally, while average cliques are comparable ia th

kel | er 6 instance, the 10 EA/G runs find a larger clique. Another set of experiments has been devoted to a com-

parison between the full-fledged RLS+0 heuristic and its
much simpler low-knowledge RvoO counterpart used in the

B. Iterations proportional to (estimated) maximum cliqiges Previous experiments.

The CPU time differences in the previous series of ex- Results are shown in Tablellll. CPU times are not reported

periments tended to increase on larger graphs, in particu geause they are very similar in Tad¢ |l for &R0 The

. . . impler version show me marginal performan rada-
on graphs with larger cliqgues. In order to attain a mo PIEr Version Shows some marginal periormance degrada
tion, but in many cases experimental variance is very large.

fair comparison, we chose a different termination criterio .
b For instance, the more complex RIS« found the 33-node

for R-evo by limiting the overall number of iterations to . . .
20,000 x max{(Q;}, whereQ; is the maximum clique found cllqu_e ofbr ock400_4 once, and the higher average is due
to this single event.

by searchei?; (see Fig[TlL).
Results are reported on Talfilé II. We can see that all caseJhe last group of columns in Tablellll refers to a final ex-
where the null hypothesis is rejected with high confidengeeriment with a mixed population: 5 searchers implement the
(significance columnrc 0.05) R-EvO outperforms EA/G, with RLS-EVO algorithms, 5 implement Rvo. The results show
the exception of some Steiner Triple ProbleMARNN+) and that in some cases this technique helps achieving the “liest o
Brockington-Culbersonhbf ock+) instances. Note that time both worlds,” however in other cases a slight degradation ca
differences have greatly reduced; in particular, now larde observed. As examples, tbeock400 4 andkel | er 6
graphs are searched for a time that is in the same ordercakes show that the mixed technique can obtain a performance
magnitude as EA/G. equal to the best of its components.



TABLE Il
COMPARISON BETWEENEA/G AND R-EVO FOR A NUMBER OF ITERATIONS PROPORTIONAL TO THE MAXIMUM DEECTED CLIQUE.

EA/G R-EVO (20000 cliquesize) t-test
Avg. (std) | Best [ Time (s) Avg. (std) | Best | Time (s) t sig.
C125.9 34.0 (0.0 34 1.3 34.0 (0.0) 34 1.215 - -
C250.9 440 (0.0) 44 25 440 (0.0 44 3.237 - -
C500.9 55.2 (0.9) 56 4.8 57.0 (0.0) 57 4.227 6.325 | 0.000
C1000.9 64.4 (1.4) 67 18.0 68.0 (0.0) 68 10.165 8.132 | 0.000
C2000.9 709 (1.0 72 38.4 76.5 (0.5)] 77 29.196 || 15.839 | 0.000
DSJC5005 13.0 (0.0) 13 4.0 13.0 (0.0 13 1573 - -
DSJC10005 145 (0.3) 15 10.3 15.0 (0.0 15 3.732 5.270 | 0.000
C2000.5 149 (0.7) 16 24.3 16.0 (0.0) 16 6.833 4.969 | 0.001
C4000.5 16.1 (0.3) 17 | 51.9 17.1 (0.3) 18 | 15.729 || 7.454 | 0.000
MANN _a27 126.0 (0.0 126 10.3 125.8 (0.4 126 7.991 1.581 | 0.114
MANN _a45 343.7 (0.7) 345 68.2 3425 (0.5) 343 46.859 4.411 | 0.000
MANN _a81 1097.2 (0.6) 1098 | 705.1 1096.7 (0.5) 1097 | 438.570 2.024 | 0.056
brock200Q 2 12.0 (0.0) 12 1.5 11.4 (0.5) 12 0.654 3.795 | 0.003
brock200 4 16.5 (0.5) 17 1.7 16.1 (0.3) 17 1.249 2.169 | 0.044
brock400 2 24.7 (0.4) 25 3.1 25.0 (0.0) 25 1.794 2.372 | 0.034
brock400 4 25.1 (2.6), 33 3.3 25.0 (0.0) 25 2.965 0.122 | 0.385
brock800 2 20.1 (0.4) 21 7.6 21.0 (0.0) 21 3.725 7.115 | 0.000
brock800 4 19.9 (0.5) 21 7.6 21.0 (0.0) 21 2.977 6.957 | 0.000
gen200p0.9 44 440 (0.0) 44 1.8 44.0 (0.0) 44 1.789 - -
gen200p0.9 55 55.0 (0.0 55 33 55.0 (0.0 55 2.026 - -
gen400p0.9 55 51.8 (0.7) 55 36 55.0 (0.0) 55 3.378 || 14.456 | 0.000
gen400p0.9 65 65.0 (0.0 65 36 65.0 (0.0 65 3.744 - -
gen400p0.9 75 75.0 (0.0 75 3.7 75.0 (0.0 75 5.114 - -
hamming8-4 16.0 (0.0 16 1.7 16.0 (0.0) 16 1.814 - -
hamming10-4 39.8 (0.6), 40 14.2 40.0 (0.0) 40 8.110 1.054 | 0.217
keller4 11.0 (0.0 11 1.3 11.0 (0.0) 11 0.837 - -
keller5 26.9 (0.3) 27 9.1 26.8 (0.4) 27 3.680 0.632 | 0.319
keller6 53.4 (1.2) 56 53.6 53.7 (0.7) 55 34.573 0.683 | 0.307
p_hat300-1 8.0 (0.0) 8 2.0 8.0 (0.0) 8 1.149 - -
p_hat300-2 25.0 (0.0 25 2.0 25.0 (0.0 25 2.774 - -
p_hat300-3 36.0 (0.0 36 23 36.0 (0.0 36 2.194 - -
p_hat700-1 11.0 (0.0 11 56 11.0 (0.0) 11 1.950 - -
p_hat700-2 44.0 (0.0 44 7.6 44.0 (0.0 44 6.166 - -
p_hat700-3 62.0 (0.0 62| 11.1 62.0 (0.0) 62| 12579 - -
p_hat1500-1 11.1 (0.3) 12 16.8 11.8 (0.4) 12 5.181 4.427 | 0.000
p_hat1500-2 65.0 (0.0 65| 24.6 65.0 (0.0) 65| 18.577 - -
p_hat1500-3 93.7 (0.5) 94 29.2 94.0 (0.0) 94 24.735 1.897 | 0.072
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R-EVO RLS-EvO Mix

Avg. (std) | Best Avg. (std) | Best || Avg. (std) | Best
C125.9 34.0 (0.0) 34 34.0 (0.0) 34 34.0 (0.0 34
C250.9 44.0 (0.0) 44 44.0 (0.0) 44 44.0 (0.0) 44
C500.9 57.0 (0.0 57 57.0 (0.0) 57 57.0 (0.0) 57
C1000.9 68.0 (0.0) 68 67.9 (0.3) 68 67.9 (0.3]) 68
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brock400 2 25.0 (0.0 25 25.0 (0.0) 25 25.0 (0.0 25
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gen400p0.9 75 75.0 (0.0 75 75.0 (0.0) 75 75.0 (0.0 75
hamming8-4 16.0 (0.0 16 16.0 (0.0) 16 16.0 (0.0) 16
hamming10-4 40.0 (0.0 40 40.0 (0.0) 40 40.0 (0.0 40
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keller5 26.8 (0.4) 27 27.0 (0.0) 27 27.0 (0.0 27
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