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1. Introduction

I Facts:

. In natural languages there exist phenomena depending on semantic moti-
vations for grammaticality.

. A system employed as parser of linguistic strings must be able to take se-
mantic information into consideration when working with such expressions.

. Polarity Items are an example of this class of phenomena: Their syntactic
distribution depends on the semantic properties of their licensor.

. The semantic information used for parsing is relevant when reasoning on
the parsed sentences as well.

I Aim:

To build a system able to:

1. encode the required semantic information;

2. take advantage of this information while parsing, and

3. formalize natural reasoning inferences.
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2. Polarity Items

Definition: Polarity Items

a. Positive Polarity Items (PPIs) are expressions licensed by monotone in-
creasing functions.

b. Negative Polarity Items (NPIs) are expressions licensed by monotone de-
creasing functions.

Definition: Monotone Functions

a. f is monotone increasing (not. ↑Mon) iff ∀x, y ∈ A, x ≤A y implies f(x) ≤B
f(y).

b. f is monotone decreasing (not. ↓Mon) iff ∀x, y ∈ A x ≤A y implies f(y) ≤B
f(x).

Linguistic Data

↓Nobody left yet− ↑Everybody left something+

(∗) ↑Everybody left yet− (∗) ↓Nobody left something+
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3. Monotonic Inferences

Monotonicity is tied up to natural reasoning.

Everybody (left something expensive)
Everybody (left something)

(A)
Nobody (left yet)

Nobody (left in a hurry yet)
(B)

A substitution of an expression with something more (A) or less (B) general could
be done in any position in a sentence.

If P ≤ Q

N [P ]

N [Q]
(A) or

N [Q]

N [P ]
(B)

In order to know which pattern must be applied, we need to know the polarity of
the position in which the expression occurs.
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4. Monotonicity and Polarity

I In few words:

Monotoncity vs. Polarity

dynamic vs. static
semantic vs. syntactic

argument positions vs. all positions

I Polarity Positions:

1. First order logic: Lyndon defines polarity in terms of the number of nega-
tions surrounding a subformula;

But FOL doesn’t capture the compositional behaviour needed for formal-
izing natural language. We need typed lambda calculus.

2. Typed lambda calculus: van Benthem (1986) defines polarity in terms
of functional application, i.e. number of monotone decreasing functions
having scope on a subterm.
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van Benthem (1990) proves that in lambda terms, polarity entails monotonicity.

Let N,M,M ′ ∈ Λ

I If N [M+], then N is upward monotone in M , and

I If N [M−], then N is downward monotone in M .

Schematically, given [[M ]] ≤ [[M ′]], then

I If N [M+], then [[N [M ]]] ≤ [[N [M ′]]],

I If N [M−], then [[N [M ′]]] ≤ [[N [M ]]]

I If N [X+], then λX.N [X] denotes an ↑Mon function.

I If N [X−], then λX.N [X] denotes an ↓Mon function.
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5. The Picture up to now

I A system able to

(1) encode monotonicity markers,

(2) compute polarity positions, and

(3) use this information during parsing and inference

can account for linguistic phenomena depending on monotonic semantic prop-
erties for grammaticality and formalize (a fragment of) natural reasoning.

I Curry-Howard Correspondence:

. Proofs can be interpreted as lambda terms;

. Polarity position in the proofs can correspond to polarity position in the
lambda terms. Therefore

. Polarity position in the proofs can correspond to monotonic position in the
lamda terms. Hence,

. Inference can be drawn from (syntatic) structures.
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6. Natural Logic

van Benthem (1986), Sánchez (1991)

I Aim: To give a proof theoretic formalization of natural reasoning drawing
inferences from parsed linguistic expressions, viz. (1), (2) and part of (3).

I Method: Enriching the logical types of the Lambek calculus (LP) with mono-
tonicity markers and defining monotonicity and polarity algorithms which takes
an LP derivation and compute the polarity of each of its nodes.

I Monotonic Rules

Given a derivation of ∆ `M : C. Let N be a sub-term of M corresponding to
the substructure Γ in ∆ and M ′ a term such that [[M ]] ≤A [[M ′]], and let Γ2 be
a structure corresponding to M ′, then

∆[Γ+
1 ] ` C

∆[Γ+
2 ] ` C

(Mon ↑) and
∆[Γ−2 ] ` C
∆[Γ−1 ] ` C

(Mon ↓)
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7. Formalization

van Benthem (1986), Sánchez algorithm (1991) define marking algorithms to derive
monotonic substitution from parsed sentences.

Lexicon
not λXt.¬X ↓Mon s/s−

wanders λxe.W(x) ↑Mon np+\s
every λX(e,t).Y(e,t),t∀z(X(z)⇒ Y (z)) ↓Mon↑ (s/(np\s)+)/n−

Monotonicity algorithm

∆ ` B/Ax Γ ` A
∆ ◦ Γ ` B [/E]

rewrites to

∆ ` B/Ax
+

Γ ` A
x

∆ ◦ Γ ` B [/E]
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[A ` A]
....

∆ ◦ A ` B
∆ ` B/A [/I]

rewrites to

[A ` A]
....

∆ ◦ A ` B
+

∆ ` B/Ay [/I]

where y = + (y = −) if the number of − in the derivation is even (odd).

Polarity algorithm

For the nodes in a derivation labelled with monotonicity markers polarity is defined
as follows:

I the node is − if all nodes in the path from the node to the root are marked
and if the number of nodes marked with − in this path is odd;

I the node is + if all nodes in the path from the node to the root are marked
and if the number of nodes marked with − in this path is even.
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8. Natural Logic. An example

What can we derive from: ‘Not every logician wanders’?

Monotonicity markers Polarity markers

s/s−
+

(s/(np\s)+)/n−
+

n
−

s/(np\s)+

+

np\s
+

s
−

s

s/s
+

(s/(np\s))/n
−

n
+

s/(np\s)
−

np\s
−

s
−

s
+

Summing up, the parsed string will be polarity marked as:

(not+((every−good logician+)−wanders−)−)+ ` s
(not+((every−logician+)−wanders−)−)+ ` s
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9. Advantages and Disadvantages

I Advantages:

. The polarity marking algorithm is sound.

By interpreting proofs as lambda terms

(1) marked functional nodes will correctly correspond to monotonic func-
tions; and

(2) polarity markers will correctly correspond to polarity positions in
lambda terms.

I Disadvantages:

. The marking algorithms are external to the parser.

Hence, polarity markers do not play an active role in the parsing and cannot
be used to account for PIs.

I Our proposal We can use the logical unary operators of Multimodal Lam-
bek Calculus (NL(3)) to carry the markers, and structural unary operators to
record their effect.
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10. Multimodal Lambek Calculus

Michael Moortgat (1997) extends the logic language of the Lambek calculus with
unary operators (3,2↓).

Language:

I Logical Language: Given a set of basic categories ATOM, the set of categories
CAT is the smallest set such that built over \, / and s3 and s2↓, where s ∈
{+,−}.

FORM := ATOM | FORM/FORM | 3 FORM
3 FORM | 2↓FORM | 2↓FORM.

I Structural Language: The set of structures STRUCT is built over the set of
logic categories, by means of ◦, and 〈·〉s.

STRUCT := FORM | 〈STRUCT〉− | 〈STRUCT〉+ | STRUCT ◦ STRUCT

Kripke Models, Gentzent Sequent Calculus
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11. How it works

Monotonicity and polarity are displayed as follows:

To express that: type
A structure has polarity s 〈·〉s

A function is s-monotone B/ s3A

An item must have an s polarity s2↓A

I Lexical items are initially marked 2↓A. The polarity information is passed
from the logic type to the structure:

2↓A ` 2↓A

〈2↓A〉+ ` A
[2↓E]

This encodes the basic case of the definition of polarity in lambda terms, viz.
M is positive in M .
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I Application of a monotone function implies the propagation of the marker from
the function to the argument:

∆ ` B
〈∆〉s ` s3B

[ s3 I]
Γ ` s3B\A

〈∆〉s ◦ Γ ` A [\E]

I A negative polarity item (NPI) is marked so that it requires to be the argument
of a downward monotonic function, A/3B (3B\A). Roughly, a structure
contaning a NPI having wide scope in it, is proved to be of type 2↓3A.

∆dNPIe ` 2↓3A

〈∆dNPIe〉− ` 3A
[2↓E]

I The polarity is computed “on-demand” by means of the polarity structural
rules.
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12. Polarity Items

nobody ` 2↓(s/3 vp)
〈nobody〉+ ` s/3 vp

[2↓E]

....
〈left〉+ ` 2↓3 vp

yet ` 2↓(2↓3 vp\2↓3 vp)
〈yet〉+ ` 2↓3 vp\2↓3 vp

[2↓E]

〈left〉+ ◦ 〈yet〉+ ` 2↓3 vp
[\E]

〈〈left〉+ ◦ 〈yet〉+〉− ` 3 vp
[2↓E]

〈nobody〉+ ◦ 〈〈left〉+ ◦ 〈yet〉+〉− ` s
〈nobody〉+ ◦ (〈〈left〉+〉− ◦ 〈〈yet〉+〉−) ` s

[Pol−]
[/E]

〈nobody〉+ ◦ (〈left〉− ◦ 〈yet〉−) ` s
〈nobody〉+ ◦ (〈left in a hurry〉− ◦ 〈yet〉−) ` s

Every student left yet ∈ s? No proof is given.

Every student ` 2↓(s/3 vp)

〈Every student〉+ ` s/3 vp
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13. Conclusion and Further research

We have shown that NL(3) with [Pols] and [Polus]

I (1) encode monotoncity markers;

I (2) compute polarity positions, and

I (3) take advantage of this information whenever needed.

Questions: Parsing and reasoning.

I In NL(3) parsing and reasoning are not integrated. How can the two levels
interact?

I Some PIs can be licensed by “the meaning conveyed” by the sentence they
occur in. Can an integrated system account for such PIs?
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14. Monotonicity Calculus

1. Daniel did not say that Chloe had done anything
2. Daniel doubted Chloe had done anything.
3. *Daniel did not doubt anything happened.

anything ◦ happened ` 2↓3 s

〈anything ◦ happened〉− ` 3 s
[2↓E]

[y ` 3 s]2

....
〈didn’t〉+ ` iv/3 iv

....
〈〈doubt〉+ ◦ 〈x〉−〉− ` 3 iv

〈didn’t〉+ ◦ (〈〈doubt〉+ ◦ 〈x〉+〉−) ` iv
[/E]

〈didn’t〉+ ◦ (〈〈doubt〉+〉− ◦ 〈〈x〉−〉−) ` iv
[Pol−]

〈didn’t〉+ ◦ (〈〈doubt〉+〉− ◦ 〈x〉+) ` iv
[Pol−−]

(〈didn’t〉+ ◦ 〈〈doubt〉+〉−) ◦ 〈x〉+ ` iv
[Ass]

(〈didn’t〉+ ◦ 〈〈doubt〉+〉−) ◦ y ` iv
[3 E]1

〈didn’t〉+ ◦ 〈〈doubt〉+〉− ` iv/3 s
[/I]2
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