
Non-Classical Logics for Natural
Language:

Introduction to Formal Semantics,
Lambda Calculus and Curry-Howard

Correspondence

Raffaella Bernardi
KRDB, Free University of Bozen-Bolzano

e-mail: bernardi@inf.unibz.it

Contents First Last Prev Next J

Contents

1 Main points . 4
2 Lambek Calculi . 5

2.1 Lambek Calculus: Model Theory . 6
2.1.1 Lambek Calculus: Kripke Models 7
2.1.2 Frame Constraints: Structural Rules 8
2.1.3 Modes of the Relation . 8
2.1.4 Lambek Calculus as a Logical Grammar (I) 9

2.2 Lambek Calculus: Proof Theory . 10
2.2.1 Full Residuated System: NL(3) 11

2.3 Lambek Calculus as a Logical Grammar (II) 14
2.4 Residuated Logical Grammar complexity 21

3 Conclusion: NL as Logical Grammar . 22
4 Formal Semantics: Main questions . 24

4.1 Logical Approach . 25
4.2 Formal Semantics: What and How . 26

4.2.1 Example . 27
4.2.2 Quantified NP . 28

Contents First Last Prev Next J

4.3 Set-Theoretical and Functional Perspectives 31
5 Models, Domains, Interpretation . 32

5.1 Lambda Calculus in Linguistics . 33
5.1.1 Application and Abstraction 34
5.1.2 Quantified NPs . 37

6 Syntax-Semantics Interface . 38
6.1 Curry-Howard Correspondence . 39
6.2 Example . 40
6.3 Lifting . 41
6.4 Remarks . 42

7 Limitations and Advantages . 43
7.1 My current research on this . 44

Contents First Last Prev Next J

1. Main points

Formal Linguistics is the study of natural language. Formal Linguists aim to

I formally define grammaticality of sentences

I understand how syntactic structures are built

I formally define the meaning of sentences

I understand how semantic structures are built

I model syntax-semantic interface

I find the universal core of all natural languages

I find natural language variations

Contents First Last Prev Next J

2. Lambek Calculi

I Jim Lambek: Lambek Calculus (L) Non-associative Lambek Calculus (NL)
(1958, 1961)

I Dick Oehrle: in the early ’80s brought the Lambek’58 paper back to the atten-
tion of linguists and logicians (Frans Zwarts and Johan van Benthem)

I Michael Moortgat and Dick Oehrle: used modes of operators (1986) to control
structural rules.

I Michael Moortgat and Natasha Kurtonina: extended NL with unary (modal)
operators (1995) (NL(3)).

Contents First Last Prev Next J

2.1. Lambek Calculus: Model Theory

I Originally, Lambek used algebraic models.

I Van Benthem and Kurtonina looked at these calculi as Modal Logics.

Definition 2.1 (Formulas of NL(3)) Given a set ATOM of atomic propositional sym-
bols, the logical language of NL(3) is as below

FORM ::= ATOM |FORM/FORM | FORM\FORM | FORM • FORM |
3FORM | �FORM.

Definition 2.2 (NL(3)) The system NL(3) is defined by the axioms below. Given
A,B, C ∈ FORM

[REFL] A ⇒ A,
[TRANS] If A ⇒ B and B ⇒ C, then A ⇒ C,

[RES2] A ⇒ C/B iff A •B ⇒ C iff B ⇒ A\C.
[RES1] 3A ⇒ C iff A ⇒ �C

Contents First Last Prev Next J

2.1.1. Lambek Calculus: Kripke Models Standard models for modal logics
are Kripke models, or relational structures. These structures are rather simple, they
only consist of a set together with a collection of relations on that set,

Definition 2.3 (Kripke Models) A model for NL(3) is a tupleM = (W, R3
•, R

2
3, V)

where W is a non-empty set, R3
• ⊆ W 3, R2

3 ⊆ W 2, and V is a valuation V :
ATOM → P(W). The R3

• relation governs the residuated triple (\, •, /), the R2
3

relation governs the residuated pair (3, �). Given a model M = (W, R, V) and
x, y ∈ W , the satisfiability relation is inductivly defined as follows.

M, x
 A iff x ∈ V (A) where A ∈ ATOM.
M, x
 3A iff ∃y[R3xy & M, y
 A].
M, y
 �A iff ∀x[R3xy →M, x
 A].

M, x
 A •B iff ∃y∃z[R•xyz & M, y
 A & M, z
 B].
M, y
 C/B iff ∀x∀z[(R•xyz & M, z
 B) →M, x
 C].
M, z
 A\C iff ∀x∀y[(R•xyz & M, y
 A) →M, x
 C].

Contents First Last Prev Next J

2.1.2. Frame Constraints: Structural Rules In order to maintain complete-
ness in the presence of structural rules, one has to impose restrictions on the in-
terpretation of the accessibility relations R• and R3. The completeness result is
extended to stronger logics by restricting the attention to the relevant classes of
frames.

A useful class of structural rules with pleasant completeness properties is character-
ized by Weak Sahlqvist structural rules. (Kurtonina’95)

Example : ∀x, y, z, u ∈ W

(Ass) (A •B) • C ⇔ A • (B • C)

∃t.Rtxy&Rutz ↔ ∃v.Rvyz&Ruxv

2.1.3. Modes of the Relation In modal logics, we can have Relations of the
same arity and of different modes marked by means of indexes. These relations
can have different properties (e.g. R3

i could be commutative whereas R3
j could be

associative, etc.). They correspond to families of operators.

Contents First Last Prev Next J

2.1.4. Lambek Calculus as a Logical Grammar (I)

Formulas as syntactic categories

ATOM := np | n | s for (noun phrase, noun, sentence)

Complex formulas are eg. (np\s), ((np\s)/np), (np/n) . . .

Derivability A derives B iff in all the worlds where A is true, B is true too:

A ⇒ B iff World(A) ⊆ World(B) i.e. Expression(CATA) ⊆ Expression(CATB)

Example

I np is true in “John”, “the student”, “the nice student”, etc.

I np\s is true in “left”, “knows Lori”, etc.

I ((np\s)/np) • np is true “knows Lori”, etc.

I np • np\s is true in “John left”, “the student left”, “the nice student left”, etc.

((np\s)/np) • np ⇒ np\s

Contents First Last Prev Next J

2.2. Lambek Calculus: Proof Theory

A ` A
(axiom)

Γ[(A, B)] ` C

Γ[A •B] ` C
(•L) Γ ` A ∆ ` B

(Γ, ∆) ` A •B
(•R)

∆ ` A Γ[B] ` C

Γ[(B/A, ∆)] ` C
(/L)

Γ, A ` B

Γ ` B/A
(/R)

∆ ` A Γ[B] ` C

Γ[(∆, A\B)] ` C
(\L)

A, Γ ` B

Γ ` A\B (\R)

Recall Classical Logic Sequents.

Contents First Last Prev Next J

2.2.1. Full Residuated System: NL(3)

A ` A
(axiom)

∆ ` A Γ[B] ` C

Γ[(B/A, ∆)] ` C
(/L)

Γ, A ` B

Γ ` B/A
(/R)

∆ ` A Γ[B] ` C

Γ[(∆,A\B)] ` C
(\L)

A, Γ ` B

Γ ` A\B (\R)

Γ[(A,B)] ` C

Γ[A •B] ` C
(•L) Γ ` A ∆ ` B

(Γ,∆) ` A•B (•R)

Γ[B] ` C

Γ[〈�B〉] ` C
(�L)

〈Γ〉 ` B

Γ ` �B
(� R)

Γ[〈B〉] ` C

Γ[3B] ` C
(3L) Γ ` B

〈Γ〉 ` 3B
(3R)

Think of 3 as a binary •, and of � as a binary \.
Roughly, 3 corresponds to A • ·, and � to A\·

Contents First Last Prev Next J

Residuation in the Sequents The Lambek Calculus is also known as the pure calculus of
residuation. It’s logical rules encode the principle of residuation which is the minimum
principle shared by all substructural logics.

(Areces and Bernardi ’00) showed how the residuation principle is compiled in the sequent
calculus. And used the explained method to extend the logic with other operators governed
by similar principles. Their method is based on the work by Goré on Display Logic.

Recall:

[RES1] ∀x ∈ A, y ∈ B

 f(x) ≤2 y
iff

x ≤1 g(y)

 〈Γ〉 ` B

Γ ` �B
(� R)

[RES2] ∀x ∈ A, y ∈ B, z ∈ C


x ≤1 h(z, y)

iff
f(x, y) ≤3 z

iff
y ≤2 g(x, z)


(Γ,A) ` B

Γ ` B/A
(/R)

Contents First Last Prev Next J

The other half of the “iff” relation is compiled in the left rules.

The composition of the two functions f, g:

f(x, g(x, z) ≤3 z

is encoded in the (\L).

∆ ` B Γ[A] ` C

Γ[(∆,B\A)] ` C
(\L)

B•B\A ` A

The composition function for unary operators (we will intro them later):

f(g(y)) ≤2 y

is the equivalent of the (�L)

Γ[A] ` C

Γ[〈�A〉] ` C
(�L)

3�A ` A

Contents First Last Prev Next J

2.3. Lambek Calculus as a Logical Grammar (II)
CFG Lexicon Rules S

NP --> john S --> NP VP / \
IV --> left VP --> IV / VP
TV --> knows VP --> TV NP / / \
DTV --> gives VP --> DTV NP NP NP TV NP

Lori knows Mary

CG Lexicon (Categorization):
Lori: np knows: (np\s)/np
left: np\s gives: ((np\s)/np)/np

CG Rules (Assembly):

[/ L]
B

�� HH
B/A

β

A

α

[\ L]
B

�� HH
A

α

A\B

β

s

�
���

H
HHH

np

Lori

np\s
��� HHH

(np\s)/np

knows

np

mary

Contents First Last Prev Next J

Local dependency: Application [[[the]det[student]n]np[[knows]v[Lori]np]vp]s

Lexicon

Lori np left np\s
student n knows (np\s)/np
the np/n

Gentzen Sequents:

np ` np

n ` n np ` np

np/n, n ` np
(/L)

s ` s

(np/n, n), np\s ` s
(\L)

(np/n︸ ︷︷ ︸
the

, n︸︷︷︸
student

), ((np\s)/np︸ ︷︷ ︸
knows

, np︸︷︷︸
Lori

) ` s
(/L)

∆ ` A Γ[B] ` C

Γ[(B/A, ∆)] ` C
(/L)

∆ ` A Γ[B] ` C

Γ[(∆, A\B)] ` C
(\L)

Contents First Last Prev Next J

Abstraction: left-branch extraction (proof) Extraction is accounted for as below.

The student who [[. . .]knows Lori]s︸ ︷︷ ︸
np

left︸︷︷︸
np\s

Lexicon

Lori np left np\s
student n knows (np\s)/np
the np/n who (n\n)/(np\s)

np ` np

np ` np s ` s

np, np\s ` s
(\L)

np, ((np\s)/np, np) ` s
(/L)

(np\s)/np, np ` np\s (\R)
n\n ` n\n

(n\n)/(np\s)︸ ︷︷ ︸
who

, (np\s)/np︸ ︷︷ ︸
knows

, np︸︷︷︸
Lori

` n\n (/L)

Note, how (\R) decomposes the built structure by removing/abstracting the np.

Contents First Last Prev Next J

Abstraction: left-branch extraction (tree) The parse tree is as below

(n\n)

��
���

HH
HHH

(n\n)/(np\s)

who

np\s

�
���

H
HHH

[. . .] s

�
���

H
HHH

np

hyp

np\s
��� HHH

(np\s)/np

knows

np

Lori

where abstraction can happen since the hypothesis is in a peripheral (accessible) position.

Contents First Last Prev Next J

Abstraction: right-branch extraction (tree) Instead, e.g., “which Sara wrote [. . .]” requires (some
form of) associativity. which ∈ (n\n)/(s/np)

s

��
��

HH
HH

np

Sara

np\s
��� HHH

(np\s)/np

wrote

np

hyp

s

�
���

H
HHH

np\s
��� HHH

np

Sara

(np\s)/np

wrote

np

hyp

s/np

��
��

HH
HH

s

����
HHHH

np\s
��� HHH

np

Sara

(np\s)/np

wrote

np

hyp

[. . .]

Contents First Last Prev Next J

Abstraction: Right-branch extraction (proof) The derivation is as below

np ` np

np ` np s ` s

np, np\s ` s
(\L)

np, ((np\s)/np, np) ` s
(/L)

(np, (np\s)/np), np ` s
(Ass)

np, (np\s)/np ` s/np
(/R)

n\n ` n\n
(n\n)/(s/np)︸ ︷︷ ︸

which

, (np︸︷︷︸
Sara

, (np\s)/np︸ ︷︷ ︸
wrote

) ` n\n (/L)

But

I global structural rules are “unsound” when reasoning with natural language
(e.g. which sara [wrote [. . .] in Pescara]).

I The logical grammar will overgenerate proving as grammatical also ungram-
matical sentence.

Contents First Last Prev Next J

Residuated unary operators (NL(3)) Unary operators have been used in several ways.

I Morphological Agreement [D. Heylen (1999)]

I Control of structural rules to avoid e.g. global associativity: Long-Distance
Dependency [M. Moortgat 1999,]; Word order [M. Moortgat and R. Oehrle
(1996), E. Kraak (1998), W. Vermaat (2005)], i.e. language diversities; Cross-
dependencies.

I Classification: Scope distribution [R. Bernardi and R. Moot (2000), R. Bernardi
(2002), O. Nilsen (2002)], Licensing Relations: [R. Bernardi (2002)]

Contents First Last Prev Next J

2.4. Residuated Logical Grammar complexity

Complexity w.r.t. Chomsky Hierarchy We are interested in the problem of determining
whether a string is in the language recognized by a grammar of a certain type.

I For Context Free Language the problem is polynomial.
I the same holds for Mildly CFL.
I whereas, for Context Sensitive Languages the problem is PSPACE-complete

Residuated Logics Complexity The languages recognized by Lambek calculi are as below:

I NL (non associative Lambek Calculus) is n6

I L (Associative Lambek Calculus) is NP -complete (Pentus’03)
I LP (Associative and Permutative Lambek Calculus) is NP

I NL(3) (NL with unary operators) is polynomial.
I NL(3) + a class of structural rules (non expanding) is PSPACE (see Moot’00)
I NL(3) + structural rules outside that class is undecidable. (see Carpenter ’99)

I NL(3) + a class of structural rules obtained by embedding LTAG is polynomial. (see
Moot’00).

Contents First Last Prev Next J

3. Conclusion: NL as Logical Grammar

We have seen that Lambek Calculi can

I prove whether a linguistic structure with local dependency is grammatical.

I both compose (assembly) and decompose (extraction) linguistic structures.

The main idea of the approach is that

I The principle of residuation is the core of natural languages structure assembly

I Structural rules (frame constraints) capture natural language diversities.

Contents First Last Prev Next J

We have focused attention on the core calculus of residuation and shown its limita-
tion w.r.t.

I long distance dependencies

NL(3) can deal with these phenomena too, by means of structural rules lexically
anchored –i.e. that apply only to those structures marked by means of unary oper-
ators.

We will now look at how Lambek Calculi

I compositionally account for the assembly of meaning representation.

I have problems with non local scope construal

We will mention how NL(3) has been extended to overcome this limitation.

Contents First Last Prev Next J

4. Formal Semantics: Main questions

The main questions are:

1. What does a given sentence mean?

2. How is its meaning built?

3. How do we infer some piece of information out of another?

The first and last questions are closely connected.

In fact, since we are ultimately interested in understanding, explaining and ac-
counting for the entailment relation holding among sentences, we can think of the
meaning of a sentence as its truth value.

Contents First Last Prev Next J

4.1. Logical Approach

To tackle these questions we will use Logic, since using Logic helps us answering the
above questions at once.

1. Logics have a precise semantics in terms of models —so if we can trans-
late/represent a natural language sentence S into a logical formula φ, then
we have a precise grasp on at least part of the meaning of S.

2. Important inference problems have been studied for the best known logics,
and often good computational implementations exists. So translating into
a logic gives us a handle on inference.

When we look at these problems from a computational perspective, i.e. we bring in
the implementation aspect too, we move from Formal Semantics to Computational
Semantics.

Contents First Last Prev Next J

4.2. Formal Semantics: What and How

I What does a given sentence mean?

The meaning of a sentence is its truth value. Hence, this question can be
rephrased in “Which is the meaning representation of a given sentence to be
evaluated as true or false?”

I How is the meaning of a sentence built?

Meaning flows from the lexicon. The meaning representation of a sentence is
built compositionally starting from the meaning representations of its atomic
expressions, the words.

Hence, we are interested in the meaning (representations) of lexical entries.

Contents First Last Prev Next J

4.2.1. Example Let our model be based on the set of entities E = {lori, ale, sara, pim}
which represent Lori, Ale, Sara and Pim, respectively. Assume that they all know them-
selves, plus Ale and Lori know each other, but they do not know Sara or Pim; Sara
does know Lori but not Ale or Pim. The first three are students whereas Pim is a
professor, and both Lori and Pim are tall. This is easily expressed set theoretically. Let
[[w]] indicate the interpretation of w:

[[sara]] = sara;
[[pim]] = pim;
[[lori]] = lori;
[[know]] = {〈lori, ale〉, 〈ale,lori〉, 〈sara, lori〉,

〈lori, lori〉, 〈ale, ale〉, 〈sara, sara〉, 〈pim, pim〉};
[[student]] = {lori, ale, sara};
[[professor]] = {pim};
[[tall]] = {lori, pim}.

which is nothing else to say that, for example, the relation know is the set of pairs 〈α, β〉
where α knows β; or that ‘student’ is the set of all those elements which are a student.

Contents First Last Prev Next J

4.2.2. Quantified NP

a) Every Mexican student of the EM in CL attends the Comp Ling course.

b) No Mexican student of the EM in CL attend the Logic course.

What is the interpretation of “every Mexican student” and of “no Mexican student”?

Individual constants used to denote specific individuals cannot be used to denote
quantified expressions like “every man”, “no student”, “some friends”.

Quantified-NPs like “every man”, “no student”, “some friends” are called non-
referential.

Contents First Last Prev Next J

Quantifier Phrases (QPs) Quantifier Phrases (QP) have been interpreted as sets of
properties, i.e. sets of sets-of-individuals.

For instance, “every man” denotes the set of properties that every man has. The
property of “walking” is in this set iff every man walks. For instance,

[[man]] = {a, b, c};
[[fat]] = {a, b, c, d};
[[dog]] = {d};
[[run]] = {a, b};
[[jump]] = {b, c, d};
[[laugh]] = {b, d};

Which is the interpretation of “every man”?

[[every man]] = {X|[[man]] ⊆ X} = {{a, b, c}, {a, b, c, d}}.

Contents First Last Prev Next J

Generalized Quantifiers other generalized quantifiers are:

[[no man]] = {X ⊆ E | [[man]] ∩X = ∅}.
[[some man]] = {X ⊆ E | [[man]] ∩X 6= ∅}.
[[man which VP]] = [[man]] ∩ [[VP]].

Therefore, determiners are as below:

[[no N]] = {X ⊆ E | [[N]] ∩X = ∅}.
[[some N]] = {X ⊆ E | [[N]] ∩X 6= ∅}.
[[every N]] = {X ⊆ E | [[N]] ⊆ X}.
[[N which VP]] = [[N]] ∩ [[VP]].

Generalized quantifiers have attracted the attention of many researchers working on
the interaction between logic and linguistics.

Contents First Last Prev Next J

4.3. Set-Theoretical and Functional Perspectives

Alternatively, one can assume a functional perspective and interpret, for example,
student as a function from individual (entities) to truth values, student(monika) =
1, student(raffaella) = 0.

The shift from the set-theoretical to the functional perspective is made possible by
the fact that the sets and their characteristic functions amount to the same
thing:

if fX is a function from Y to {0, 1}, then X = {y | fX(y) = 1}. In other
words, the assertion ‘y ∈ X’ and ‘fX(y) = 1’ are equivalent.

Therefore, the two notations y(z)(u) and y(u, z) are equivalent.

Natural language expressions can be seen as functions.

A formal language to represent function is the Lambda calculus.

⇓
We use FOL augmented with lambda operators to represent the meaning of nat-
ural language expressions.

Contents First Last Prev Next J

5. Models, Domains, Interpretation

In order to interpret meaning representations expressed in FOL augmented with λ,
the following facts are essential:

I Sentences: Sentences can be thought of as referring to their truth value, hence
they denote in the the domain Dt = {1, 0}.

I Entities: Entities can be represented as constants denoting in the domain De,
e.g. De = {john, vincent, mary}

I Functions: The other natural language expressions can be seen as incomplete
sentences and can be interpreted as boolean functions (i.e. functions yielding
a truth value). They denote on functional domains DDa

b and are represented
by functional terms of type (a → b).

For instance “walks” misses the subject (of type e) to yield a sentence (t).

. denotes in DDe
t

. is of type (e → t),

. is represented by the term λxe(walk(x))t

Contents First Last Prev Next J

5.1. Lambda Calculus in Linguistics

The pure lambda calculus is a theory of functions as rules invented around 1930
by Church. It has more recently been applied in Computer Science for instance in
“Semantics of Programming Languages”.

I Here, we are mostly interested in lambda conversion and abstraction. Moreover,
we work only with typed-lambda calculus and even more, only with a fragment
of it.

I When dealing with linguistic structures, we can also think of function applica-
tion and λ-abstraction as a way to compose and decompose structures, respec-
tively.

I When considering the “parse as deduction” approach the interest in the λ-
calculus is further motivated by its correspondence with intuitionistic implica-
tional logic, known as Curry-Howard Correspondence.

Contents First Last Prev Next J

5.1.1. Application and Abstraction While studying the syntax of natural lan-
guage, we have seen that important concepts to account for are local and long-distance
dependencies.

The λ-operator gives us (more or less) a way to represent this link semantically.

For instance, in λx.λy.knows(y, x) we express that the dependency of the subject and
object from the verb. Function application and lambda conversion account for local de-
pendencies.

s:knows(lori,mary)

�
���

����

H
HHH

HHHH

np

Lori:lori

vp:λy.knows(y, mary)

��
���

HH
HHH

v

knows:λx.λy.knows(y, x)

np

Mary:mary

Contents First Last Prev Next J

Relative Pronouns Abstraction is used when long distance dependencies occur. For
instance, “which John read [. . .]”:

“John” : john

“read”: λx.y.read(y, x).

What is the role of “which” in e.g. “the book which John read is read”?

The term representing “which” has to express the fact that it is replacing the role
of a noun phrase in subject (or object position) within a subordinate sentence while
being the subject (object) of the main sentence:

λX.λY.λz.Y (z) ∧X(z)

The double role of “which” is expressed by the double occurrence of z.

Recall :

[[N which VP]] = [[N]] ∩ [[VP]].

Contents First Last Prev Next J

Recall,
λX.λY.λz.Y (z) ∧X(z) [[N which VP]] = [[N]] ∩ [[VP]].

i. read u: λy(read(y, u)) ii. John read u: read(j, u)
iii. John read: λu.read(j, u) iv. which John read: λY.λz.Y (z) ∧ read(j, z)

I at the syntactic level we said that the relative pronoun “which” plays the role
of the verb’s object and it leaves a gap in the object position.

I Semantically, the gap is represented by the u on which the relative pronoun
forces the abstraction [iii.] before taking its place.

Contents First Last Prev Next J

5.1.2. Quantified NPs

Recall :
[[some man]] = {X ⊆ E | [[man]]∩X 6= ∅}.
[[every man]] = {X ⊆ E | [[man]]⊆X}

some man: λX.∃z.Man(z)∧X(z)

every man: λX.∀z.Man(z)⇒X(z)

For uniformity (proper names and QPs can occur in the same context syntactically),
proper names have been interpreted as the set of those properties which are true of
the person. Eg.

[[werner]] = {german, prof, man, ..}
[[werner]] = {X|[[X(werner)]] = 1}
werner: λX.X(werner)

Contents First Last Prev Next J

6. Syntax-Semantics Interface

I We have seen how semantic structures are built, the last issue was how to model
syntax-semantic interface.

I We have seen that if we use CFG there is no tied connection between the two aspects.

I Similarly, this holds for other formal grammars, e.g. HPSG, TAG, etc.

I The Lambek Calculus is in a (formal) correspondence with Lambda Calculus.

I Hence, while proving the grammaticality of a structure (parsing), it builds the cor-
responding meaning representations.

Definition 6.1 (Categories and Types) Let us define a function type : CAT → TYPE
which maps syntactic categories to semantic types.

type(np) = e; type(A/B) = (type(B), type(A));
type(s) = t; type(B\A) = (type(B), type(A));
type(n) = (e, t).

Contents First Last Prev Next J

6.1. Curry-Howard Correspondence

The Curry-Howard correspondence tells us that every proof in the natural deduction
calculus for intuitionistic implicational logic can be encoded by a typed λ-term and
vice versa.

Thanks to this correspondence, the logical rules of this logic or of fragments of it
can be labeled with lambda terms as shown below for the non-associative product
free Lambek calculus, by means of example.

x : A ` x : A
(axiom)

∆ ` t : B Γ[x : A] ` u : C

Γ[(y : A/B, ∆)] ` u[x := y t] : C
(/L)

Γ, x : B ` t : A

Γ ` λx.t : A/B
(/R)

∆ ` t : B Γ[x : A] ` u : C

Γ[(∆, y : B\A)] ` u[x := y t] : C
(\L)

x : B, Γ ` t : A

Γ ` λx.t : B\A (\R)

Contents First Last Prev Next J

6.2. Example

s:knows(lori,mary)

��
���

���

HH
HHH

HHH

np

Lori:lori

np\s:

���
��

HHH
HH

(np\s)/np

knows:λx.λy.knows(y, x)

np

Mary:mary

np : Z ` np : Z

np : X ` np : X s : Y ` s : Y

np : X, np\s : V ` s : Y [V (X)/Y]
np : X, ((np\s)/np : P, np : Z) ` s : V (X)[P (Z)/V]

Hence, (P (Z))(X) where P,Z,X are the meaning representations of “knows”, “Mary”
and “Lori”, respectively. Relative pronoun.

Contents First Last Prev Next J

6.3. Lifting

We said before that for uniformity “werner” is also considered the set of the prop-
erties that uniquely identify him.

But we have assigned to proper names the syntactic category: np.

The correspondence guarantees there is no mismatch between categories and lambda.

np : werner ` np : werner s : z ` s : z

np : werner, X : np\s ` s : z[X(werner)/z]
(\L)

np : werner ` s/(np\s) : λX.X(werner)
(/R)

Which is the category assigned to QPs, too. Since they are of type ((e → t) → t)
–functions from properties to truth values.

Contents First Last Prev Next J

6.4. Remarks

The Lambek calculi are fragments of intuitionistic implicational logic. Consequently,
the lambda terms computed by it forms a fragment of the full language of lambda
terms.

First of all, since empty antecedents are not allowed and the Lambek calculi are
resource sensitive, viz. each assumption is used exactly once (no weakening and no
contraction), the system reasons about lambda terms with specific properties:

(i) each subterm contains a free variable; and

(ii) no multiple occurrences of the same variable are present.

Contents First Last Prev Next J

7. Limitations and Advantages

Limitations

I Long distance dependency via structural rules controlled by means of unary opera-
tors. Is this a good solution?

I What is the (linguistic) meaning of the unary operators?

I NL(3) does not account for non local scope construals.

I Which is the real linguistic coverage of the grammar?

Advantages

I simple principle at the heart of Logic and of natural language (residuation)

I syntax-semantic interface captured formally

I Grail: Automated Proof System

Method extend the logic of the minimum ingredients needed to increase its expressiv-
ity, but without reaching overgeneration problems and loosing the correspondence with
meaning representation.

Contents First Last Prev Next J

7.1. My current research on this

I with Moortgat, Goré and Kurtonina, we are looking at dual-Lambek Calculi
–considering structures on the right, and communication postulates between
Lambek and dual-lambek (Bi-Lambek). Bi-Lambek properly models non local
scope construal problem. It is complete with respect to the same class of models
of NL. It seems to be polynomial. But we have no (final) result on the Curry-
Howard correspondence... yet ;)

I with Anna Szabolsci we are studying semantic information that effect syntactic
distribution and how the grammar can handle them.

I Future (?): look for linguistically based semantic interpretation of the unary
operators (Anna Szabolsci and Natasha Kurtonina).

Contents First Last Prev Next J

	Main points
	Lambek Calculi
	Lambek Calculus: Model Theory
	Lambek Calculus: Kripke Models
	Frame Constraints: Structural Rules
	Modes of the Relation
	Lambek Calculus as a Logical Grammar (I)

	Lambek Calculus: Proof Theory
	Full Residuated System: NL()

	Lambek Calculus as a Logical Grammar (II)
	Residuated Logical Grammar complexity

	Conclusion: NL as Logical Grammar
	Formal Semantics: Main questions
	Logical Approach
	Formal Semantics: What and How
	Example
	Quantified NP

	Set-Theoretical and Functional Perspectives

	Models, Domains, Interpretation
	Lambda Calculus in Linguistics
	Application and Abstraction
	Quantified NPs

	Syntax-Semantics Interface
	Curry-Howard Correspondence
	Example
	Lifting
	Remarks

	Limitations and Advantages
	My current research on this

