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1. Recognition Device

I Aim: To build a language recognition device.

I Who: Lesniewski (1929), Ajdukiewicz (1935), Bar-Hillel (1953).

I How: Linguistic strings are seen as the result of function applications starting
from the categories assigned to lexicon items.
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2. Classical Categorial Grammar

I Language: Given a set of basic categories ATOM, the set of categories CAT is
the smallest set such that:

. if X ∈ ATOM, then X ∈ CAT;

. if X, Y ∈ ATOM, then X/Y, Y \X ∈ CAT

I Rules: The above categories can be composed by means of functional appli-
cation rules

X/Y, Y ⇒ X MPr

Y, Y \X ⇒ X MPl

X/Y Y

X
[MPr]

Y Y \X
X

[MPl]
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3. Classical Categorial Grammar. Examples

Given ATOM = {np, s, n}, we can build the following lexicon:

Lexicon

John, Mary ∈ np the ∈ np/n
student ∈ n some ∈ (s/(np\s))/n
walks ∈ np\s
sees ∈ (np\s)/np

Analysis

John walks ∈ s? ; np, np\s⇒ s? Yes

np np\s
s [MPl]

John sees Mary ∈ s? ; np, (np\s)/np, np⇒ s? Yes

np

(np\s)/np np

np\s [MPr]

s [MPl]
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who knows Lori ∈ n\n? ; (n\n)/(np\s), (np\s)/np, np⇒ n\n?

who
(n\n)/(np\s)

knows
(np\s)/np

Lori
np

np\s [MPr]

n\n [MPr]

which Sara wrote [. . .] ∈ n\n?

Modus ponens corresponds to functional application.

X/Y : t Y : r

X : t(r)
[MPr]

Y : r Y \X : t

X : t(r)
[MPl]

Example

np : john np\s : walk

s : walk(john)
[MPl]

np\s : λx.walk(x) (λx.walk(x))(john) ;λ−conv. walk(john)
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np : john

(np\s)/np : know np : mary

np\s : know(mary)
[MPr]

s : know(mary)(john)
[MPl]
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4. Logic Grammar

I Aim: To define the logic behind CG.

I How: Considering categories as formulae; \, / as logic connectives.

I Who: Jim Lambek [1958]

Lambek Calculus (Rules): Natural Deduction proof format [Elimination and
Introduction rules]

Besides functional applications rules – which correspond to the elimination of \, / –
we have their introduction rules. Γ ` A means that A derives from Γ; Γ,∆ stand
for structures, A,B,C for logic formulae.

∆ ` B/A Γ ` A
∆,Γ ` B [/E]

Γ ` A ∆ ` A\B
Γ,∆ ` B [\E]

∆, B ` C
∆ ` C/B [/I]

B,∆ ` C
∆ ` B\C [\I]
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5. Lambek calculus. Examples

which Sara wrote ∈ n\n?

which ` (n\n)/(s/np)

Sara ` np
wrote ` (np\s)/np [np ` np]1

wrote np ` np\s [/E]

Sara wrote np ` s [\E]

Sara wrote ` s/np [/I]1

which Sara wrote ` n\n [/E]

The logical formulas built from (\, •/) are interpreted using Kripke Models as below:

V (A •B) = {z |∃x∃y[R3zxy & x ∈ V (A) & y ∈ V (B)]}
V (C/B) = {x |∀y∀z[(R3zxy & y ∈ V (B))⇒ z ∈ V (C)]}
V (A\C) = {y |∀x∀z[(R3zxy & x ∈ V (A))⇒ z ∈ V (C)]}

NL is sound and complete with respect to Kripke models.

Extractions are accounted for by means of introduction rules.
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john ∈ np
np ` np Lex

; john ` np
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6. Lambek calculus. Semantics

john ` np : john [P ` np\s : P ]1

john P ` s : P (john)
[\E]

john ` s/(np\s) : λP.P (john)
[/I]1

np ` np : john

knows ` (np\s)/np : know [z ` np : z]1

john knows z ` np\s : know(z)(john)
[/E]

john knows z ` s : know(z)(john)
[\E]

john knows ` s/np : λz.know(z)(john)
[/I]1

⇓

The introduction rules correspond to λ-abstraction.
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7. Lambek calculus. Advantages

I Hypothetical reasoning: Having added [\I], [/I] gives the system the right
expressiveness to reason about hypothesis and abstract over them.

I Curry Howard Correspondence: Curry-Howard correspondence holds be-
tween proofs and terms. This means that parsed structures are assigned an
interpretation into a model via the connection ‘categories-terms’.

I Logic: We have moved from a grammar to a logic. Hence its behavior can be
studied. The system is sound, complete and decidable.
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8. Derivations

A ` B
〈A〉 ` 3B

[3R]

3A ` 3B
[3L]

A ` A
〈2↓A〉 ` A

[2↓L]

32↓A ` A
[3L]

A ` B
〈2↓A〉 ` B

[2↓L]

2↓A ` 2↓B
[2↓R]

A ` A
〈2↓A〉 ` A

[3R]

A ` A [2↓R]

A ` A
(A)0 ` ]A

[(·)0L]

A ` 0((A)0)
[0(·)R]

A ` A
0(A) ` [A

[0(·)L]

A ` (0(A))0 [(·)0R]
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9. Residuated and Galois Connected Functions

Remark 2 Let B′ be a poset s.t. B′ = (B,v′B) where x v′B y
def
= y vB x, and

h : B → A. If (f, h) is a residuated pair with respect to vA and v′B, then it’s Galois
connected with respect to vA and vB.

b vB f(a) iff f(a) v′B b iff a vA h(b)

Recall Consider two posets A = (A,vA) and B = (B,vB), and functions f : A →
B, g : B → A. The pair (f, g) is said to be residuated iff ∀a ∈ A, b ∈ B

[RES1] f(a) vB b iff a vA g(b)

The pair (f, g) is said to be Galois connected iff ∀a ∈ A, b ∈ B

[GC1] b vB f(a) iff a vA g(b)
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10. Interpretation of the Constants

V (3A) = {x | ∃y(R2
3xy & y ∈ V (A)}

V (2↓A) = {x | ∀y(R2
3yx ⇒ y ∈ V (A)}

V (0A) = {x | ∀y(y ∈ V (A) ⇒ ¬R2
0yx}

V (A0) = {x | ∀y(y ∈ V (A) ⇒ ¬R2
0xy}

V (A •B) = {z |∃x∃y[R3zxy & x ∈ V (A) & y ∈ V (B)]}
V (C/B) = {x |∀y∀z[(R3zxy & y ∈ V (B))⇒ z ∈ V (C)]}
V (A\C) = {y |∀x∀z[(R3zxy & x ∈ V (A))⇒ z ∈ V (C)]}
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11. Nonveridical Functions

definition [(Non)veridical functions (II)]

Let (
→
an, t) stand for a boolean type (a1, (. . . (an, t) . . .)) where a1, . . . , an are arbitrary

types and 0 ≤ n. Let f
(
→
a ,t)

be a constant.

1. The expression represented by f is veridical in its i-argument, if ai is a boolean

type, i.e. ai = (
→
b , t), and ∀M, g

[[f(xa1 , . . . , xai−1
, x

(
→
b ,t)
, xai+1

, . . . , xan)]]M,g = 1 entails [[∃
→
y→
b
.x

(
→
b ,t)

(
→
y→
b
)]]M,g = 1.

Otherwise f is nonveridical.

2. A nonveridical function represented by f
(
→
a ,t)

is antiveridical in its i-argument,

if ai = (
→
b , t) and ∀M, g

[[f(xa1 , . . . , xai−1
, x

(
→
b ,t)
, xai+1

, . . . , xan)]]M,g = 1 entails [[¬∃.
→
y→
b
x

(
→
b ,t)

(
→
y→
b
)]]M,g = 1.
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Notice that the base case of ai = t is obtained by taking
→
y empty.
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12. Dutch

In [van Wouden] it is shown that in Dutch polarity items are sensitive to downward
monotonicity. Among downward monotone functions we can distinguish the sets
below:

antimorphic antiadditive downward monotone
f(X ∩ Y ) = f(X) ∪ f(Y ) f(X) ∪ f(Y ) ⊆ f(X ∩ Y ) f(X) ∪ f(Y ) ⊆ f(X ∩ Y )
f(X ∪ Y ) = f(X) ∩ f(Y ) f(X ∪ Y ) = f(X) ∩ f(Y ) f(X ∪ Y ) ⊆ f(X) ∩ f(Y )

not nobody, never, nothing few, seldom, hardly
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13. Classification of NPIs in Dutch

This classification effects the classification of polarity items.

Negation NPIs PPIs

Minimal (DM)
Regular (AA)
Classical (AM)

strong medium weak
– – +
– + +
+ + +

mals ook maar hoeven
(tender) (anything) (need)

strong medium weak
– + +
– – +
– – –

allerminst een beetje nog
(not-at-all) (a bit) (still)

NPIs are licensed, whereas PPIs are antilicensed by a certain property among
the ones characterizing downward monotone functions. From this it follows that

I a NPI licensed by the property of a function in DM will be grammatical also
when composed with any functions belonging to a stronger set.

I if a PPI is ‘allergic’ to one specific property shared by the functions of a certain
set, it will be ungrammatical when composed with them, but compatible with
any other function in a weaker set which does not have this property.
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14. Antilicensing Relation

A weak PPI is antilicensed by antimorphicity, therefore it can be constructed with
any expression in a set equal to or bigger than AA, B/0AA. A medium PPI is
antilicensed by antiadditivity, therefore it can be in construction with any expression
in a set equal to or bigger than DM, B/0DM . From these types the following
inferences derive.

Let AM −→ AA −→ DM .

MPPI ` B/0(DM)
DM ` DM

0(DM) ` 0(DM)
[↓ Mon]

MPPI ◦ 0(DM) ` A
MPPI ` B/0(DM)

AA ` AA
0(AA) ` 0(DM)

∗

∗MPPI ◦ 0(AA) ` B

WPPI ` B/0(AA)
AA ` AA

0(AA) ` 0(AA)
[↓ Mon]

WPPI ◦ 0(AA) ` A
WPPI ` B/0(AA)

DM ` DM
0(DM) ` 0(DM)....
0(DM) ` 0(AA)

[↓ Mon]

WPPI ◦ 0(DM) ` B
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