A proof theoretical account of polarity items and monotonic inference.

Raffaella Bernardi

UIL OTS, UNIVERSITY OF UTRECHT

E-MAIL: Raffaella.Bernardi@let.uu.nl

URL: http://www.let.uu.nl/~Raffaella.Bernardi/personal

Contents

1	Monotonicity Calculus	3
2	Polarity and Monotone Positions	4
3	Partial Order	6
4	Semantics	7

1. Monotonicity Calculus

$f \circ g = h$	
\uparrow Mon $\circ \uparrow$ Mon $= \uparrow$ Mon	$h: A^{sg(+,+)} \to C$
$ \uparrow Mon \circ \uparrow Mon = \uparrow Mon \downarrow Mon \circ \downarrow Mon = \uparrow Mon \uparrow Mon \circ \downarrow Mon = \downarrow Mon $	$h:A^{sg(-,-)}\to C$
$\uparrow Mon \circ \downarrow Mon = \downarrow Mon$	$h:A^{sg(+,-)}\to C$
$\downarrow Mon \circ \uparrow Mon = \downarrow Mon$	$h: A^{sg(-,+)} \to C$

2. Polarity and Monotone Positions

Definition [Polarity of Occurrences]

Given a lambda term N and a subterm M of N. A specified occurrence of M in N, is called **positive** (**negative**) according to the following clausules:

- i. M is positive in M.
- ii. M is positive (negative) in PQ iff M is positive (negative) in P.
- iii. M is positive (negative) in PQ iff M is positive (negative) in Q, and P denotes an upward monotone function.
- iv. M is negative (positive) in PQ iff M is positive (negative) in Q, and P denotes a downward monotone function.
- v. M is positive (negative) in $\lambda X.P$ iff M is positive (negative) in P and $X \notin FV(M)$.

Definition[Monotone position]

Let N'_{α} be a lambda term like N_{α} except for containing an occurrence of M'_{β} where N_{α} contains M_{β} ,

- i. N_{α} is **upward monotone in** M_{β} iff for all models and assignments $[\![M]\!]_{\mathcal{M}}^f \leq_{\beta} [\![M']\!]_{\mathcal{M}}^f \in_{\beta} [\![N']\!]_{\mathcal{M}}^f$;
- ii. N_{α} is downward monotone in M_{β} iff for all models and assignments $[\![M]\!]_{\mathcal{M}}^f \leq_{\beta} [\![M']\!]_{\mathcal{M}}^f = \mathbb{E}[\![M']\!]_{\mathcal{M}}^f = \mathbb{E}[\![M']\!]_{\mathcal{M}}^f$.

3. Partial Order

Taking advantage of the fact that the denotation of all expressions of natural language can at end be reduced to sets, we can extend our model with a partial order defined recursively by means of types. Let $\mathcal{M} = \langle D, \leq, I \rangle$, be our model, where \leq is recursively defined as follows:

```
If \beta, \gamma \in Dom_e, then [\![\beta]\!] \leq_e [\![\gamma]\!] iff [\![\beta]\!] = [\![\gamma]\!]

If \beta, \gamma \in Dom_t, then [\![\beta]\!] \leq_t [\![\gamma]\!] iff [\![\beta]\!] = 0 or [\![\gamma]\!] = 1

If \beta, \gamma \in Dom_{(a,b)}, then [\![\beta]\!] \leq_{(a,b)} [\![\gamma]\!] iff \forall \alpha \in Dom_a, [\![\beta(\alpha)]\!] \leq_b [\![\gamma(\alpha)]\!]
```

4. Semantics

Determining the truth-value of an expression is reduced to simple set theoretical operations e.g. inclusion, membership, intersection. For example, checking whether in a given model \mathcal{M} the sentence "Every student walks" is true, means to determine whether $\llbracket \text{every student (walks)} \rrbracket = 1$. This is done by means a simple calculation: