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1. Logic & Language

Aim to find the universal core of all natural languages and their variations

How Using logic to:

I formally define grammaticality of sentences and understand how syntactic
structures are built

I formally define the meaning of sentences and understand how semantic struc-
tures are built

I model syntax-semantic interface
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1.1. Natural Language: syntax

I Syntax: “setting out things together”, in our case things are words. The main
question addressed here is “How do words compose together to form a grammatical
sentence (s) (or fragments of it)?”

I Categories: words are said to belong to classes/categories. The main categories are
nouns (n), verbs (v), adjectives (adj), determiners (det) and adverbs (adv).

I Constituents: Groups of categories may form a single unit or phrase called con-
stituents. The main phrases are noun phrases (np), verb phrases (vp), prepositional
phrases (pp). Noun phrases for instance are: “she”; “Michael”; “Rajeev Goré”; “the
house”; “a young two-year child”.

Structure: [[Michael]np [[bought]v [[the]det [house]n]np]vp]s

I Dependency: Categories are interdependent, for example
Ryanair services [Pescara]np Ryanair flies [to Pescara]pp

*Ryanair services [to Pescara]pp *Ryanair flies [Pescara]np

the verbs services and flies determine which category can/must be juxtaposed. If
their constraints are not satisfied the structure is ungrammatical.
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1.2. Natural language: semantics

The meaning of sentences is its truth value.

Model Given the domain (of entities) {a, b, c, d}, and the interpretation below

[[man]] = {a, b, c};
[[dog]] = {d};
[[fat]] = {a, b, c, d};
[[run]] = {a, b}; iv
[[knows]] = {〈c, b〉, 〈b, c〉, 〈a, b〉, 〈b, a〉}; tv
[[every man]] = {X|[[man]] ⊆ [[X]]}

= {{a, b, c}, {a, b, c, d}}.

The meaning representation for a sentence can be built from the meaning represen-
tations of its parts and is based on its syntactic structure.
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1.3. Natural language: syntax-semantics

Local Scope: A single linguistic sentence can legitimately have different meaning repre-
sentations assigned to it. For instance,

I “I saw the man with the telescope” (two syntactic structures!)

a. John [saw [a man [with the telescope]pp]np]vp ∃x.Man(x) ∧ Saw(j, x) ∧ Has(x, t)
b. John [[saw [a man]np]vp [with the telescope]pp]vp ∃x.Man(x) ∧ Saw(j, x) ∧ Has(j, t)

I Mary showed each boy an apple.

a. Then she mixed the apples up and had each boy guess which was his.

b. The apple was a MacIntosh.
The sentence has two possible meaning representations:

a. ∀y(Boy(y) → ∃x(Apple(x) ∧ Show(m, y, x)))
b. ∃x(Apple(x) ∧ ∀y((Boy(y) → Show(m, y, x))))

but only one syntactic structure: [Mary [[showed [each boy]] [an apple]]] (non-
local scope)
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1.4. Long distance dependencies

Interdependent constituents need not be juxtaposed, but may form long-distance
dependencies, manifested by gaps

I What cities does Ryanair service [. . .]?

The constituent what cities depends on the verb service, but is at the front of the
sentence rather than at the object position.

Such distance can be large,

I Which flight do you want me to book [. . .]?

I Which flight do you want me to have the travel agent book [. . .]?

Both non local scope construal and long distance dependencies are challenging phe-
nomena for formal analysis of natural language.
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1.5. Formal Grammar

A grammar is a formal device to recognize a language. This task is achieved via

I Categorization: a lexicon assigning words to categories. (re-writing rules
from non-terminal to terminals)

I Composition: rules specifying ways of categorizing phrases. (re-writing rules
from non-terminal to non-terminals)

Expressions that cannot be recognized by the grammar are ungrammatical.

Example Given the start symbol S, the terminal symbols a, b, and the rules below:

Rules
Rule 1 S → A B Rule 2 S → A S B
Rule 3 A → a Rule 4 B → b

the above grammar recognizes the string aabb. It can also be used to obtain its
structure/parse tree
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1.6. CFG for Natural Language

Categorization Composition

NP --> john S --> NP VP

IV --> walks VP --> IV

TV --> knows VP --> TV NP

DTV --> gives VP --> DTV NP NP

Adj --> poor N --> Adj N
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1.7. Logical Grammar

We want to find the Logic that properly models natural language syntax-semantics
interface.

I We consider syntactic categories to be logical formulas

I As such, they can be atomic or complex (not just plain A, B, a, b etc.).

I They are related by means of the derivability relation (⇒)

I To recognize that a string/structure is of a certain category reduces to prove the
formulas corresponding to the structure and the category are in a derivability
relation Γ ⇒ A

The slogan is:

“Parsing as deduction”
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1.8. Function/Implication and NL

We have seen that words (and phrases) can be interpreted as sets of entities or
set of properties, etc.. Alternatively, one can assume a functional perspective and
interpret, for example, “student” as a function from individual (entities) to truth
values, student(monika) = 1, student(rajeev) = 0.

The shift from the set-theoretical to the functional perspective is made possible by
the fact that the sets and their characteristic functions amount to the same
thing:

if fX is a function from Y to {0, 1}, then X = {y | fX(y) = 1}. In other
words, the assertion ‘y ∈ X’ and ‘fX(y) = 1’ are equivalent.

E.g. run: De → Dt; know: De → (De → Dt); every man: (De → Dt) → Dt

Hence, we need to “represent” functions and be able to “reason” on (compose) them.
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2. Pure logic of Residuation

The minimum we need to speak about functions is → that is governed by the
principle below.

(a) p, q ⇒ r iff p ⇒ q → r

But linguistic structures are:

I not commutative, hence we need to have a right (A\B –if A then B) and a left
implication (B/A – B if A).

I not associativity –we cannot freely change their bracketing.

I sensitive to the occurrence of words (we cannot freely reduce or add them),
hence no contraction and weakening is allowed.

Hence, the minimum logic we need is the logic of residuation expressed in (a).
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2.1. Residuation

Let 〈C,≤3〉 be a third partially ordered set, a triple of functions (f, g, h) such that
f : A×B −→ C, g : A× C −→ B, h : C ×B −→ A forms a residuated triple if

[RES2] ∀x ∈ A, y ∈ B, z ∈ C


x ≤1 h(z, y)

iff
f(x, y) ≤3 z

iff
y ≤2 g(x, z)


For instance

[RES2] ∀x ∈ A, y ∈ B, z ∈ C


x ≤1

z
y

iff
x×y ≤3 z

iff
y ≤2

z
x


Similarly, we can speak of n-ary residuated operators.
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2.2. Residuation: Tonicity and Composition

Saying that (f, g, h) is a residuated triple is equivalent to requiring

i)Tonicity: f(+, +), g(−, +) and h(+,−)

where + means, it preserve the order of its argument (upward monotonic).
e.g. f(a, b) ≤ f(c, d) if a ≤ candc ≤ d

where − means, it reverses the order of its argument (downward monotonic).
e.g. g(c, b) ≤ f(a, d) if a ≤ c andc ≤ d

ii)Composition : ∀x ∈ A, y ∈ B, z ∈ C



f(x, g(x, z)) ≤3 z
and

y ≤2 g(x, f(x, y))
and

f(h(z, y), y) ≤3 z
and

x ≤1 h(f(x, y), y)


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3. Non-associative Lambek Calculus (NL)

NL logical and structural language

FORM ::= ATOM | FORM⊗ FORM | FORM/FORM | FORM\FORM
X ::= FORM | X,X

Remark In sequent calculi we need both logical and structural language, the re-write rule
below establish the connection between ⊗ and its structural proxy ,:

A,B ⇒ C

A⊗B ⇒ C

Proof Theory For each logical operator (∗), Gentzen Sequents Calculi consist of a logical
rule introducing the ∗ on the left ([∗L)]) and on the right ([∗R)]) of the ⇒.

Let ∆,Γ, . . . and A,B, . . . stand for structures and formulas, respectively.

A,∆ ⇒ B

∆ ⇒ A\B (\R)
[RES2] ∀x ∈ A, y ∈ B, z ∈ C

 f(x, y) ≤3 z
if

y ≤2 g(x, z)


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This rule encodes half of the residuation condition holding between \ and , i.e. the struc-
tural proxy of ⊗.
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3.1. Non-associative Lambek Calculus (Cont’d)

The other half of the residuation condition is compiled in the [\L] and [/L].

∆ ⇒ B Γ[A] ⇒ C

Γ[A/B,∆] ⇒ C

∆ ⇒ B Γ[A] ⇒ C

Γ[∆, B\A] ⇒ C

The composition property is an instantiation of the rules above, e.g.

 f(x, g(x, z)) ≤3 z
is

(A/B)⊗B ⇒ A


where ∆ = B, C = A and Γ is empty.
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3.2. (Binary) Residuated System: NL

A ⇒ A
(axiom)

∆ ⇒ B Γ[A] ⇒ C

Γ[(A/B,∆)] ⇒ C
(/L)

Γ, B ⇒ A

Γ ⇒ A/B
(/R)

∆ ⇒ B Γ[A] ⇒ C

Γ[(∆, B\A)] ⇒ C
(\L)

B,Γ ⇒ A

Γ ⇒ B\A (\R)

Γ[(A,B)] ⇒ C

Γ[A⊗B] ⇒ C
(⊗L) Γ ⇒ A ∆ ⇒ B

(Γ,∆) ⇒ A⊗B
(⊗R)

Tonicity
upward mon. +/ +⊗+ \+
downward mon. /− −\
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3.3. Logical Grammar: Lexicon

CFG Lexicon Rules S

NP --> john S --> NP VP / \

IV --> walks VP --> IV / VP

TV --> knows VP --> TV NP / / \

NP --> mary NP TV NP

john knows mary

NL Lexicon (Categorization):

John, Mary: np walks: np\s knows: (np\s)/np
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3.4. Logical Grammar: Rules (Composition)

NL Rules (Composition): (/L) and (\L)

B
�� HH

B/A

β

A

α

B
�� HH

A

α

A\B

β

s

����

HHHH

np

john

np\s
���

HHH

(np\s)/np

knows

np

mary

np ⇒ np

np ⇒ np s ⇒ s

np, (np\s) ⇒ s
(\L)

np︸︷︷︸
john

, ((np\s)/np)︸ ︷︷ ︸
knows

, np︸︷︷︸
mary

⇒ s
(/L)
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3.5. Advantages and Limits

Advantages

I it identifies in the residuation principle the core of natural language
structure.

I it reduces cross-linguistic variations to variations w.r.t. structural rules and
lexicon.

I it captures the syntax-semantics interface in a clear way: NL corresponds to
λ-calculus (Curry-Howard correspondence). Hence, meaning representa-
tion is built as their by-product by simply by labeling the derivations with the
corresponding λ-terms.

Limits It does not account for non local scope construal and long distance
dependencies.
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4. Going on research: Bi-Lambek & Grishin

Aim We want to extend the expressivity of NL to overcome the undergeneration
problem (avoiding overgeneration) by shopping in the algebraic structure it lives in.

Ingredients

I (n-ary) Residuated operators

I (n-ary) Dual Residuated operators

I (n-ary) Galois Operators

I Connection between the different families of operators

Receipt

I increase the expressivity step by step to grasp the minimal logic needed.
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4.1. Dual Residuation

Recall Let 〈C,≤3〉 be a third partially ordered set, a triple of functions (f, g, h) such
that f : A×B −→ C, g : A×C −→ B, h : C×B −→ A forms a residuated triple if

[RES2] ∀x ∈ A, y ∈ B, z ∈ C


x ≤1 h(z, y)

iff
f(x, y) ≤3 z

iff
y ≤2 g(x, z)


Similarly a triple of functions (f, g, h) forms a dual residuated triple if

[DRES2] ∀x ∈ A, y ∈ B, z ∈ C


h(z, y) ≤1 x

iff
z ≤3 f(x, y)

iff
g(x, z) ≤2 y


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4.2. Bi-Lambek

Language

FORM ::= ATOM | FORM⊗ FORM | FORM/FORM | FORM\FORM
FORM⊕ FORM | FORM�FORM | FORM �FORM

X ::= FORM | X, X

Composition
A⊗ (A\B) ⇒ B B ⇒ A⊕ (A �B)

Tonicity

Tonicity
upward mon. +/ +⊗+ \+ +� +⊕+ �+
downward mon. /− −\ �− − �

Problem No communication between the two families of operators. The expressivity
of each logic does not increase.
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4.3. Grishin: Inequalities

Grishin identifies a class of system obtained from given algebraic systems by adding
certain inequalities to the axioms. In particular, he looks at associative Lambek cal-
culus (L) and its bi-counterpart (bi-L) enriched with neutral elements. The generalization
proceeds as below.

I We have 6 binary operations (3 res, 3 dual-res, w), hence 12 cases (w?, ?w).

I These 12 operators are divided into (i) left vs. right based on where they live w.r.t.
to ≤ (⇒); and (ii) upward (|w| = 0) vs. downward (|w| = 1) monotonic based on the
monotonicity of their argument (the ?).

I Grishin gives 6 inequality schema, aµx = awx if µ = w?, and aµx = xwa if µ =?w.

1. ∀a, b, c(aµ, bλc ≤ bλaµc) 4. ∀a, b, c((aλ⊥b)µ∗⊥c ≤|µ∗| bµ∗⊥aλc)
2. ∀a, b, c(bλaµ⊥c ≤|µ| aµ⊥bλc) 5. ∀a, b, c(aλ∗⊥bµc ≤|λ∗| bµ⊥aλ∗⊥c)
3. ∀a, b, c(aλ⊥bµc ≤|λ| bµaλ⊥c) 6. ∀a, b, c((cµ∗⊥b)µa ≤ (cλ∗⊥a)λb)

µ ?w w?
µ∗ w? ?w

µ ⊗? ?\ ?/ ⊕? ? � ?�
µ⊥ \? ?/ ?⊗ �? � ? ?⊕

ε = 0 ε = 1
x ≤ε y x ≤ y y ≤ x
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4.4. Grishin: Classes of inequalities

I Grishin proves that these 6 inequalities (of formulas) are mutually equivalent
(interderivable) given residuation (and dual-residuation), when both |λ| = 0
and |µ| = 0 (upward monotonic).

I The 6 mutually equivalent formulas identify classes of equivalent postulates.

I Out of the 12 cases of operators the combination of the upward monotonic ones
(viz. 4 left {⊗?, ?⊗, �?, ?�} and 4 right {⊕?, ?⊕, \?, ?/}) gives 16 classes of
6 mutually equivalent postulates, namely:

1. 4: associativity of res. operators (II) and of dual-res. (III);

2. 4: 3-commutativity of res. operators (II’) and of dual-res. (III’);

3. 4: mixed associativity of res. & dual-res operators (I and IV);

4. 4: mixed commutativity of res. & dual-residuation (I’ and IV’).

Each group of 4 classes consists of 2 classes and their symmetric (∼) cases –e.g.
(\)∼ = / and ( �)∼ = � .

The N’ are obtained by keeping the µ and switching to the (λ)∼ of the N.
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4.5. Remarks: inequalities strength

I Commutativity follows from II’ and III’ (3-commutativity), e.g. postulate 3.
a⊗ (b⊗ c) ≤ b⊗ (c⊗ a), take c = 1, a⊗ (b⊗ 1) ≤ b⊗ (1⊗ a) = a⊗ b ≤ b⊗ a.

I Class IV is weaker than the other classes (???).

1. Class IV (mix. ass. of res. and dual res) is provable from the having
a\b =def ¬a⊕ b, residuation, classes I and III.

If a\b = ¬a⊕ b, postulate 2. a\(c⊕ b) ≤ (a\c)⊕ b is a valid statement, viz.
¬a⊕ (c⊕ b) ≤ (¬a⊕ c)⊕ b, and so do the other equivalent postulates.
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4.6. Remarks: displayable equalities

displayable inequality: in each side of the ≤, the formula is built out of operators living
on the same side of the ⇒ in Display Logic.

I Each of the classes formed by taking both |µ| and |λ| as 0 (upw. mon) contains one
displayable inequality (two if they are mixed —one for each side of ⇒):

[ass. and 3-com] In group II and (II)∼ (its symmetric), and in II’ and (II’)∼ (resp.
III and (III)∼, and III’ and (III’)∼) they are the postulates 3. (resp. 2.).

[mix-ass. and mix-com] In group I and IV (resp. I’ and IV’) they are the postulates
2. and 3. (Similarly, for the symmetric cases).

I Equalities of these postulates are obtained by combining two classes:

by II plus (II)∼ the inequalities 3. become: a⊗ (c⊗ b) = (a⊗ c)⊗ b.

by II’ plus (II’)∼ the inequalities 3. become: a⊗ (b⊗ c) = b⊗ (c⊗ a).

Similarly, for the ⊕ by III plus (III)∼ and III’ plus (III’)∼

by I plus IV (resp. I’ and IV’) 2. become: a ⊕ (c/b) = (a ⊕ c)/b, (resp. b ⊕ (c\a) =
a\(c⊕ b)) and 3. become: a �(c⊗ b) = (a �c)⊗ b (resp. a �(b⊗ c) = b⊗ (a �c)).
(Similarly, for the symmetric cases.)
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5. Where we are and where we are going

I Hierarchy A Residuated Logics for linguistic analysis.

I Completness It has been proved for Bi-NL + Groups IV and IV’ (Kurtonina,
Moortgat and Goré)

I Proof System

. Display Logic (of course).

. Sequent Calculus: but we are still checking whether cut is admissible.

. Sequent Calculus based on de Groote’99 approach (context with a hole)

I Complexity de Groote’s approach could be used to show that Bi-NL (plus
Group IV . . .) is decidable in polynomial time. (started)

I Curry-Howard Correspondence to be done!

I Galois to be done. (started.)

I Unary Unary Residuated operators (Kurtonina Moortgat 95); Unary Galois
(Areces, Bernardi, Moortgat’00). Still to be done: communication. (started.)
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