
DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (Italy), Via Sommarive 14
http://dit.unitn.it/

REACTIVE SEARCH:

MACHINE LEARNING FOR MEMORY-BASED HEURISTICS

Roberto Battiti, Mauro Brunato
(battiti,brunato)@dit.unitn.it

October 27, 2005

Technical Report # DIT-05-058

Reactive Search: Machine Learning for Memory-Based Heuristics

Roberto Battiti, Mauro Brunato

Department of Computer Science and Telecommunications

Università di Trento

Via Sommarive, 14 — I-38050 Trento — Italy

E-mail: (battiti,brunato)@dit.unitn.it

October 27, 2005

1 Introduction: the role of the user in heuristics

Most state-of-the-art heuristics are characterized by a certain number of choices and free parameters, whose
appropriate setting is a subject that raises issues of research methodology [5, 41, 51].

In some cases, these parameters are tuned through a feedback loop that includes the user as a crucial

learning component : depending on preliminary algorithm tests some parameter values are changed by the
user, and different options are tested until acceptable results are obtained. Therefore, the quality of results
is not automatically transferred to different instances and the feedback loop can require a lengthy “trial and
error” process every time the algorithm has to be tuned for a new application.

Parameter tuning is therefore a crucial issue both in the scientific development and in the practical use
of heuristics. In some cases the role of the user as an intelligent (learning) part makes the reproducibility of
heuristic results difficult and, as a consequence, the competitiveness of alternative techniques depends in a
crucial way on the user’s capabilities.

Reactive Search advocates the use of simple sub-symbolic machine learning to automate the parameter
tuning process and make it an integral (and fully documented) part of the algorithm.

If learning is performed on line, task-dependent and local properties of the configuration space can be used
by the algorithm to determine the appropriate balance between diversification (looking for better solutions in
other zones of the configuration space) and intensification (exploring more intensively a small but promising
part of the configuration space). In this way a single algorithm maintains the flexibility to deal with related
problems through an internal feedback loop that considers the previous history of the search.

In the following, we shall call reaction the act of modifying some algorithm parameters in response to the
search algorithm’s behavior during its execution, rather than between runs. Therefore, a reactive heuristic

is a technique with the ability of tuning some important parameters during execution by means of a machine
learning mechanism.

It is important to notice that such heuristics are intrinsically history-dependent; thus, the practical
success of this approach in some cases raises the need of a sounder theoretical foundation of non-Markovian
search techniques.

1.1 Machine learning for automation and full documentation

process where experiments are designed in a focussed way, with the support of statistical estimation (pa-
rameter identification) tools.

Because of its familiarity with algorithms, the Computer Science community masters a very powerful tool
for describing processes so that they can be reproduced even by a (mechanical) computer. In particular, the
Machine Learning community, with significant influx from Statistics, developed in the last decades a rich
variety of “design principles” that can be used to develop machine learning methods and algorithms.

It is therefore appropriate to consider whether some of these design principles can be profitably used in
the area of parameter tuning for heuristics. The long-term goal is that of completely eliminating the human

1

1 INTRODUCTION: THE ROLE OF THE USER IN HEURISTICS 2

intervention in the tuning process. This does not imply higher unemployment rates in the CS community,
on the contrary, the researcher is now loaded with a heavier task: the algorithm developer must aim at
transferring his expertise into the algorithm itself, a task that requires the exhaustive description of the

tuning phase in the algorithm.
Let us note that the algorithm “complexity” will increase as a result of the process, but the price is worth

paying if the two following objectives are reached:

Complete and unambiguous documentation. The algorithm (and the research paper based on the
algorithm) becomes self-contained and its quality can be judged independently from the designer or specific
user. This requirement is particularly important from the scientific point of view, where objective evaluations
are crucial. The recent introduction of software archives (in some cases related to scientific journals) further
simplifies the test and simple re-use of heuristic algorithms.

Automation. The time-consuming tuning phase is now substituted by an automated process. Let us
note that only the final user will typically benefit from an automated tuning process. On the contrary,
the algorithm designer faces a longer and harder development phase, with a possible preliminary phase of
exploratory tests, followed by the above described exhaustive documentation of the tuning process when the
algorithm is presented to the scientific community.

Although formal learning frameworks do exist in the CS community (notably, the PAC learning model [67,
46]) one should not reach the conclusion that these models can be simply adapted to the new context. On the
contrary, the theoretical framework of computational learning theory and machine learning is very different
from that of heuristics. For example, the definition of a “quality” function against which the learning
algorithm has to be judged is complex. In addition, the abundance of negative results in computational
learning should warn about excessive hopes.

Nonetheless, as a first step, some of the principles and methodology used in machine learning can be used
in an analogic fashion to develop “reactive heuristics.”

1.2 Asymptotic results are irrelevant for optimization

Scientists, and also final users, might feel uneasy working with non-Markovian techniques because they
don’t benefit from the deep and wide theoretical background that covers Markovian algorithms. However,
asymptotic convergence results of many Markovian search algorithms, such as Simulated Annealing [48], are
often irrelevant for their application to optimization. As an example, a comparison of Simulated Annealing
and Reactive Search has been presented in [12, 13].

In any finite-time approximation one must resort to approximations of the asymptotic convergence. In
Simulated Annealing, for instance, the “speed of convergence” to the stationary distribution is determined
by the second largest eigenvalue of the transition matrix. The number of transitions is at least quadratic in
the size of the solution space [1], which is typically exponential in n.

When using a time-varying temperature parameter, it can happen (e.g., TSP problem) that the complete
enumeration of all solutions would take less time than approximating an optimal solution with arbitrary
precision by SA [1].

In addition, repeated local search [31], and even random search [23], have better asymptotic results.
According to [1] “approximating the asymptotic behavior of SA arbitrarily closely requires a number of
transitions that for most problems is typically larger than the size of the solution space [. . .] Thus, the
SA algorithm is clearly unsuited for solving combinatorial optimization problems to optimality.” Of course,
practical utility of SA has been shown in many applications, in particular with fast cooling schedules,
but then the asymptotic results are not directly applicable. The optimal finite-length annealing schedules
obtained on specific simple problems do not always correspond to those intuitively expected from the limiting
theorems [63].

2 REACTIVE SEARCH APPLIED TO TABU SEARCH (RTS) 3

2 Reactive Search applied to Tabu Search (RTS)

In this Section, we illustrate the potential of Reactive Search by installing a reaction mechanism on the
prohibition period T of a Tabu Search [35] algorithm. For more comprehensive descriptions of Tabu Search,
the Reader can refer to the Bibliography.

2.1 Prohibition-based diversification: Tabu Search

The Tabu Search meta-heuristic is based on the use of prohibition-based techniques and “intelligent” schemes
as a complement to basic heuristic algorithms like local search, with the purpose of guiding the basic heuristic
beyond local optimality. It is difficult to assign a precise date of birth to these principles. For example, ideas
similar to those proposed in TS can be found in the denial strategy of [62] (once common features are
detected in many suboptimal solutions, they are forbidden) or in the opposite reduction strategy of [49] (in
an application to the Travelling Salesman Problem, all edges that are common to a set of local optima are
fixed). In very different contexts, prohibition-like strategies can be found in cutting planes algorithms for
solving integer problems through their Linear Programming relaxation (inequalities that cut off previously
obtained fractional solutions are generated) and in branch and bound algorithms (subtrees are not considered
if the leaves cannot correspond to better solutions). For many examples of such techniques, see the textbook
[57].

The renaissance and full blossoming of “intelligent prohibition-based heuristics” starting from the late
eighties is greatly due to the role of F. Glover in the proposal and diffusion of a rich variety of meta-heuristic
tools [35, 36], but see also [39] for an independent seminal paper. A growing number of TS-based algorithms
has been developed in the last years and applied with success to a wide selection of problems [37]. It is
therefore difficult, if not impossible, to characterize a “canonical form” of TS, and classifications tend to be
short-lived. Nonetheless, at least two aspects characterize many versions of TS: the fact that TS is used
to complement local (neighborhood) search, and the fact that the main modifications to local search are
obtained through the prohibition of selected moves available at the current point. TS acts to continue the
search beyond the first local minimizer without wasting the work already executed, as it is the case if a
new run of local search is started from a new random initial point, and to enforce appropriate amounts of
diversification to avoid that the search trajectory remains confined near a given local minimizer.

In our opinion, the main competitive advantage of TS with respect to alternative heuristics based on
local search like Simulated Annealing (SA) [48] lies in the intelligent use of the past history of the search to
influence its future steps.

For a generic search space X , let X(t) ∈ X be the current configuration and N(X(t)) ⊆ X its neighbor-
hood. In prohibition-based search (Tabu Search) some of the neighbors can be prohibited, and let the subset
NA(X(t)) ⊆ N(X(t)) contain the allowed ones. The general way of generating the search trajectory that we
consider is given by:

X(t+1) = Best-Neighbor

(

NA(X(t))
)

(1)

NA(X(t+1)) = Allow

(

N(X(t+1)), X(0), . . . , X(t+1)
)

(2)

The set-valued function Allow selects a subset of N
(

X(t+1)
)

in a manner that depends on the search

trajectory X(0), . . . , X(t+1).
This general framework allows several specializations. In many cases, the dependence of Allow on the

entire search trajectory introduces too many constraints on the next move, causing the search path to avoid
an otherwise promising area, or even prohibiting all neighbors. It is therefore advisable to reduce the amount
of constraints by limiting the Allow function to the latest T configurations (where the parameter T is often
called the prohibition period), so that equation (2) becomes

NA(X(t+1)) = Allow

(

N(X(t+1)), X(t′), . . . , X(t+1)
)

, t′ = max{0, t− T + 1} (3)

A practical example for equation (3) is a function Allow that forbids all moves that have been performed
within the last T iterations. For instance, let us assume that the feasible search space X is the set of binary

2 REACTIVE SEARCH APPLIED TO TABU SEARCH (RTS) 4

strings with a given length L: X = {0, 1}L (this case shall be considered also in the example of Section 4).
In this case, a practical neighborhood of configuration X(t) is given by the L configurations that differ from
X(t) by a single entry. In such case, a simple prohibition scheme may allow a move if and only if it changes
an entry which has remained fixed for the previous T iterations. In other words, after an entry has been
changed, it shall remain frozen for the following T steps.

It is apparent that the choice of the right prohibition period T is crucial in order to balance the amount
of intensification (small T) and diversification (large T).

2.2 Reaction on Tabu Search parameters

Some problems arising in TS that have been investigated in Reactive Search papers are:

1. the determination of an appropriate prohibition T for the different tasks,

2. the robustness of the technique for a wide range of different problems,

3. the adoption of minimal computational complexity algorithms for using the search history.

The three issues are briefly discussed in the following sections, together with the reaction-based methods
proposed to deal with them.

2.2.1 Self-adjusted prohibition period

In RTS the prohibition period T is determined through feedback (i.e., reactive) mechanisms during the search.
At the beginning, we let T = 1 (the inverse of a given move is prohibited only at the next step). During
the search, T increases only when there is evidence that diversification is needed, and it decreases when
this evidence disappears. In detail: the evidence that diversification is needed is signalled by the repetition
of previously visited configurations. For this purpose, all configurations found during the search are stored
in memory. After a move is executed, the algorithm checks whether the current configuration has already
been found and reacts accordingly (T increases if a configuration is repeated, T decreases if no repetitions
occurred during a sufficiently long period).

By means of this self-adjustment algorithm, T is not fixed during the search, but it is determined
in a dynamic way depending on the local structure of the search space. This is particularly relevant for
“inhomogeneous” tasks, where the statistical properties of the search space vary widely in the different
regions (in these cases a fixed T would be inappropriate).

An example of the behavior of T during the search is illustrated in Fig. 1, for a Quadratic Assignment
Problem task [11]. T increases in an exponential way when repetitions are encountered, it decreases in a
gradual manner when repetitions disappear.

2.2.2 The escape mechanism

based on prohibitions is not sufficient to avoid long cycles. As an example, when operating on binary strings
of length L, the prohibition T must be less than the length of the string, otherwise all moves are eventually
prohibited; therefore, cycles longer than 2 × L are still possible. In addition, even if “limit cycles” (endless
cyclic repetitions of a given set of configurations) are avoided, the first reactive mechanism is not sufficient
to guarantee that the search trajectory is not confined in a limited region of the search space. A “chaotic
trapping” of the trajectory in a limited portion of the search space is still possible (the analogy is with
chaotic attractors of dynamical systems, where the trajectory is confined in a limited portion of the space,
although a limit cycle is not present).

For both reasons, to increase the robustness of the algorithm a second more radical diversification step
(escape) is needed. The escape phase is triggered when too many configurations are repeated too often
[11]. A simple escape consists of a number of random steps executed starting from the current configuration
(possibly with a bias toward steps that bring the trajectory away from the current search region).

With a stochastic escape, one can easily obtain the asymptotic convergence of RTS: in fact, in a finite
search space escape is activated infinitely often; if the probability for a point to be reached after escaping is
different from zero for all points, eventually all points will be visited - clearly including the globally optimal

2 REACTIVE SEARCH APPLIED TO TABU SEARCH (RTS) 5

points. The detailed investigation of the asymptotic properties and finite-time effects of different escape

routines to enforce long-term diversification is an open research area.

2.3 Implementation of history-sensitive techniques

The efficiency and competitiveness of history-based reaction mechanisms strongly depend on the detailed
data structures used in the algorithms and on the consequent realization of the needed operations. Different
data structures can possess widely different computational complexities so that attention should be spent
on this subject before choosing a version of Reactive Search that is efficient on a particular problem.

Reactive-TS can be implemented through a simple list of visited configurations, or with more efficient
hashing [70, 11] or radix tree [11] techniques. At a finer level of detail, hashing can be realized in different
ways. If the entire configuration is stored (see also Fig. 2) an exact answer is obtained from the memory
lookup operation (a repetition is reported if and only if the configuration has been visited before). On
the contrary, if a “compressed” item is stored, like a hashed value of a limited length derived from the
configuration, the answer will have a limited probability of false positives (a repetition can be reported even
if the configuration is new, because the compressed items are equal by chance – an event called “collision”).
Experimentally, small collision probabilities do not have statistically significant effects on the use of Reactive-
TS as heuristic tool, and hashing versions that need only a few bytes per iteration can be used.

2.3.1 Fast algorithms for using the search history

The storage and access of the past events is executed through the well-known hashing or radix-tree techniques
in a CPU time that is approximately constant with respect to the number of iterations. Therefore the
overhead caused by the use of the history is negligible for tasks requiring a non-trivial number of operations
to evaluate the cost function in the neighborhood.

An example of a memory configuration for the hashing scheme is shown in Fig. 2. From the current
configuration φ one obtains an index into a “bucket array.” The items (configuration or hashed value or
derived quantity, last time of visit, total number of repetitions) are then stored in linked lists starting from
the indexed array entry. Both storage and retrieval require an approximately constant amount of time if: i)
the number of stored items is not much larger than the size of the bucket array, and ii) the hashing function

scatters the items with a uniform probability over the different array indices. More precisely, given a hash
table with m slots that stores n elements, a load factor α = n/m is defined. If collisions are resolved by
chaining searches take O(1 + α) time, on the average.

2.3.2 Persistent dynamic sets

Persistent dynamic sets are proposed to support memory–usage operations in history-sensitive heuristics
in [6, 7].

Ordinary data structures are ephemeral [28] because when a change is executed the previous version is
destroyed. Now, in many contexts like computational geometry, editing, implementation of very high level
programming languages, and, last but not least, the context of history-based heuristics, multiple versions of
a data structure must be maintained and accessed. In particular, in heuristics one is interested in partially

persistent structures, where all versions can be accessed but only the newest version (the live nodes) can
be modified. A review of ad hoc techniques for obtaining persistent data structures is given in [28] that is
dedicated to a systematic study of persistence, continuing the previous work of [56].

Hashing combined with persistent red-black trees The basic observation is that, because tabu search

is based on local search, configuration X(t+1) differs from configuration X(t) only because of the addition or
subtraction of a single index (a single bit is changed in the string). Let us define the operations Insert(i)
and Delete(i) for inserting and deleting a given index i from the set. As cited above, configuration X can be
considered as a set of indices in [1, L] with a possible realization as a balanced red-black tree, see [18, 38] for
two seminal papers about red-black trees. The binary string can be immediately obtained from the tree by
visiting it in symmetric order, in time O(L). Insert(i) and Delete(i) require O(log L) time, while at most
a single node of the tree is allocated or deallocated at each iteration. Rebalancing the tree after insertion or

2 REACTIVE SEARCH APPLIED TO TABU SEARCH (RTS) 6

0

5

10

15

20

25

30

35

40

0 1000 2000 3000 4000 5000
t

prohibition period T
percent repetitions

Figure 1: Dynamics of the the prohibition period T on a QAP task.

φ1 time repts

 hash()1φ

time repts4φ time repts5φ

time repts2φ

time repts3φ

4φ

5φ

3φ

4φ

 hash()

 hash()

 hash()

 hash()

Figure 2: Open hashing scheme: items (configuration, or compressed hashed value, etc.) are stored in
“buckets”. The index of the bucket array is calculated from the configuration.

2 REACTIVE SEARCH APPLIED TO TABU SEARCH (RTS) 7

deletion can be done in O(1) rotations and O(log L) color changes [65]. In addition, the amortized number
of color changes per update is O(1), see for example [50].

Now, the Reverse Elimination Method [35, 36, 26] (a technique for the storage and analysis of the
ordered list of all moves performed throughout the search) is closely reminiscent of a method studied in [56]
to obtain partial persistence, in which the entire update sequence is stored and the desired version is rebuilt
from scratch each time an access is performed, while a systematic study of techniques with better space-time
complexities is present in [60, 28]. Let us now summarize from [60] how a partially persistent red-black tree
can be realized. An example of the realizations that we consider is presented in Fig. 3.

The trivial way is that of keeping in memory all copies of the ephemeral tree (see the top part of Fig. 3),
each copy requiring O(L) space. A smarter realization is based on path copying, independently proposed
by many researchers, see [60] for references. Only the path from the root to the nodes where changes are
made is copied: a set of search trees is created, one per update, having different roots but sharing common
subtrees. The time and space complexities for Insert(i) and Delete(i) are now of O(log L).

The method that we will use is a space-efficient scheme requiring only linear space proposed in [60]. The
approach avoids copying the entire access path each time an update occurs. To this end, each node contains
an additional “extra” pointer (beyond the usual left and right ones) with a time stamp.

When attempting to add a pointer to a node, if the extra pointer is available, it is used and the time
of the usage is registered. If the extra pointer is already used, the node is copied, setting the initial left
and right pointers of the copy to their latest values. In addition, a pointer to the copy is stored in the last
parent of the copied node. If the parent has already used the extra pointer, the parent, too, is copied. Thus
copying proliferates through successive ancestors until the root is copied or a node with a free extra pointer
is encountered. Searching the data structure at a given time t in the past is easy: after starting from the
appropriate root, if the extra pointer is used the pointer to follow from a node is determined by examining
the time stamp of the extra pointer and following it iff the time stamp is not larger than t. Otherwise, if
the extra pointer is not used, the normal left-right pointers are considered. Note that the pointer direction
(left or right) does not have to be stored: given the search tree property it can be derived by comparing the
indices of the children with that of the node. In addition, colors are needed only for the most recent (live)
version of the tree. In Fig. 3 null pointers are not shown, colors are correct only for the live tree (the nodes
reachable from the rightmost root), extra pointers are dashed and time-stamped.

The worst-case time complexity of Insert(i) and Delete(i) remains of O(log L), but the important
result derived in [60] is that the amortized space cost per update operation is O(1). Let us recall that the
total amortized space cost of a sequence of updates is an upper bound on the actual number of nodes created.

Let us now consider the context of history-based heuristics. Contrary to the popular usage of persistent
dynamic sets to search past versions at a specified time t, one is interested in checking whether a configuration
has already been encountered in the previous history of the search, at any iteration.

A convenient way of realizing a data structure supporting X-Search(X) is to combine hashing and
partially persistent dynamic sets, see Fig. 4. From a given configuration X an index into a “bucket array”
is obtained through a hashing function, with a possible incremental evaluation in time O(1). Collisions
are resolved through chaining: starting from each bucket header there is a linked list containing a pointer
to the appropriate root of the persistent red-black tree and satellite data needed by the search (time of
configuration, number of repetitions).

As soon as configuration X(t) is generated by the search dynamics, the corresponding persistent red-black
tree is updated through Insert(i) or Delete(i). Let us now describe X-Search(X(t)): the hashing value
is computed from X(t) and the appropriate bucket searched. For each item in the linked list the pointer to
the root of the past version of the tree is followed and the old set is compared with X(t). If the sets are
equal, a pointer to the item on the linked list is returned. Otherwise, after the entire list has been scanned
with no success, a null pointer is returned.

In the last case a new item is linked in the appropriate bucket with a pointer to the root of the live
version of the tree (X-Insert(X, t)). Otherwise, the last visit time t is updated and the repetition counter
is incremented.

After collecting the above cited complexity results, and assuming that the bucket array size is equal to
the maximum number of iterations executed in the entire search, it is straightforward to conclude that each
iteration of reactive-TS requires O(L) average-case time and O(1) amortized space for storing and retrieving
the past configurations and for establishing prohibitions.

2 REACTIVE SEARCH APPLIED TO TABU SEARCH (RTS) 8

(a) Ephemeral red-black tree

9

3 6

4

8

9

3

4

8

7

6

9

3

4

8

6

5 7

t = 0 t = 1 t = 2
(b) Persistent red-black tree with path copying

9

8

6

7

8

4

3 6

4 9

8

6

4

8 8

4

3 6

4

6

5 7

t = 1 t = 2
(c) Persistent red-black tree with limited node copying

t =1

9

3

4

8

7

6
t =1

=2t 9

3

4

8

6

5 7

6

t = 1 t = 2

Figure 3: How to obtain a partially persistent red-black tree from an ephemeral one (top), containing indices
3,4,6,8,9 at t=0, with subsequent insertion of 7 and 5. Path copying (middle), with thick lines marking
the copied part. Limited node copying (bottom) with dashed lines denoting the “extra” pointers with time
stamp.

repts repts

repts

repts

X (0)

X (1)

X (2)

X (3)

X (0)

X (2)
X (3)

X (1)

 hash()

 hash()

 hash()

 hash()

...

Figure 4: Open hashing scheme with persistent sets: a pointer to the appropriate root for configuration X(t)

in the persistent search tree is stored in a linked list at a “bucket”. Items on the list contain satellite data.
The index of the bucket array is calculated from the configuration through a hashing function.

3 WANTED: A THEORY OF HISTORY-SENSITIVE HEURISTICS 9

In fact, both the hash table and the persistent red-black tree require O(1) space (amortized for the tree).
The worst-case time complexity per iteration required to update the current X(t) is O(log L), the average-
case time for searching and updating the hashing table is O(1) (in detail, searches take time O(1 + α), α
being the load factor, in our case upper bounded by 1). The time is therefore dominated by that required
to compare the configuration X(t) with that obtained through X-Search(X(t)), i.e., O(L) in the worst
case. Because Ω(L) time is needed during the neighborhood evaluation to compute the f values, the above
complexity is optimal for the considered application to history-based heuristics.

3 Wanted: a theory of history-sensitive heuristics

Randomized Markovian local search algorithms have enjoyed a long period of scientific and applicative
excitement, in particular see the flourishing literature on Simulated Annealing [48, 44]. SA generates a
Markov chain: the successor of the current point is chosen stochastically, with a probability that does not
depend on the previous history (standard SA does not learn). A consequence is that the “trapping” of the
search trajectory in an attractor cannot be avoided: the system has no memory and cannot detect that
the search is localized. Incidentally, the often cited asymptotic convergence results of SA are unfortunately
irrelevant for the application of SA to optimization. In fact, repeated local search [31], and even random
search [23] has better asymptotic results.

History-sensitive techniques in local search contain an internal feedback loop that uses the information
derived from the past history to influence the future behavior. In the cited prohibition-based diversification
techniques one can, for example, decide to increase the diversification when configurations are encountered
again along the search trajectory [11, 10]. It is of interest that state-of-the-art versions of Simulated Annealing
incorporate “temporal memory” [33]. The non-Markovian property is a mixed blessing: it permits heuristic
results that are much better in many cases, but makes the theoretical analysis of the algorithm difficult.

Therefore one has an unfortunate chasm: on one side there is an abundance of mathematical results
derived from the theory of Markov processes, but their relevance to optimization is dubious, on the other
side there is mounting evidence that simple machine learning or history-sensitive schemes can augment the
performance of heuristics in a significant way, but the theoretical instruments to analyze history-sensitive
heuristics are lacking.

The practical success of history-sensitive techniques should motivate new search streams in Mathematics
and Computer Science for their theoretical foundation.

4 Applications of Reactive Search and the Maximum Clique ex-
ample

Reactive Search principles have been used for example for the problem of Quadratic Assignment [11], training
neural nets and control problems [14], vehicle-routing problems [24, 55, 21], structural acoustic control
problems [47], special-purpose VLSI realizations [2], graph partitioning [16], electric power distribution [66],
maximum satifiability [8], constraint satisfaction [9, 54], optimization of continuous functions [15, 22],
traffic grooming in optical networks [17], maximum clique [10], real-time dispatch of trams in storage yards
[69], increasing internet capacity [32]. Because of space limitation we consider with some detail only the
application to the maximum clique problem.

The Maximum Clique (MC) problem is NP-hard, and strong negative results have been shown about its
approximability [3, 25]. In particular, if P 6= NP, MC is not approximable within n1/4−ǫ for any ǫ > 0, n
being the number of nodes in the graph [19], and it is not approximable within n1−ǫ for any ǫ > 0, unless
coRP = NP [40].

These theoretical results stimulated a research effort to design efficient heuristics for this problem, and
computational experiments to demonstrate that optimal or close approximate values can be efficiently ob-
tained for significant families of graphs [45, 58].

In particular, a new reactive heuristic (Reactive Local Search or RLS) is proposed for the Maximum
Clique problem in [10]. The present description is a summarized version of the cited paper.

4 APPLICATIONS OF REACTIVE SEARCH AND THE MAXIMUM CLIQUE EXAMPLE 10

The experimental efficacy and efficiency [10] of RLS is strengthened by an analysis of the complexity
of a single iteration. It is possible to show that the worst-case cost is O(max{n, m}) where n and m are
the number of nodes and edges, respectively. In practice, the cost analysis is pessimistic and the measured
number of operations tends to be a small constant times the average degree of nodes in G, the complement
of the original graph.

4.1 Reactive Local Search for Max-Clique

The Reactive Local Search (RLS) algorithm for the maximum clique problem takes into account the particular
neighborhood structure of MC. This is reflected in the following two facts: a single reactive mechanism is
used to determine the prohibition parameter T , and an explicit restart scheme is added so that all possible
configurations will eventually be visited, even if the search space is not connected by using the basic local-
search moves. Both building blocks of RLS use the past history of the search (set of visited configurations)
to influence the choice.

The admissible search space X is the set of all cliques in a graph G defined over a vertex set V . Let
us recall that a clique is a subset X of V such that all pairs of nodes in X are connected by an edge. The
function to be maximized is the clique size f(X) = |X |, X being the current clique, and the neighborhood
M(X) consists of all cliques that can be obtained from X by adding or dropping a single vertex (add or drop

moves).
At a given iteration, the neighborhood set M(X) is partitioned into the set of prohibited neighbors and

the set of allowed ones. As soon as a vertex is moved (added or removed from the current clique), changing
its status is prohibited for the next T iterations; it is allowed otherwise. With a slight abuse of terminology,
the terms allowed and prohibited shall also be applied to vertices.

The top-level description of RLS is shown in Fig. 5. First (lines 2–5) the relevant variables and structures
are initialized: they are the iteration counter t, the prohibition period T , the time tT of the last change of
T , the last restart time tR, the current clique X , the largest clique Ib found so far with its size kb, and the
iteration tb at which it is found. The set S shall be used by function Best-Neighbor and contains the set of
eligible nodes to improve the current clique (initially, the current clique is empty, and no node is prohibited,
so all nodes in V are eligible); the role of array deltaS shall be explained in Section 4.1.1. Then the loop
(lines 6–15) continues to be executed until a satisfactory solution is found or a limiting number of iterations
is reached.

The function History-Reaction searches for the current clique X in memory, inserts it if it is a new
one, and adjusts the prohibition T through feedback from the previous history of the search.

Then the best neighbor is selected and the current clique updated (line 8). The iteration counter is
incremented. If a better solution is found, the new solution, its size and the time of the last improvement
are saved (lines 10–11). A restart is activated after a suitable number of iterations are executed from the
last improvement and from the last restart (lines 12–13).

The prohibition period T is equal to one at the beginning, because in this manner one avoids coming
back to the just abandoned clique. Nonetheless, let us note that RLS behaves exactly as local search in the
first phase, as long as only new vertices are added to the current clique X , and therefore prohibitions do not
have any effect. The difference starts when a maximal clique with respect to set inclusion is reached and the
first vertex is dropped.

4.1.1 Choice of the best neighbor

The function Best-Neighbor is described in Fig.6. Given a current clique X , let us define as S the vertex
set of possible additions, i.e., the vertices that are adjacent to all nodes of X . G(S) is the subgraph induced
by S. Finally, if j ∈ X , deltaS[j] is the number of vertices adjacent to all nodes of X but j. A vertex v is
prohibited at iteration t iff it satisfies lastMoved [v] ≥ (t − T (t)), where lastMoved[v] is the last iteration at
which it has been added to or dropped from the current clique. lastMoved is a vector used to determine the
allowed vertices, see lines 3 and 11.

The best neighbor is chosen in stages with this overall scheme: first an allowed vertex that can be added
to the current clique is searched for (lines 3–7). If none is found, an allowed vertex to drop is searched for

4 APPLICATIONS OF REACTIVE SEARCH AND THE MAXIMUM CLIQUE EXAMPLE 11

Global variables and data structures

t Time (iteration counter)
tT Time of last period change
S Nodes in V \X adjacent to all nodes

in X

deltaS[j] Nodes in V \S adjacent to all nodes
in X \ {j}

kb Cardinality of best configuration
lastMoved[v] Time of last movement concerning

node v

Local variables

T Prohibition period
tR Time of last restart
X Current configuration
Ib Best configuration
tb Time of best configuration

1. procedure Reactive-Local-Search

2. t ← 0 ; T ← 1 ; tT ← 0 ; tR ← 0
3. X ← ∅ ; Ib ← ∅ ; kb ← 0 ; tb ← 0
4. S ← V ; ∀j ∈ V deltaS [j] ← ∅
5. ∀j ∈ V lastMoved [j] ← −∞
6. repeat

7. T ← History-Reaction (X, T)
8. X ← Best-Neighbor (X)
9. t ← t + 1
10. if |X| > kb

11. Ib ← X ; kb ← |X| ; tb ← t

12. if t - max{tb,tR} > 100 kb

13. tR ← t ; Restart

14. until kb is acceptable
15. or maximum number of iterations reached

Figure 5: RLS Algorithm: Pseudo-Code Description.

Parameters

X Configuration to be changed

Local variables

type Type of move (addMove or
dropMove)

v Node to be added or removed

1. function Best-Neighbor (X)
2. type ← notFound

3. if {allowed nodes ∈ S} 6= ∅
4. type ← addMove

5. maxDegAllowed ← maximum degree in G(S)
6. v ← random allowed w ∈ S

7. with degG(S)(w) = maxDegAllowed

8. if type = notFound and X 6= ∅
9. type ← dropMove

10. if {allowed v ∈ X} 6= ∅
11. maxDeltaS ← maxallowedj∈X

deltaS[j]

12. v ← random allowed w ∈ X

13. with deltaS [w] = maxDeltaS

14. else
15. v ← random w ∈ X

16. if type = notFound

17. type ← addMove

18. v ← random w ∈ V

19. Incremental-Update (v, type)
20. if type = addMove return X ∪ {v}
21. else return X \ {v}

Figure 6: RLS Algorithm: the function Best-Neighbor.

4 APPLICATIONS OF REACTIVE SEARCH AND THE MAXIMUM CLIQUE EXAMPLE 12

(lines 10–13). Finally, if no allowed moves are available, a random vertex in X is dropped if X is not empty
(line 15), a random vertex in V is added in the opposite case (lines 16–18).

Ties among allowed vertices that can be added are broken by preferring the ones with the largest degree
in G(S) (line 7); a random selection is executed among vertices with equal degree in G(S).

Ties among allowed vertices that can be dropped are broken by preferring those causing the largest
increase |S(t+1)| − |S(t)| where S(t) is the set S at iteration t (line 13). Again, a random selection is then
executed if this criterion selects more that one winner.

4.1.2 Reaction and periodic restart

The function History-Reaction is illustrated in Fig. 7. The prohibition T is minimal at the beginning
(T = 1), and is then determined by two competing processes: T increases when the current clique comes
back to one already found, it decreases when no cliques are repeated in a suitable period. In detail: the
current clique X is searched in memory, by utilizing hashing techniques (line 1). If X is found, a reference Z
is returned to a data structure containing the last visit time (line 2). If the repetition interval R is sufficiently
short, cycles are discouraged by increasing T (lines 5-7). If X is not found, it is stored in memory with the
time t when it was encountered (line 9). If T remained constant for a number of iterations greater than 10kb,
and therefore no clique is repeated during this interval, it is decreased (lines 10-12). Increases and decreases,
with a minimal change of one unit plus upper and lower bounds, are realized by the two following functions:

Increase(T) = min{max{T · 1.1, T + 1}, n− 2}

Decrease(T) = max{min{T · 0.9, T − 1}, 1}

The routine Restart is similar to that in [61]. If there are vertices that have never been part of the
current clique during the search, i.e., that have never been moved since the beginning of the run, one of
them with maximal degree in V is randomly selected (lines 3-5 in Fig. 8). If all vertices have already been
members of X in the past, a random vertex in V is selected (line 7). Data structures are updated to reflect
the situation of X = ∅, then the incremental update is applied and the vertex v is added.

4.2 Complexity per iteration

The computational complexity of each iteration of RLS is the sum of a term caused by the usage and
updating of reaction-related structures and a term caused by the local search part: neighborhood evaluation
and generation of the next clique.

Let us first consider the reaction-related part. The overhead per iteration incurred to determine the
prohibitions is O(|M(X)|), M(X) being the neighborhood, that for updating the last usage time of the
chosen move is O(1), that to check for repetitions, and to update and store the new hashing value of the
current configuration has an average complexity of O(1), if an incremental hashing calculation is applied.

In our case the single-iteration RLS complexity is dominated by the neighborhood evaluation. This
evaluation requires an efficient update of the sets S and SMinus plus the computation of the degrees of the
vertices in the induced subgraph G(S) (used in function Best-Neighbor, Fig. 6, line 6). It is therefore
crucial to consider incremental algorithms, in an effort to reduce the complexity. In our algorithm, the
sets S and SMinus are maintained by the routine Incremental-Update that is used in the function
Best-Neighbor and in the procedure Restart. The limited space of this extended abstract force us to
omit the detailed description of Incremental-Update and of the related data structures. The following
theorem is proved in the full paper:

Theorem 1 The incremental algorithm for updating X, S and Sminus during each iteration of RLS has a

worst case complexity of O(n). In particular, if vertex v is added to or deleted from S, the required operations

are O(degG(v)).

Let us note that the actual multiplicative constant is very small and that the algorithm tends to be faster
for dense graphs where the average degree degG(v) in the complement graph can be much smaller than n.

Finally, the computation of the vertex degrees in the induced subgraph G(S) costs at most O(m) by the
following trivial algorithm. All the edges are inspected, if both end-points are in S, the corresponding degrees

5 RELATED REACTIVE APPROACHES 13

are incremented by 1. In practice the degree is not computed from scratch but it is updated incrementally
with a much lesser computational effort: in fact the maximum number of nodes that enter or leave S at
a given iteration is at most degG(v), v being the just moved vertex. Therefore the number of operations

performed is at most O(degG(v) · |S(t+1)|). Because the search aims at maximizing the clique X , the set S
tends to be very small (at some steps empty!) after a first transient period, and the dominant factor is the
same O(degG(v)) factor that appears in the above theorem.

Putting together all the complexity considerations the following Corollary is immediately implied:

Corollary 1 The worst-case complexity of a single iteration is O(max{n, m}).

Experimental results of RLS on the benchmark suite for the MC problem by the organizers of the Second
DIMACS Implementation Challenge [45], are analyzed in [10]

5 Related reactive approaches

Because Reactive Search is rooted in the automation of the algorithm tuning process by embodying the
typical experimental cycle followed by heuristic algorithm designers, it is not surprising to see related ideas
and principles arising in various areas. For space limitation we list in this section a limited selection of
interesting related papers.

Probabilistic methods that explicitly maintain statistics about the search space by creating models of the
good solutions found so far are considered for example in [59, 4].

Implicit models of the configuration space are built by a population of searchers in Genetic Algorithms,
where learning comes in the form of ”survival of the fittest” and generation of new sampling points depends
on the previous evolution, see for example [64]. The issue of controlling parameters of an evolutionary
algorithm, including adaptive and ”self-adaptive” techniques is considered in [30], while fitness landscape
analysis for the choice of appropriate operators in ”memetic” algorithms (combining genetic algorithms with
local search) is considered in [52].

In the area of stochastic optimization, which considers noise in the evaluation process, memory based
schemes for validation and tuning of function approximators are used in [53, 29].

Guided local search aims at exploiting the problem and search-related information to effectively guide
local search heuristics [68]. Evaluation functions for global optimization and Boolean satisfiability are learnt
in [20].

Learning mechanisms with biological motivations are used in Ant Colony Optimization based on feedback,
distributed computation, and the use of a constructive greedy heuristic. For example ”pheromone trail”
information to perform modifications on solutions for the quadratic assignment problem is considered in
[27, 34].

Dynamic local search, which increases penalties of some solution components to move the tentative
solution away from a given local minimum can also be considered as a form of learning based on the previous
history of the search. An example is the dynamic local search algorithm on the MAXSAT problem in [43],
see also [42] for additional references about stochastic local search methods including adaptive versions.

In the area of computer systems management, ”autonomic” systems are based on self-regulating biolog-
ical systems (http://www.research.ibm.com/autonomic/) which have many points of contact with Reactive
Search.

References

[1] E. H. L. Aarts, J.H.M. Korst, and P.J. Zwietering, Deterministic and randomized local search, Mathe-
matical Perspectives on Neural Networks (M. Mozer P. Smolensky and D. Rumelhart, eds.), Lawrence
Erlbaum Publishers, Hillsdale, NJ, 1995.

[2] G. Anzellotti, R. Battiti, I. Lazzizzera, G. Soncini, A. Zorat, A. Sartori, G. Tecchiolli, and P. Lee,
TOTEM: a highly parallel chip for triggering applications with inductive learning based on the reactive

tabu search, International Journal of Modern Physics C 6 (1995), no. 4, 555–560, Postscript available
at http://rtm.science.unitn.it/˜battiti/battiti-publications.html.

REFERENCES 14

[3] G. Ausiello, P. Crescenzi, and M. Protasi, Approximate solution of NP optimization problems, Theoret-
ical Computer Science 150 (1995), 1–55.

[4] S. Baluja and S. Davies, Using optimal dependency trees for combinatorial optimization: Learning

the structure of the search space, Proceedings of the Fourteenth International Conference on Machine
Learning (San Mateo, CA.) (D.H. Fisher, ed.), Morgan Kaufmann Publishers, 1997, pp. 30–38.

[5] R. S. Barr, B. L. Golden, J. P. Kelly, M. G. C. Resende, and W. Stewart, Designing and reporting on

computational experiments with heuristic methods, Journal of Heuristics 1 (1995), no. 1, 9–32.

[6] R. Battiti, Time- and space-efficient data structures for history-based heuristics, Tech. Report UTM-
96-478, Dip. di Matematica, Univ. di Trento, 1996.

[7] , Partially persistent dynamic sets for history-sensitive heuristics, Data Structures, Near Neigh-
bor Searches, and Methodology: Fifth and Sixth DIMACS Challenges (D. S. Johnson M. H. Goldwasser
and C.C. McGeoch, eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
vol. 59, American Mathematical Society, 2002, pp. 1–21.

[8] R. Battiti and M. Protasi, Reactive search, a history-sensitive heuristic for MAX-SAT, ACM Journal
of Experimental Algorithmics 2 (1997), no. ARTICLE 2, http://www.jea.acm.org/.

[9] , Reactive local search techniques for the maximum k-conjunctive constraint satisfaction problem,
Discrete Applied Mathematics 96-97 (1999), 3–27.

[10] , Reactive local search for the maximum clique problem, Algorithmica 29 (2001), no. 4, 610–637.

[11] R. Battiti and G. Tecchiolli, The reactive tabu search, ORSA Journal on Computing 6 (1994), no. 2,
126–140, Postscript available at http://rtm.science.unitn.it/˜battiti/battiti-publications.html.

[12] , Simulated annealing and tabu search in the long run: a comparison on QAP tasks,
Computer and Mathematics with Applications 28 (1994), no. 6, 1–8, Postscript available at
http://rtm.science.unitn.it/˜battiti/battiti-publications.html.

[13] , Local search with memory: Benchmarking RTS, Operations Research Spektrum 17 (1995),
no. 2/3, 67–86, Postscript available at http://rtm.science.unitn.it/˜battiti/battiti-publications.html.

[14] , Training neural nets with the reactive tabu search, IEEE Transactions on Neural Net-
works 6 (1995), no. 5, 1185–1200, Postscript available at http://rtm.science.unitn.it/˜battiti/battiti-
publications.html.

[15] , The continuous reactive tabu search: blending combinatorial optimization and stochastic

search for global optimization, Annals of Operations Research – Metaheuristics in Combinatorial
Optimization 63 (1996), 153–188, Postscript available at http://rtm.science.unitn.it/˜battiti/battiti-
publications.html.

[16] Roberto Battiti and Alan Albert Bertossi, Greedy, prohibition, and reactive heuristics for graph parti-

tioning, IEEE Transactions on Computers 48 (1999), no. 4, 361–385.

[17] Roberto Battiti and Mauro Brunato, Reactive search for traffic grooming in WDM networks, Evolution-
ary Trends of the Internet, IWDC2001, Taormina (S. Palazzo, ed.), Lecture Notes in Computer Science
LNCS 2170, Springer-Verlag, September 2001, pp. 56–66.

[18] R. Bayer, Symmetric binary B-trees: Data structure and maintenance algorithms, Acta Informatica 1

(1972), 290–306.

[19] M. Bellare, O. Goldreich, and M. Sudan, Free bits, PCP and non-approximability — towards tight

results, Proc. 36th Ann. IEEE Symp. on Foundations of Comput. Sci., IEEE Computer Society, 1995,
pp. 422–431.

REFERENCES 15

[20] J. A. Boyan and A. W. Moore, Learning evaluation functions for global optimization and boolean sat-

isfability, In Proc. of 15th National Conf. on Artificial Intelligence (AAAI) (AAAI Press, ed.), 1998,
pp. 3–10.

[21] Olli Brysy, A reactive variable neighborhood search for the vehicle-routing problem with time windows,
INFORMS Journal on Computing 15 (2003), no. 4, 347–368.

[22] Rachid Chelouah and Patrick Siarry, Tabu search applied to global optimization, European Journal of
Operational Research 123 (2000), 256–270.

[23] T.-S. Chiang and Y. Chow, On the convergence rate of annealing processes, SIAM Journal on Control
and Optimization 26 (1988), no. 6, 1455–1470.

[24] W.C. Chiang and R.A. Russell, A reactive tabu search metaheuristic for the vehicle routing problem

with time windows, INFORMS Journal on Computing 9 (1997), 417–430.

[25] P. Crescenzi and V. Kann, A compendium of NP optimization problems, Tech. report, 1996, electronic
notes: http://www.nada.kth.se/˜viggo/problemlist/compendium.html.

[26] F. Dammeyer and S. Voss, Dynamic tabu list management using the reverse elimination method, Annals
of Operations Research 41 (1993), 31–46.

[27] M. Dorigo, V. Maniezzo, and A. Colorni, Ant system: optimization by a colony of cooperating agents,
IEEE Transactions on Systems, Man and Cybernetics, Part B 26 (1996), no. 1, 29–41.

[28] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, Making data structures persistent, Proceedings
of the 18th Annual ACM Symposium on Theory of Computing (Berkeley, CA), ACM, May 28-30 1986.

[29] Artur Dubrawski and Jeff Schneider, Memory based stochastic optimization for validation and tuning

of function approximators, Conference on AI and Statistics, 1997.

[30] A.E. Eiben, R. Hinterding, and Z. Michalewicz, Parameter control in evolutionary algorithms, IEEE
Transactions on Evolutionary Computation 3 (1999), no. 2, 124–141.

[31] A.G. Ferreira and J. Zerovnik, Bounding the probability of success of stochastic methods for global

optimization, Computers Math. Applic. 25 (1993), 1–8.

[32] Bernard Fortz and Mikkel Thorup, Increasing internet capacity using local search, Computational Op-
timization and Applications 29 (2004), no. 1, 13–48.

[33] Bennet L. Fox, Simulated annealing: Folklore, facts, and directions, Monte Carlo and Quasi-Monte
Carlo Methods in Scientific Computing (H. Niederreiter and P. J.-S. Shiue, eds.), Springer-Verlag, 1995.

[34] L. M. Gambardella, E. D. Taillard, and M. Dorigo, Ant colonies for the quadratic assignment problem,
Journal of the Operational Research Society 50 (1999), no. 2, 167–176.

[35] F. Glover, Tabu search - part i, ORSA Journal on Computing 1 (1989), no. 3, 190–260.

[36] , Tabu search - part ii, ORSA Journal on Computing 2 (1990), no. 1, 4–32.

[37] , Tabu search: Improved solution alternatives, Mathematical Programming, State of the Art
(J. R. Birge and K. G. Murty, eds.), The Univ. of Michigan, 1994, pp. 64–92.

[38] L. J. Guibas and R. Sedgewick, A dichromatic framework for balanced trees, Proc. of the 19th Ann.
Symp. on Foundations of Computer Science, IEEE Computer Society, 1978, pp. 8–21.

[39] P. Hansen and B. Jaumard, Algorithms for the maximum satisfiability problem, Computing 44 (1990),
279–303.

[40] J. Hastad, Clique is hard to approximate within n1−ǫ, Proc. 37th Annual Symposium on Foundations
of Computer Science, IEEE Computer Society, 1996, pp. 627–636.

REFERENCES 16

[41] J.N. Hooker, Testing heuristics: We have it all wrong, Journal of Heuristics 1 (1995), no. 1, 33–42.

[42] H. H. Hoos and T. Stuetzle, Stochastic local search: Foundations and applications, Morgan Kaufmann,
2005.

[43] F. Hutter, D.A.D. Tompkins, and H.H. Hoos, Scaling and probabilistic smoothing: Efficient dynamic

local search for SAT, Proc. CP-02, LNCS, vol. 2470, Springer Verlag, 2002, pp. 233–248.

[44] D. S. Johnson, C. R. Aragon, L.A. McGeoch, and C. Schevon, Optimization by simulated annealing:

an experimental evaluation; part ii, graph coloring and number partitioning, Operations Research 39

(1991), no. 3, 378–406.

[45] D.S. Johnson and M. Trick (Eds.), Cliques, coloring, and satisfiability: Second DIMACS implementa-

tion challenge, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26,
American Mathematical Society, 1996.

[46] M. J. Kearns and U. V. Vazirani, An introduction to computational learning theory, The MIT Press,
Cambridge, Massachusetts, 1994.

[47] Rex K. Kincaid and Keith E. Laba1, Reactive tabu search and sensor selection in active structural

acoustic control problems, Journal of Heuristics 4 (1998), no. 3, 199–220.

[48] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, Optimization by simulated annealing, Science 220

(1983), 671–680.

[49] S. Lin, Computer solutions of the travelling salesman problems, Bell Systems Technical J. 44 (1965),
no. 10, 2245–69.

[50] D. Maier and S. C. Salveter, Hysterical B-trees, Information Processing Letters 12 (1981), no. 4, 199–
202.

[51] Catherine C. McGeoch, Toward an experimental method for algorithm simulation, INFORMS Journal
on Computing 8 (1996), no. 1, 1–28.

[52] P. Merz and B. Freisleben, Fitness landscape analysis and memetic algorithms for the quadratic assign-

ment problem, IEEE Transactions on Evolutionary Computation 4 (2000), no. 4, 337–352.

[53] Andrew W. Moore and Jeff Schneider, Memory-based stochastic optimization, Advances in Neural In-
formation Processing Systems (David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo, eds.),
vol. 8, The MIT Press, 1996, pp. 1066–1072.

[54] K. Nonobe and T. Ibaraki, A tabu search approach for the constraint satisfaction problem as a general

problem solver, European Journal of Operational Research (1998), no. 106, 599–623.

[55] Ibrahim H. Osman and Niaz A. Wassan, A reactive tabu search meta-heuristic for the vehicle routing

problem with back-hauls, Journal of Scheduling 5 (2002), no. 4, 287–305.

[56] M. H. Overmars, Searching in the past ii: general transforms, Tech. report, Dept. of Computer Science,
Univ. of Utrecht, Utrecht, The Netherlands, 1981.

[57] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization, algorithms and complexity, Prentice-
Hall, NJ, 1982.

[58] P. M. Pardalos and J. Xu, The maximum clique problem, Journal of Global Optimization 4 (1994),
301–328.

[59] M. Pelikan, D.E. Goldberg, and F. Lobo, A survey of optimization by building and using probabilistic

models, Computational Optimization and Applications 21 (2002), no. 1, 5–20.

[60] N. Sarnak and R. E. Tarjan, Planar point location using persistent search trees, Communications of the
ACM 29 (1986), no. 7, 669–679.

REFERENCES 17

[61] P. Soriano and M. Gendreau, Tabu search algorithms for the maximum clique problem, Tech. Report
CRT-968, Centre de Recherche sur les Transports, Universite de Montreal, Canada, 1994.

[62] K. Steiglitz and P. Weiner, Algorithms for computer solution of the traveling salesman problem, Pro-
ceedings of the Sixth Allerton Conf. on Circuit and System Theory, Urbana, Illinois, IEEE, 1968,
pp. 814–821.

[63] P. N. Strenski and Scott Kirkpatrick, Analysis of finite length annealing schedules, Algorithmica 6

(1991), 346–366.

[64] G. Syswerda, Simulated crossover in genetic algorithms, Foundations of Genetic Algorithms (D.L. Whit-
ley, ed.), Morgan Kaufmann Publishers, San Mateo, CA, 1993, pp. 239–255.

[65] R. E. Tarjan, Updating a balanced search tree in O(1) rotations, Information Processing Letters 16

(1983), 253–257.

[66] Sakae Toune, Hiroyuki Fudo, Takamu Genji, Yoshikazu Fukuyama, and Yosuke Nakanishi, Comparative

study of modern heuristic algorithms to service restoration in distribution systems, IEEE TRANSAC-
TIONS ON POWER DELIVERY 17 (2002), no. 1, 173–181.

[67] L. G. Valiant, A theory of the learnable, Communications of the ACM 27 (1984), no. 11, 1134–1142.

[68] Christos Voudouris and Edward Tsang, Guided local search and its application to the traveling salesman

problem, European Journal of Operational Research 113 (1999), 469–499.

[69] T. Winter and U. Zimmermann, Real-time dispatch of trams in storage yards, Annals of Operations
Research (2000), no. 96, 287–315.

[70] D. L. Woodruff and E. Zemel, Hashing vectors for tabu search, Annals of Operations Research 41 (1993),
123–138.

REFERENCES 18

Local variables

Z Hash item (or pointer)
lastVisit[Z] Time of last visit of item Z

R Time since last visit

1. function History-Reaction (X, T)
2. Z ← Hash-Search (X)
3. if Z 6= null

4. R ← t - lastVisit [Z]
5. lastVisit [Z] ← t

6. if R < 2(n-1)
7. tT ← t

8. return Increase(T)
9. else

10. Hash-Insert (X, t)
11. if t - tT > 10 kb

12. tT ← t

13. return Decrease(T)
14. return T

Figure 7: RLS Algorithm: routine History-Reaction.

Local variables

L Nodes in V not moved yet

1. procedure Restart

2. T ← 1 ; tT ← t

3. if ∃v ∈ V (lastMoved[v] = −∞)
4. L ← {w ∈ V : lastMoved [v] = −∞}
5. v ← random vertex with maximum degG(V)(v) in L

6. else

7. v ← random vertex ∈ V

8. relevant data structures are reinitialized
9. Incremental-Update (v, addMove)
10. X ← {v}

Figure 8: RLS Algorithm: routine Restart.

