
1

Technical report DIT-02-0086, Università di Trento, October 2002
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Email: battiti|brunato|villani@dit.unitn.it

Abstract— In this paper, techniques and algorithms developed
in the framework of statistical learning theory are analyzed and
applied to the problem of determining the location of a wireless de-
vice by measuring the signal strengths from a set of access points
(location fingerprinting). Statistical Learning Theory provides a
rich theoretical basis for the development of models starting from
a set of examples. Signal strength measurement is part of the nor-
mal operating mode of wireless equipment, in particular Wi-Fi, so
that no custom hardware is required.

The proposed techniques, based on the Support Vector Machine
paradigm, have been implemented and compared, on the same
data set, with other approaches considered in the literature. Tests
performed in a real-world environment show that results are com-
parable, with the advantage of a low algorithmic complexity in
the normal operating phase. Moreover, the algorithm is partic-
ularly suitable for classification, where it outperforms the other
techniques1.

Index Terms— Context-aware computing, Location manage-
ment, Wi-Fi, Mobile computing, Statistical learning theory

I. INTRODUCTION

CONTEXT-AWARE computing, also known as sentient
computing, refers to all techniques by which an electronic

device may obtain information about the context in which it op-
erates, and to applications that take advantage of this informa-
tion. The word context refers both to physical world data (po-
sition, time, weather conditions) and to more abstract notions,
such as distinction between work and leisure environments.

In mobile computing systems, where wireless networking
is used to distribute contents and services to mobile users, a
significant and useful piece of context information is location.
Knowledge about the user’s position has many applications in
civil, commercial, military and emergency environments, from
helping a tourist through a town to advertising a restaurant to
nearby people who are looking for a meal. Additional context
information, such as weather or traffic conditions, can be in-
ferred from location.

1This research is partially supported by the Province of Trento (Italy) in
the framework of the WILMA (Wireless Internet and Location Management)
project (http://www.wilmaproject.org/)

An important research target for context-aware applications
is the Wireless Ethernet standard IEEE802.11b, also known
with the more business-friendly name of “Wi-Fi” (Wireless
Fidelity). A Wi-Fi network is characterized by a number of
base stations, also called access points, placed throughout the
networked environment and connected to the traditional wired
LAN. Each station has a range of roughly 300m in open space,
and interference between different stations is dealt with by us-
ing different channels and by a CSMA/CA access protocol. De-
vices are connected by Wi-Fi cards that typically communicate
with the access point having the strongest signal. Roaming be-
tween access points is supported, and Wi-Fi networks can be
extended to create “clouds of connectivity” inside the so-called
hotspots, i.e. locations with high connection frequency such as
office buildings or even the center of a town.

To detect the position of a device, the intrinsic properties of
wireless networks can be used, namely their use of radio signals
[1], [2], [3], [4], [5]. Propagation of radio signals is complex,
and in most real-world cases the intensity of a radio signal at a
given point can only be obtained by measurements, and it usu-
ally varies with time due to many independent causes. For this
reason, the functional dependence between the signal strength
from a number of radio points and the physical position is not
deterministic, but a statistical law connecting signal strength
and position can be investigated. In this paper a new application
of a learning machine is proposed and tested for determining the
location of a wireless device by using the intensity of the signal
received from wireless access point stations in a Wi-Fi network.

This paper is organized as follows. Section II briefly reports
previous work on location awareness and currently available
implementations. Section III lists the assumptions on available
user hardware and user requirements that are at the basis of
the present work. Section IV describes the Statistical learning
Theory approach and proposes the technique of Support Vec-
tor Machines. Section V briefly describes other approaches that
have been implemented by the authors, and that are used for
comparison in Section VI, where they are tested, benchmarked
and discussed. Finally, conclusions are drawn in Section VII.
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II. PREVIOUS WORK

Various technologies are being proposed to determine loca-
tion of users in various contexts. They can be separated into
two different branches, depending on whether they are assisted
by dedicated hardware or not.

In the first branch, satellite-aided systems like GPS and
GLONASS are the most widespread for open-space geoloca-
tion. Other techniques targeted at in-building environments
make use of infrared (Active Badge [6], [7]) of ultrasound (Ac-
tive Bat by AT&T [8], [9], Cricket [10]), or of radio signals
that activate transponders attached to the item that must be lo-
cated (3D-iD by PinPoint Corp. [11]). The SpotON project in
Washington University [12] could perform 3D location by us-
ing RFIDeas’ AIR ID badge recognition system.

In the second branch, the properties of the communications
medium are exploited. In particular, systems based on common
radio communications technologies such as Wi-Fi and cellular
telephony are being actively studied and developed by various
research groups. The RADAR location system by Microsoft
Research [1] relies on the Wi-Fi technology and calculates the
position of a device either by empirical methods (based on com-
parison with previous measurements) or by signal propagation
modeling. Bayesian inference models and other probabilistic
approaches are being used both for Wi-Fi products [2], [3] and
for GSM telephone networks [13].

Previous work of our research group is mainly focused on the
use of neural networks [4], on radio propagation model estima-
tion and on classical statistical models [5].

III. SYSTEM REQUIREMENTS AND CAPABILITIES

In order to allow a widespread use of our system, restrictive
assumptions are made on the type of information that the mo-
bile equipment can exchange with the environment.

In particular, all information gathering targeted at location
estimation should be passive: measurements should not re-
quire the active participation of the fixed infrastructure, but they
should be performed during its normal operation, so that the
system can work along with any type of firewalling and restric-
tive policy imposed by system administrators. Another reason
for using passive measurements is to avoid burdening the sys-
tem with additional functions.

Moreover, the mobile equipment and the network infrastruc-
ture are composed by off-the-shelf hardware, with no additional
equipment. This choice allows significant cost reduction with
respect to dedicated architectures. An important corollary is
that all location-specific functions can be implemented by soft-
ware, if possible at middleware/application level. However, sig-
nal level measures must be read from the hardware through ap-
propriate functions of the dedicated driver, so in some cases
low-level or kernel-level software modifications are required.

From the user’s point of view, the location detection software
needs to be trained as fast as possible: the example collection
phase, to be performed when first entering a new environment,
must not require a long training phase, and as little knowledge
as possible should be required about the environment. For ex-
ample, the software should be able to operate on a user sketch.
However, location estimation can also be considered as a ser-
vice provided by the network manager, so that this requirement

is not so strict. For instance, the network may offer to the user
a digital map and the parameters of the trained location discov-
ery system. In this case, training is done once by the network
owner, and an accurate measurement and training process can
take place.

IV. STATISTICAL LEARNING THEORY

While a functional dependency of physical coordinates from
received signal strengths does not exist (the same radio mea-
surements could be received in two different locations, while in
the same location different values can be detected in two subse-
quent measurements), a statistical relation can be investigated.

The search for a statistical dependency starts with data col-
lection, where signal strengths from all access points are mon-
itored from a set of known physical positions. Let us call L
the set of location informations, i.e. the space of tuples repre-
senting information about physical location. Two cases shall be
considered.

a) Regression problem: location data can be expressed as
a d-uple of real coordinates where d, the dimension of physical
space, may vary from 1 (e.g. position along a corridor) to 5
(position in three-dimensional space and orientation expressed
in spherical coordinates); in this case, L = R

d.
b) Decision or classification problem: location data is

a single variable from a two-valued set, usually {−1, 1}, the
values meaning “outside” and “inside” a given area; in this case,
d = 1 and L = {−1, 1}.

In both cases, r independent radio access points are located
in the working area and send continuous beaconing signals. In
this paper, as can be seen in Section VI-A, both problems are
considered; in particular, d = 2 in the regression problem (lo-
cation on a planar map) and r = 6 (6 access points are being
used).

The collected data can be seen as a sequence of ` tuples, each
tuple representing the measurement of all radio signals from a
single location:

(y1, x1), . . . , (y`, x`) ∈ L × R
r,

where x represents the radio component, and y the spatial com-
ponent of the measurement. This set of tuples shall be called
the training set.

A. Classical learning theory

The purpose of statistical learning theory is to investigate the
probabilistic dependency of a random variable Y from a ran-
dom variable X , by inferring as much information as possible
from the training set. In a general way, this amounts to looking
for the unknown conditional probability distribution P (y|x). In
most practical cases, the target of the investigation is the func-
tional dependency of the expected value for Y from x.

E(Y |X = x) =

∫

DY

χP (χ|x)dχ,

where DY is the domain of the random variable Y , i.e. its value
set. Usually, an approximation can be identified within a large
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family of functions of the form y = fλ(x), where λ ∈ Λ is an
abstract parameter, in some cases a real vector. The parametric
set of function H = (fλ)λ∈Λ is usually called the hypothesis
space.

A measure of how much a function result differs from the
experimental value is called a loss function L(y, fλ(x)). The
choice of the loss function influences the metric of the problem,
and different results can be expected with different choices of
L. In the regression problem, examples for L are the absolute
value of the difference, or its square; for classification, a simple
expression for L is:

L(y, fλ(x)) =

{

0 if y = fλ(x)

1 otherwise .

Once the loss function L is given, its expected value is called
the risk functional:

R(λ) =

∫

Rr×L

L(y, fλ(x))P (y, x)dxdy, (1)

where P (y, x) is the joint probability distribution of x and y.
While this probability distribution is unknown, the training set
can be used to approximate the true risk functional (1) through
its empirical version:

Remp(λ) =
1

n

n
∑

i=1

L(yi, fλ(xi)). (2)

The Empirical Risk Minimization Principle is the foundation
of the classical Fisher paradigm, that gives rise, for example,
to Least Squares and Maximum Likelihood estimators. These
methods suffer from the fact that the distribution shape, or the
functional dependence, must be known in advance, so that only
a small number of parameters must be determined. Moreover,
although consistency results are proved, a large number of train-
ing tuples must be provided to have a valid estimate.

However, empirical risk minimization does not always en-
sure such approximation; an example of this possible diver-
gence is the following “learning” algorithm:

Store all training set elements (yi, xi)i=1,...,`.
When asked for a given x

∗, if x
∗ = xi for

some i, then answer yi; otherwise answer 0.
(3)

If training tuples are injective, then this machine trivially re-
duces the empirical risk functional to 0 by learning to respond
to training examples; however, it does not even approximate the
problem of the risk functional minimization, unless all possible
tuples are given in the training set (which is obviously impos-
sible in case of infinite sets of values). In other words, this
machine does not generalize.

Thus, there is no a priori relation between the risk functional
value and its empirical counterpart.

B. A general approach: structural risk minimization

To state a relation between the empirical risk functional and
the actual risk, upper bounds can be found by generalizing the

learning paradigm and introducing the structural risk minimiza-
tion concept.

Consider a chain of hypothesis spaces on a fixed parameter
space Λ

H1 ⊂ H2 ⊂ · · · ⊂ Hk ⊂ . . . , (4)

where Hi = (f i
λ)λ∈Λ; a learning machine on this space is an

algorithm that takes as input the sequence of ` training tuples,
and outputs an index k̂ and a value for the abstract parameter
λ̂; in other words, the learning machine chooses a particular
function f k̂

λ̂
based on the training set. This definition includes

all classical inference methods, where the chain (4) consists of
a single hypothesis space and Λ is the set of parameters of the
function family.

Vapnik [14] shows that there is a function Φ(·, ·) such that,
given a hypothesis space H and an arbitrarily small probability
η, it is possible to determine a constant h so that, however small
the probability η is, the bound

R(λ) ≤ Remp(λ) + Φ

(

`

h
,
ln η

`

)

(5)

is valid with probability 1 − η. The rightmost term
Φ(`/h, ln η/`) is the amplitude of the confidence interval, and
for every value of the probability parameter it has the following
properties:

lim
t→0+

Φ(t, ·) = +∞, lim
t→+∞

Φ(t, ·) = 0.

The constant h is called the Vapnik-Chervonenkis dimension
(VC-dimension for short) of the function set. When considering
classification problems (so that the hypothesis space is a set of
indicator functions), the VC-dimension of a hypothesis space
is the largest number h of examples that can be shattered, i.e.
separated in all 2h ways, by the functions in the set, and it has
the property that if H ⊂ K, then their VC-dimensions maintain
the same order: h(H) ≤ h(K). Thus, h measures the ability
of a function set to arbitrarily discriminate examples. A proper
generalization exists for the general regression problem.

The bound (5) reflects the fact that even if the empirical risk
can be reduced, assumptions on the value of the actual risk
(and, accordingly, on the generalization properties of the ma-
chine) can only be made after a careful selection of the hypoth-
esis space. For example, the VC-dimension of the hypothesis
space defined by algorithm (3) is h = +∞ (given the learning
technique, any finite set of points can be discriminated in all
possible ways), so no upper bound holds.

A learning machine is said to implement the Structural Risk
Minimization principle (SRM) if both summands in the right-
hand side of bound (5), i.e. the empirical risk and the confi-
dence interval amplitude, are controlled by appropriate choice
of the hypothesis space H and of the parameter λ.

C. Optimal separating hyperplanes

In the following we shall consider a classification problem,
where tuples are in the form (y, x) ∈ {−1, +1} × R

r. The
training set S = {(yi, xi)|i = 1, . . . , `} is linearly separable if
there is a hyperplane in R

r separating all xi such that yi = +1
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from all xi such that yi = −1. In mathematical terms, there
exists a vector w ∈ R

r and a constant b ∈ R such that, for
every i = 1, . . . , ` yi has the same sign of w · xi + b:

∀i = 1, . . . , ` yi(w · xi) + b > 0.

The separating hyperplane has equation w · x + b = 0, and in
general it is not unique; however, it is said to be optimal if it has
the largest possible distance from the training set (i.e. from the
closest training point).

Every separating hyperplane is determined by the vector w
and the constant b; this representation is unique modulo a
nonzero multiplicative factor. A unique canonical form can be
defined by requiring the condition

min
i=1,...,`

|w · xi + b| = 1.

Thus, finding the canonical hyperplane can be reduced to the
following quadratic programming problem:

Minimizew,b

1

2
‖w‖2

subject to yi(w · xi + b) ≥ 1, i = 1, . . . , `.
(6)

In this case the hypothesis space is the set of indicators dis-
criminated by hyperplanes:

H = {sign(w · x + b)|(w, b) ∈ Λ} ,

and the parameter set is

Λ = {(w, b)|w ∈ R
r, b ∈ R}.

The optimal separating hyperplane problem (6) can be solved
by finding the saddle point (minimal with respect to w and b,
maximal with respect to αi) of the Lagrange functional

L(w, b, α) =
1

2
‖w‖2 −

∑̀

i=1

αi (yi(x · w + b) − 1) , (7)

where the αi are the (positive) Lagrange multipliers. Let
(w∗, b∗, α∗) the saddle point.

We call support vectors those training vectors for which the
constraint in (6) holds as an equality. These correspond to the
nonzero α∗

i multipliers. Support vectors are the only vectors
necessary to define the hyperplane:

w∗ =
∑

i:α∗i 6=0

yiα
∗
i xi.

Therefore the optimal hyperplane has equation

∑

i:α∗
i
6=0

yiα
∗
i xi · x − b∗ = 0. (8)

An important theorem, defining a bound on the VC dimen-
sion of the canonical hyperplanes hypothesis space, is the fol-
lowing:

Theorem 1: Let R be the radius of a circle containing all
points in the training set, and let A be an upper bound on ‖w‖.

Then the VC-dimension h of the hypothesis space is bounded
by

h ≤ min{dR2A2e, r} + 1.

To take advantage of this result, a new constraint

w · w ≤ cr (9)

must be added to the optimization problem (6). Moreover, the
whole concept can be extended to non-separable training sets
if non-negative variables ξi are introduced so that hyperplane
constraints become

yi(w · xi + b) ≥ 1 − ξi

and the cost functional takes errors into account. The problem
becomes:

Minimizew,b

1

2
‖w‖2 + C

(

∑̀

i=1

ξi

)

subject to











yi(w · xi + b) ≥ 1 − ξi i = 1, . . . , `

ξi ≥ 0 i = 1, . . . , `

‖w‖2 ≤ cr,

(10)

where C > 0 and cr > 0 are given constants.

D. Support vector machines

Of course, a linear separating function, however generalized
with an error minimization term, is far too restrictive for most
real-world problems. The idea of the Support Vector Machine
(SVM) is to map the input vectors into a feature space with a
higher number of dimensions, and to find an optimal separat-
ing hyperplane in the feature space. For example, points in a
two-dimensional space (x1, x2) ∈ R

2 may be mapped into the
5-dimensional space (x1, x2, x1x2, x

2
1, x

2
2) ∈ R

5; a separating
hyperplane in this larger space will correspond to a conic sepa-
rator in R

2.
The optimal separating hyperplane in the feature space need

not be described explicitly [15]. In fact, from equation (8), as
well as from its generalization to non-separable data (not shown
in this paper for simplicity), all we need to do is to calculate dot
products of vector transforms, which amounts to general inner
products K(·, ·) in R

r.
The inner product K(·, ·) is a convolution of the canonical

inner product in the feature space, and it is called the kernel of
the SVM. Common kernels for use in a SVM are the follow-
ing.

1) Dot product: K(x, y) = x · y; in this case no mapping is
performed, and only the optimal separating hyperplane is
calculated.

2) Polynomial functions: K(x, y) = (x · y + 1)d, where the
degree d is given.

3) Radial basis functions (RBF): K(x, y) = e−γ‖x−y‖2

with parameter γ.
4) Sigmoid (or neural) kernel: K(x, y) = tanh(ax · y + b)

with parameters a and b.

5) ANOVA kernel: K(x, y) =
(
∑r

i=1 e−γ(xi−yi)
)d

, with
parameters γ and d.
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However, when ` becomes large the quadratic optimization
problem requires a `× ` matrix for its formulation, so it rapidly
becomes an unpractical approach as the training set size grows.
In 1997 Osuna, Freund and Girosi [16] introduced a decom-
position method where the optimization problem is split in an
active and an inactive set. Later, Joachims [17] introduced effi-
cient methods to select the working set and to reduce the prob-
lem by taking advantage of the small number of support vectors
with respect to the total number of training points.

E. Support vector machines for regression

A modification of optimization problem (10) suitable for re-
gression purposes can be obtained if the optimal separating hy-
perplane is not used as an indicator function (through the sign
function), but directly: in this case the hypothesis space is the
set of functions

H = {w · x + b|(w, b) ∈ Λ},

Λ = {(w, b)|w ∈ R
r, b ∈ R}.

In order to disregard small discrepancies, the empirical risk
functional must be calculated for an ε-insensitive loss function:

Lε(y, fλ(x)) = max{ε, |y − fλ(x)|},

where the loss is equal to ε whenever the discrepancy between
the expected and the computed value are less than ε itself.

Last, as in the previous case, reduction of the VC-dimension
is attained by forcing constraint (9). Under this constraint we
want to minimize the empirical risk functional

Remp(w, b) =
1

`

∑̀

i=1

Lε(yi, xi · w + b),

and this is equivalent to solving the following optimization
problem:

Minimizew,b

1

2
‖w‖2 + C

(

∑̀

i=1

ξ∗i +
∑̀

i=1

ξi

)

subject to































yi − w · xi − b ≤ ε − ξ∗i i = 1, . . . , `

w · xi + b − yi ≤ ε − ξi i = 1, . . . , `

ξ∗i ≥ 0 i = 1, . . . , `

ξi ≥ 0 i = 1, . . . , `

‖w‖2 ≤ cr,
(11)

where the slack variables ξi and ξ∗i for handling positive and
negative discrepancies have been introduced.

Support Vector Machines are being successfully used for pat-
tern recognition [14], [18], classification of text and of web
pages [19].

V. OTHER APPROACHES

To effectively evaluate the statistical learning approach, other
techniques have been selected from the literature and imple-
mented.

In the following section, based on the previously introduced
notation, a training set of ` tuples shall be considered, where
each tuple is of the form (yi, xi), i = 1, . . . , `, xi being an
array of r radio signal intensity values and yi the location infor-
mation, either a pair of coordinates (regression problem) or ±1
(classification).

A. Weighted k Nearest Neighbors

Let k ≤ ` be a fixed positive integer; consider a measured
signal strength array x. A simple algorithm to estimate its cor-
responding location information y is the following:

1) Find within the training set the k indices i1, . . . , ik whose
radio strength arrays xi1 , . . . , xik

that are nearest (ac-
cording to a given radio-space metric) to the given x vec-
tor.

2) Calculate the estimated position information y by the fol-
lowing average, weighted with the inverse of the distance
between signal strengths:

y =

k
∑

j=1

1

d(xij
, ss) + d0

· yij

k
∑

j=1

1

d(xij
, x) + d0

, (12)

where d(xi, x) is the radio distance between the two
triplets (for example the Euclidean distance) measured in
dBm, and d0 is a small real constant (d0 = .01dBm in
our tests) used to avoid division by zero.

While the above algorithm contains a weighted average, the
technique was first proposed in [1] without using distance-
dependent weights. It is simple to implement, and results in
Section VI show that it achieves low estimation errors. Its main
drawbacks, from the theoretical point of view, are the algorith-
mic complexity of the testing phase and the high VC dimension.

1) Learning phase complexity: The learning phase is rather
simple: just store all examples. Complexity is O(`(r + d)) in
time (all tuples must be input) and O(`(r + d)) in space (all
tuples must be stored).

2) Estimation phase complexity: All tuples must be scanned
for searching the k nearest ones. We execute a thorough scan
of the training set, and every insertion in the set of k near-
est indices is performed through a binary search; computing
the distance in the radio space has complexity proportional to
the number r of radio coordinates, computing the average re-
quires d operations, so the total worst-case time complexity is
O(`r log k + d).

3) VC dimension: When k = 1, if ` is fixed then up to `
different points can be arbitrarily classified by building the ap-
propriate training set. The same is true for generic k if we put
points at large mutual distances in order to reduce the weight of
all points but one. Thus, for a fixed training set cardinality `,
the VC dimension is h ≥ `, so the ratio `/h, the fundamental
parameter for computing the risk confidence interval, can never
be higher than 1; if the training set cardinality is not bound,
h = +∞. As a direct consequence, no acceptable confidence
interval can be expressed via statistical learning theory tech-
niques.
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B. Probabilistic Analysis

Methods based on conditional probability estimation require
the knowledge of the signal propagation model, either in the
form of an empirical distribution from repeated observations on
each physical point in a given set [2], or by selecting a suitable
radio propagation model and by estimating its parameters on
the basis of empirical observations [13]. In the first case, a large
number of observations is required in order to have a precise
distribution estimate at each sample point; in the second case, a
proper radio model is necessary.

Once the radio propagation model is determined, this can be
used to calculate the conditional probability distribution p(x|y)
of an r-uple x of radio signal intensity values, given a d-uple y
of space coordinates. The Bayes law of conditional probability
can be used to calculate the inverse dependency, in the form of
a probability distribution of the physical coordinates depending
on signal strength information, thus implementing a Maximum
Likelihood location estimator.

If empirical distributions cannot be detected for a large set of
points, then an analytical radio model can be stated in the form
of a linear dependence:

x =

c−1
∑

i=0

biζi, (13)

where c is the number of unknown parameters (coefficients)
b0, . . . , bc−1 of the model and ζi is some suitable transform of
the training set dependent variable vector y.

For example, by using a logarithmic loss model where the
signal decay depends on the logarithm of distance and on the
number of walls crossed by line of sight, then c = 3 and the
following transforms can be applied:

ζ0 = 1, ζ1 = log dAP(y), ζ2 = wAP(y),

where dAP(y) represents the distance of the physical point y
from the access point, wAP(y) represents the number of walls
and b0 becomes a constant term (a similar model is used in [1],
where walls exceeding a maximum number are not counted in
wAP). Rewriting equation (13) with these transforms leads to a
possible radio propagation model:

x = b0 + b1 log dAP(y) + wAP(y).

1) Learning phase complexity: Depending on the chosen
approach to model the radio propagation phenomenon, differ-
ent complexities arise from the corresponding algorithms. If a
model fitting approach is chosen, for instance a linear fit on sim-
ple computable functions (logarithms, polynomials) of physical
values, then the solution of a linear model is required. In case
of a linear model with c unknown coefficients such as (13), so-
lution of a system in the form

b̂ = (MT M)−1MT y,

is required, where M is an r` × c matrix, and y is a column
vector with r` components. The number of rows is given by the
number of training samples `, each carrying information about
the signal strength of r access points. Straightforward matrix

calculation algorithms are used, so that calculating MT M re-
quires the evaluation of all mutual dot products in the c columns
of M , each having r` elements, amounting to O(c2r`) opera-
tions (of course, presence of constant columns and symmetry
can be exploited to reduce the dominating term constant). In-
version of the resulting c × c matrix requires O(c3) time, and
subsequent multiplications by MT and by y require O(c2r`)
and O(r`) operations respectively. To achieve an acceptable
confidence interval, the number r` of samples must be much
larger than the number c of parameters in the model, thus the to-
tal time complexity to calculate the model coefficients amounts
to O(c2r`).
Similar values arise from the second approach, where measure-
ments are used to estimate position-dependent parameters of
the signal strength distribution. However, the system may just
store the empirical signal strength distributions as histograms,
one per sample position, thus reducing the preprocessing time
complexity, but increasing space requirements.
Lower exponents can be achieved by using optimized tech-
niques for matrix inversion and multiplication, such as the
Strassen algorithm.

2) Estimation phase complexity: This is the most consum-
ing phase. In fact, a likelihood function on the physical space
must be maximized. Computationally, this amounts to dis-
cretizing space by placing a grid, and calculating a probability
function for each point. The discretization step has a direct in-
fluence on the final positioning error; by taking a 50cm× 50cm
discretization step on a 25m × 25m square area, the product of
r independent probability distributions must be calculated on a
2500-points grid.

3) VC dimension: Like all classical paradigms, where func-
tional dependency is known up to a finite number of parameters,
the VC dimension of the family of functions (in our case, maxi-
mum likelihood estimations) in the model is low, being approx-
imately proportional to the number of parameters. As a con-
sequence, strict estimations can be done on the loss functional
confidence interval. On the other hand, the dimension cannot
be tuned, so a reasonably low value for the empirical loss func-
tional can be achieved with high probability only through a high
number of measures.

C. Neural Networks

A multi-layer perceptron neural network is composed of a
large number of highly interconnected units (neurons) working
in parallel to solve a specific problem.

The architecture of the multi-layer perceptron is organized
as follows: the signals flow sequentially through the different
layers from the input to the output layer. For each layer, each
unit first calculates a scalar product between a vector of weights
and the vector given by the outputs of the previous layer.

A transfer function is then applied to the result to produce
the input for the next layer. The transfer function for the hidden
layers is the sigmoidal function

f(x) =
1

1 + e−x
.

Other transfer functions can be used for the output layer; for
example, the identity function can be used for unlimited out-
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put, while the sigmoidal function is more suitable for “yes/no”
classification problems.

The training technique adopted in this paper is the one-step-
secant (OSS) method with fast line searches [20] using second-
order derivative information. Usage of neural networks in con-
junction with localization problem was proposed in [4].

1) Learning phase complexity: The time complexity of the
learning phase is usually high; for example, in our case it takes a
few minutes, although it varies greatly according to the heuris-
tic adopted for calculating the weights (usually iterative) and
from the halting condition. Usually a few thousand passes are
required, each involving computation of the outcome for every
training set point, followed by modification of weights.

2) Estimation phase complexity: Calculating the outcome
of a neuron with n inputs requires the evaluation of a linear
function on input data, which is performed in O(n) time, while
the sigmoid function is evaluated in constant time. Calculation
of the outcomes of the H hidden-layer neurons, having r in-
puts each, takes O(rH) time, while O(Hd) time is required for
evaluating all d output neurons. Thus, the total time complexity
is O(H(r + d)).

3) VC dimension: While determining the VC dimension of
a neural network is usually complex, an estimate for single-
output feed-forward neural networks is proved in [21] leading
to a O(H2W 2) upper bound, where H is the number of hidden
neurons and W is the number of weights. In our classification
problem, where we consider a complete feed-forward network,
W = O(rH), so the upper bound is O(r2H4). For the re-
gression problem, an upper bound can be simply calculated by
considering two distinct single-output neural networks, so that
the VC-dimension of the whole system is bounded by the prod-
uct of the two: O(r4H8). While this latter bound can become
quite large, both r and H are predetermined and usually low.

VI. EXPERIMENTAL RESULTS

In this section details shall be given about the sample col-
lection and data analysis. For concise reference in figures and
tables, compared algorithms shall be referred to as SVM (Sup-
port Vector Machine), WNN (Weighted k Nearest Neighbors),
BAY (Bayesian a posteriori likelihood) and MLP (Multi-Layer
Perceptron). The unweighted version of the WNN algorithm
shall be referred to as KNN.

A. Setup

1) System and environment: The target system for our ex-
periments is a wireless LAN using the IEEE802.11b (Wi-Fi)
standard. The LAN is composed by 6 AVAYA WP-II E access
points by Lucent Technologies, equipped with external omnidi-
rectional antennas. The mobile equipment is a Compaq iPAQ
H-3870 palmtop computer with Familiar Linux 0.52 operat-
ing system, equipped with a two-slot PCMCIA adapter and an
ORiNOCO Silver card by Lucent Technologies. The target en-
vironment is the ground floor of a two-storey building, roughly
30m × 25m large. Its map is shown on Figure 1.

Entrance

Multimedia Room WC

Open space

Open space corridor

Room A

Room B

Fig. 1. Map of the testbed environment; small circles represent the positions
of the 6 access points, dashed lines are steps.

2) Software tools: To test the Support Vector Machine al-
gorithm, the mySVM implementation[22] has been chosen. All
other algorithms are implemented in C and C++ language by
the authors. All tests are performed on Linux-based machines,
or on Windows-based machines using the Cygwin emulation li-
brary. The machine used for time benchmarks is a 1.7GHz PIII
Linux desktop computer with 256MB RAM.

3) Sample collection: The sample set used in the follow-
ing experimental analysis is composed by 257 measurements
throughout the floor. The positions where the samples have
been measured can be seen in Fig. 5. A fully regular grid could
not be followed due to the presence of various obstacles such as
tables and pieces of furniture. Every measurement consists of 2
physical coordinates and 6 values representing the quality of the
connection reported by the PCMCIA driver as a 1-byte value for
each access point. Typical values range from 0dBm (used when
signal is lower than noise, or not present) to 60÷70dBm in close
proximity to the antenna, and their discretization is 1dBm.

B. Parameter tuning

The experimental phase of this work begins with the deter-
mination of the best parameters for the algorithms.

1) Support Vector Machine: The kernel function used with
all tests is the Radial basis function (see Section IV-D); the
structure of the problem suggests in fact that it is not lin-
early separable; tests with polynomial kernels of degree up to
d = 4 have shown a long training phase, up to tens of min-
utes, while the RBF kernel is much faster both in training and
in the testing phase. Further tests have been performed to de-
termine the optimal value for the parameter in the RBF func-
tion γ = .2m−2, the relative weight of errors in the objective
function (10) C = 1m−1 and the error tolerance term in the
regression machine formulation (11) ε = .8m. Values for the
classification problem are γ = .5 and C = 1.

2) Weighted k Nearest Neighbors: The only relevant param-
eter is the number of nearest neighbors in the radio signal space
to take into account for the average calculation. In our case, the
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number has been fixed experimentally to k = 8. However, for
a large range of admissible values of k (5 to 15 approximately)
the estimation error does only change by 1%. Comparison with
the approach in [1], where the average is not weighted with dis-
tance in radio space, shows a 2% improvement when weights
are taken into account.

3) Maximum Likelihood: No numerical parameters have
been considered in this heuristic, apart from space discretiza-
tion: a 40m × 35m area, slightly larger than the floor, has been
covered by a 120 × 120-point mesh. The chosen radio propa-
gation model is the linear loss with walls:

x = b0 + b1dAP(y) + b2wAP(y),

where wAP is the sum of the widths of all walls crossed by the
line of sight between the access point and the user. While a
single model for all base stations has been proposed by [13] for
open-space location estimation in GSM networks, a 47% error
reduction has been obtained in our environment by calculating
independent sets of coefficients for every access point, and by
using the likelihood function as a probability distribution to cal-
culate the average a posteriori position rather than maximizing
it.

4) Neural Network: A three-layer perceptron model is used,
where the first layer is the input (6 neurons), the second is the
hidden layer (8 neurons) and the third is the output (two neu-
rons in the regression problem, one in the classification). The
transfer function of the hidden neurons is a sigmoid with (0, 1)
output. The transfer function of the output layer is linear in the
regression case, a sigmoid with (−0.5, 0.5) output in the classi-
fication case. Input values have been rescaled in the [0, 1] range
by dividing them by 100. To match the output sigmoid, the
classification network is trained with outcomes ±0.5.

C. Regression

Figure 2 shows the results of the leave-one-out position esti-
mations, where every point in the sample set is removed in turn,
the remaining points are used as a training set, and the resulting
trained system is tested on the removed point. Every arrow rep-
resents the displacement between the true position (tail) and the
computed location (head). Note that if position is determined
on the basis of other points (such is the case of Support Vector
Machines and Weighted k Nearest Neighbors), locations on the
border move toward the interior. On the other hand, if a global
model is built (neural networks or probabilistic models) then
estimations may also move to the outside of the sampled area.

Figure 3 and Table I provide information about the error dis-
tribution of the four techniques. The four top data rows report
experimental results about the four considered techniques. An
interesting fact is that, while the Weighted k Nearest Neighbors
method always achieves the best average results, the Support
Vector Machine outcome is comparable. The two global mod-
els, neural networks and probabilistic models, achieve a 10%
performance degradation. While the average estimation preci-
sion is in the order of 3m, quantiles reported in Table I show
that three measures out of four have an error below 4m, and
only one in 20 has an error higher than 6m with the SVM and
the WNN technique.
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Fig. 3. Leave-one-out estimation error distribution for the regression algo-
rithms

The remaining rows of Table I show performance degrada-
tion when different choices are made for two of the algorithms.
In particular, the KNN row shows the outcome of the k Nearest
Neighbors algorithm if weights are not considered in the aver-
age calculation (12). The three bottom rows show the outcome
of the BAY algorithm when some features are switched off. In
particular, if walls are not considered in the linear model (open
space assumption), then a 7% degradation is observed. If a sin-
gle propagation model is used for all access points, then a 49%
increase in error is detected. By using the conditional proba-
bility distribution as a likelihood function to be maximized (in-
stead of a distribution to calculate a weighted position average)
the error is increased by 15%.

Figure 4 shows the precision of the methods for different
training set sizes. Sizes from 10 to 250 points are considered.
For every size, 50 runs are executed. Every run consists in se-
lecting a random training set of the given size from the measure-
ment set; the systems are trained with it, then they are tested on
the remaining points; the resulting error is plotted as a cross
in the diagrams. The average of the 50 runs is plotted with a
continuous line, while the 95% confidence interval for the true
value of the error is represented by the two dashed lines.

Note that, while the error decreases as expected with sample
size, the probabilistic model seems less sensitive to sample size,
and an average error of 4m can be obtained with as little as 10
training points. This is due to usage of a simple linear model,
computed via an LSQ technique, to estimate radio propagation,
so that inaccuracies in radio propagation make it useless to im-
prove the accuracy of the estimation by adding points to the
model. On the contrary, the neural network shows a more grad-
ual slope, and achieving the same precision requires more than
100 training points.

This consideration would make BAY the algorithm of choice
when the user does not want to spend a long time in training
the algorithm, so that a small number of points are available for
training. However, as shown in Section VI-E, the algorithm is
very slow, in that it requires computing the likelihood function
in a grid of points. Moreover, the positions of access points and
the topography of the environment must be known in advance.

On the opposite, even though they require more training
points, the other algorithms soon achieve better precisions and
are computationally more affordable. In addition, no knowl-
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Fig. 2. Position estimation outcome by the four algorithms. Arrows originate on the true position and end on the estimated position.

TABLE I
LEAVE-ONE-OUT ESTIMATION ERROR DISTRIBUTION: AVERAGE AND PERCENTILES

Algorithm Average 50th 75th 90th 95th
percentile percentile percentile percentile

SVM 3.04± 0.10 2.75 3.96 5.12 6.09
WNN 3.06± 0.10 2.84 3.93 5.16 5.79
BAY 3.35± 0.11 3.04 4.39 5.61 6.61
MLP 3.18± 0.11 2.82 4.01 5.40 6.73
KNN (unweighted) 3.12± 0.10 2.91 3.99 5.21 6.10
BAY (no walls) 3.55± 0.12 3.30 4.56 5.87 6.82
BAY (single model) 4.97± 0.18 4.43 6.54 8.68 10.88
BAY (max. likelihood) 3.83± 0.15 3.42 5.14 6.83 8.42

edge about the environment is required.

D. Classification

The basic classification problem solved by Support Vector
Machines is dichotomous, for instance being inside or outside a
room. The more general labeling problem consists of attribut-
ing a label (number) to each room, and to tag every measure-
ment with these values. To solve it, for each room a different
SVM classifier must be trained. The training set outcome is +1

for points inside the room, −1 for points that are outside. To
label an unknown r-uple of radio measurements, it is submit-
ted to all SVMs, and the room whose SVM shows the highest
outcome is selected. In most cases, only one of the outcomes is
positive, but many uncertain cases may arise.

The same technique can be used for neural networks, by
training one neural network per room with one output neuron.
Actually, a single neural network with as many output neurons
as rooms could be used. However, this is just a special case of
the multiple networks where corresponding input weights are
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Fig. 4. Test set errors for different training set sizes. For every run, a random training set of the required size is extracted from the sample set, and all other
points are used for testing; 50 runs are shown for every size; their average value is plotted with a line. The dashed lines delimit the 95% confidence interval for
the average error.

forced to be equal.

A general technique, that can be applied to all regression al-
gorithms, is postprocessing of the regression outcome, so that
every point is classified according to the room containing its
estimated coordinates. This method can be applied to all four
techniques.

Figure 5 shows the outcome of the classification algorithms
on a leave-one-out test, where correctly classified sample points
are shown as crosses and errors are reported as black dots. In
the four regression algorithms, black dots correspond precisely
to the tails of wall-crossing arrows of Figure vectors. The Sup-
port Vector Machine as native classification engine significantly
outperforms all other classification algorithms.

In this test, a total of 7 rooms are identified, corresponding
to the area labeled in the map (Figure 1). The WC area is con-
sidered a single room. Note that for all algorithms errors are
usually found along the room borders, or in places where signal
strengths are rather low. A better coverage, or a better dispo-
sition of the access points, will probably improve the perfor-
mance of all algorithms.

TABLE II
ESTIMATION PHASE TIMES (SECONDS)

Algorithm 50 tests 5050 tests Difference (5000 tests)
SVM 0.02 1.40 1.38
WNN 0.01 0.86 0.85
BAY 1.97 131.03 129.06
MLP 0.00 0.14 0.14

E. Execution times

To have a complete comparison of the four heuristics, their
execution times have been compared on a large test set. Out
of the complete 257-point sample set, 207 have been randomly
extracted and used as a training set. The remaining 50 points
have been used for testing. To obtain a large test set, they have
been replicated 101 times, so that a large 5050-point test file as
been obtained. To remove the time overhead due to configura-
tion loading and preprocessing, two tests have been performed.
The first on the original 50-point set, the other on the large set.

Table II reports the execution times in seconds for every algo-
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Fig. 5. Classification of samples according to room. In the top row, the classification outcome of SVM (left) and MLP (right) in native classification mode.
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rithm and both test sets on the benchmarking machine (see Sec-
tion VI-A.2). The last column shows the difference between
the two testing runs, so that the initialization overhead is re-
moved and the net estimation time for 5000 points is reported.
As expected, the probabilistic model, requiring a global likeli-
hood evaluation on a grid of points, has proved much slower
than the other methods. The neural network, on the contrary,
is much faster, because it only requires straightforward calcu-
lations. The execution time of the Support Vector Machine and
the Weighted k Nearest Neighbors algorithms are at a larger
order of magnitude, but their higher precision justifies them.

While all reported times are acceptable for normal opera-
tions, usage with a mobile device discourages a heavy algo-
rithm such as BAY. In fact, lower processor speeds may render
this approach impractical and too consuming in terms of mem-
ory, CPU load and battery life.

VII. CONCLUSIONS

A new location discovery technique based on Support Vector
Machines has been introduced along with the underlying statis-
tical learning theory concepts. This technique can be used in
its regression version to estimate the location of a mobile user,
and as a classification engine to decide the area, for example
the room, the user is currently in.

An experimental testbed setup has been described, and the
proposed technique has been compared with three other algo-
rithms presented in the literature.

The Support Vector Machine algorithm displays a very low
error rate when used as classifier, and it outperforms all other
techniques in the described experiments. When used for regres-
sion (spatial localization), its results closely match those of the
most effective technique, the Weighted k Nearest Neighbors.

This paper is focused on a Wi-Fi system. However, the same
techniques can be applied in principle to every wireless mobile
transceiver, such as a cellular phone or a Bluetooth device, pro-
vided that data about the signals received from multiple fixed
stations can be accessed.
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