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1. Logic view on Natural Language Semantics
The main questions are:

1. What does a given sentence mean?

2. How is its meaning built?

3. How do we infer some piece of information out of another?

Logic view answers: The meaning of a sentence 1. is its truth value, 2. is built from the meaning
of its words; 3. is represented by a FOL formula, hence inferences can be handled by logic
entailment.

Moreover,

I The meaning of most words refers to objects in the domain – it’s the set of entities, or set
of pairs/triples of entities.

I Composition is obtained by function-application.

I Syntax guides the building of the meaning representation.
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2. Distributional Models
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2.1. Semantic Space Model

It’s a quadruple 〈B, A, S ,V〉, where:
I B is the set of “basis elements” – the dimensions of the space.

I A is a lexical association function that assigns co-occurrence frequency of words to the
dimensions.

I S is a similarity measure.

I V is an optional transformation that reduces the dimensionality of the semantic space.
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2.2. Toy example: vectors in a 2 dimensional space

B = {shadow, shine, }; A= frequency; S : angle measure (or Euclidean distance.)

Smaller is the angle, more similar are the terms.
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2.3. Space, dimensions, co-occurrence frequency

Word Meaning Let’s take a 6 dimensional space: B = {planet, night, f ull, shadow, shine, crescent}:

planet night full shadow shine crescent
moon 10 22 43 16 29 12
sun 14 10 4 15 45 0
dog 0 4 2 10 0 0

The “meaning” of “moon” is the ~moon in the 6-dimensional space:

[[moon]] = {planet : 10, night : 22, f ull : 43, shadow : 16, shine : 29, crescent : 12}.

(Many) space dimensions Usually, the space dimensions are the most k frequent words (minus
stop words.). They can be plain words, words with their PoS, words with their syntactic relation
(viz. the corpus used can be analysed at different levels.)

Co-occurrence frequency Instead of plain counts, the values can be more significant weights
that take into account frequency and relevance of the words within the corpus. (e.g. tf-idf, mutual
information, log-likelihood ratio etc.).
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2.4. Background: Angle and Cosine

When the angle measure increases, the cosine measure decreases. (Hence, higher is the
cosine, more similar are the terms.)

The cosine of an angle α in a right triangle is the ratio between the side adjacent to the
angle and the hypothenuse. It is independent from the size of the triangle.

Contents First Last Prev Next J



2.5. Cosine similarity

cos(~x, ~y) =
~x · ~y
|~x||~y|

=

∑n
i=1 xi × yi√∑n

i=1 x2
i ×

√∑n
i=1 y2

i

in words: the inner product of the vectors, normilzed by the vectors length.

planet night full shadow shine crescent
moon 10 22 43 16 29 12
sun 14 10 4 15 45 0
dog 0 4 2 10 0 0

cos( ~moon, ~sun) =
(10 × 14) + (22 × 10) + (43 × 4) + (16 × 15) + (29 × 45) + (12 × 0)

√
102 + 222 + 432 + 162 + 292 + 122 ×

√
142 + 102 + 42 + 152 + 452 + 02

= 0.54

cos( ~moon, ~dog) =
. . .

. . .
= 0.50

to account for the effects of sparseness (viz. the 0 values) weighted values are used and dimensions
are reduced (e.g. by Singular Value Decomposition.)
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2.6. DM success on Lexical meaning

DM captures pretty well synonyms. DM used over TOEFL test:

I Foreigners average result: 64.5%

I Macquarie University Staff (Rapp 2004):

. Ave. 5 not native speakers: 86.75%

. Ave. 5 native speakers: 97.75%

I DM:

. DM (dimension: words): 64.4%

. Best system: 92.5%
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2.7. DM: Limitations

Focus on words, only recently on composition of words into phrases. Most used approach:

~waters + ~runs (additive model) or ~waters × ~runs (multiplicative model).

Our aim Learn from the logic view to compose DM words meaning representations into
DM representations of phrases.
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3. Back to the Logic View: Meaning Composition
The meaning of a sentence 1. is its truth value, 2. is built from the meaning of its words;
3. is represented by a FOL formula, hence we use Logic entailment to handle inferences.
Moreover,

I The meaning of most words refers to objects in the domain – it’s the set of entities,
or set of pairs/triples of entities.

I Composition is obtained by function-application – due to “complete” vs. “incom-
plete” words distinction.

I Syntax guides the building of the meaning representation. Lambek: function ap-
plication (elimination) and abstraction (introduction rule).

These (blue) ideas have been incorporated into the DM framework.
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3.1. Pre-group view on Distributional Model

Grefenstette, Sadrzadeh, Clark, Coecke, Pulman [2008-2011]

Assumption 1: words of different syntactic categories live in different spaces.

I NS : space of nouns. The meaning of elements in this space is captured by a vector.

I (N⊗N)S : TV space. The meaning of elements in this space is captured by a matrix.

Assumption 2: The matrices in the (N ⊗ N)S are built out of the vectors in NS – the
meaning of a transitive verb is obtained from the meaning of the nouns that occur as its
subject and object.
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3.1.1. Nouns’ space By means of example, they take the space of nouns to be char-
acterized by the words that in the corpus are in a dependency relation with the nouns
(adjective, verbs, etc.).

NS = { fi| fi − link − wn in the dependency parsed corpus, for all nouns}

For instance,

NS = {arg-fluffy, arg-ferocious, obj-buys, arg-shrewed, arg-valuable}

the meaning of a word living in NS , i.e. nouns, is the vector obtained computing for each
dimension (feature) the tf-idf value (how relevant is the co-occurrence of the word with
the feature for the given corpus.). [[wn]] = ~w = { fi : tf-idf| fi ∈ NS }. E.g.

[[cat]] = ~cat = {arg-fluffy: 7, arg-ferocious:1, obj-buys: 4, arg-shrewed:3, arg-valuable:1}
[[dog]] = ~dog = {arg-fluffy: 3, arg-ferocious:6, obj-buys: 2, arg-shrewed:1, arg-valuable:2}
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3.1.2. Transitive verbs’ space The novel contribution w.r.t. “traditional” DM view:

The space of transitive verbs is characterized by the pairs of noun’s features.

TVS = {( fi, f j)| fi, f j ∈ NS }

the meaning of a word living in TVS , i.e. transitive verbs, is a superposition, viz. it
is the matrix obtained by taking for each ( fi, f j) in TVS the sum of the result of the
multiplication of the value of the properties of the subjects and objects of the verb.

[[wtv]] = {( fi, f j) : Σ( f xn
i × f yn

j )|( fi, f j) ∈ TVS }

where xn and yn are the subject and object of “w” within the same sentence as found in
the dependency parsed corpus, and f xn

i (resp. f yn
j ) are the tf-idf weight associated to fi

(resp. f j) in the ~xn (resp. ~yn).
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3.1.3. Example: transitive verb Let’s take a corpus with only one sentence with the verb
“chase”, viz. “dogs chase cats” .

Recall, the meaning of “dog” and “cats” are the vectors:

arg-fluffy arg-ferocious obj-buys arg-shrewd arg-valuable
dogs 3 6 2 1 2
cats 7 1 4 3 1

The meaning of “chase” is a represented by the matrix below.

arg-fluffy arg-ferocious obj-buys arg-shrewd arg-valuable
arg-fluffy (3 x 7) + 0 (3 x 1) + 0 (3 x 4) + 0 (3 x 3) + 0 (3 x 1) + 0
arg-ferocious (6 x 7) + 0 (6 x 1) + 0 (6 x 4) + 0 (6 x 3) + 0 (6 x 1) + 0
obj-buys (2 x 7) + 0 (2 x 1) + 0 (2 x 4) + 0 (2 x 3) + 0 (2 x 1) + 0
arg-shrewd (1 x 7) + 0 (1 x 1) + 0 (1 x 4) + 0 (1 x 3) + 0 (1 x 1) + 0
arg-valuable (2 x 7) + 0 (2 x 1) + 0 (2 x 4) + 0 (2 x 3) + 0 (2 x 1) + 0

If in the corpus there were other sentences with “chase” the values above need to be added to those
resulting from the other subject and object pairs (i.e. the addition was not with 0.) -superposition.
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3.1.4. Matrix vector composition The composition of TV with the subject and the object
is obtained by

1. ~sub j ⊗ ~ob j which results into a matrix. Note ~sub j ⊗ ~ob j , ~ob j ⊗ ~sub j

2. TV � ( ~sub j ⊗ ~ob j) which again results into a matrix – Sentences live in the (N ⊗ N) space.

Given ~dogs and ~cats and the matrix of “chase”:

d1 d2
dogs 3 6
cats 7 1

chase d1 d2
d1 n1 n2
d2 m1 m2

the matrices of ~dogs ⊗ ~cats and of the sentence (chase � ( ~dogs ⊗ ~cats)) are

~dogs ⊗ ~cats d1 d2
d1 3 × 7 3 × 1
d2 6 × 7 6 × 1

dogs chase cats d1 d2
d1 n1 × 3 × 7 n2 × 3 × 1
d2 m1 × 6 × 7 m2 × 6 × 1
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3.2. Different learning strategies for complete vs. incomplete words

Baroni & Zamparelli 2010:

I a “complete” word is represented by a vector.

I an “incomplete” word is represented by a matrix.

They look into Adjective-Noun composition. Hence, only on functions from “atomic” to
“atomic” categories (from noun to noun – from vectors to vectors!)

Intuition Learn the vectors and matrices in different ways.

I induce the vectors (complete words’ meaning) from the corpus

I learn the matrix (ATOMIC → ATOMIC function’s meaning) from the argument
and the value of the function application pairs.
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3.3. Learning the function/matrix

The linear map for “red” is learnt, using linear regression, from the pairs (N, red-N).
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3.4. Function application as inner product

From the vectors input pairs, linear regression gives us the values of the “red” matrix

input pairs Learned matrix
d1 d2

moon 301 92
red moon 11 90
. . . . . . . . .

{

red d1 d2
d1 n1 n2
d2 m1 m2

Function application is performed by the inner product and returns a vector:
~red · ~moon =

∑n
i=1 redi × mooni

d1 d2
red moon (n1 × 301) + (n2 × 92) (m1 × 301) + (m2 × 92)

To double check the validity of the approach: the result ~red · ~moon has been compared to
the vector induced from the corpus: positive results.
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3.4.1. DM Composition: “function application” Baroni & Zamparelli 2010, they
have

I trained separate models for each adjective;

I (a) composed the learned matrix (function) with a noun vector (argument) by inner
product (·) the adjective weight matrix with the noun vector value;

I composed adjectives with nouns using: (b) the additive and (c) the multiplicative
model –starting from adjective and noun vectors;

I harvested vectors for “adjective-noun” from the corpus;

I compared (a) “learned_matrix · vector_noun” (“function application”) vs. (b) “vec-
tor_adj + vector_noun” vs. (c) “vector_adj × vector_noun”;

I shown that – among (a), (b), (c) – (a) gives results more similar to the “harvested
vector_adj-noun” than the other two methods.
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3.5. DM: Meaning Composition

Ideas imported into DM (a) Meaning flows from the words; (b) “Complete” (argument)
vs. Incomplete (function) words; (c) meaning representations are guided by the syntactic
structure.

Lesson learned

a “complete” word is represented by a vector
vs.

an “incomplete” word is represented by a matrix.

Function application as inner product between the matrix and the vector.
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4. Back to the logic view: Entailment
3. How do we infer some piece of information out of another? Logic view:

Entailment Partially ordered domains

[[tall student]] ≤(e,t) [[student]] iff ∀α ∈ De

[[tall student(α)]] ≤t [[student(α)]] iff
[[tall student]]([[α]]) ≤t [[student]]([[α]]) iff
[[tall student]]([[α]]) = 0 or [[student]]([[α]]) = 1.

Monotonicity Let f : A → B be a function and let ≤A, ≤B be partial orders on A and B,
respectively. Then,

a. f is “monotone increasing” (↑Mon) iff ∀x, y ∈ A, x ≤A y implies f (x) ≤B f (y).

b. f is “monotone decreasing” (↓Mon) iff ∀x, y ∈ A x ≤A y implies f (y) ≤B f (x).

Some tall student wanders
Some student wanders (↑)

Every student wanders
Every tall student wanders (↓)
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4.1. DM success on Lexical entailment

Lexical entailment Cosine similarity has shown to be a valid measure for the synonymy
relation, but it does not capture the “is-a” relation – e.g. it’s symmetric!

Kotlerman, Dagan, Szpektor and Zhitomirsky-Geffet 2010 see is-a relation as “feature
inclusion” and propose an asymmetric measure. Intuition behind their measure:

1. Is-a score higher if included features are ranked high for the narrow term.

2. Is-a score higher if included features are ranked high in the broader term vector as
well.

3. Is-a score is lower for short feature vectors.

Very positive results compared to WordNet-based measures.
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4.2. DM: Limitation

So far focus on lexical entailment

Our aim DM entailment between meaning representations: from words to phrases.
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4.3. Learning the entailment relation

Bernardi, Baroni, Ngoc, Shan – work in progress

Training Testing Accuracy
NOUN1 < NOUN2 ADJ NOUN < NOUN Noun1 < Noun2 71%

2492 pairs 2770 pairs
Q1 NOUN < Q2 NOUN 25067 pairs 2785 pairs 92%
Q-↑ NOUN1 < Q-↑ NOUN2 tot. 2700 pairs tot. 300 pairs 57%
Q-↓ NOUN2 < Q-↓ NOUN1

Data Pairs were creating using:

Quantifiers: many, several, each, some, all, most, much, both, either, few, every, no.

Q-↑: some, several, these, those vs. Q-↓: few, all, no, every.

Nouns in is-a relation: taken from WordNet.
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5. Connection with Moortgat’s talks

N/N ` N/N : X3

N/N ` X2 : N/N N ` X1 : N
N/N ⊗ N ` N : X2 X1

(/E)

N/N ⊗ (N/N ⊗ N) ` X3 (X2 X1) : N
(/E)

Instantiate the categories with one of the word belonging to them e.g. “black young dog”, the final
meaning representation of the actual string is obtained by replacing the corresponding proof-term
variables with the actual meaning representation.

Logic view: word meaning is represented by lambda terms (representing the set-theoretical inter-
pretation), hence replace

X3 with λX.λy.black(y) ∧ X(y), X2 with λY.λx.young(x) ∧ Y(x), X1 with λz.dog(z)

{ λx.black(x) ∧ young(x) ∧ dog(x)

DM view: word meaning is represented by vectors, hence
~black · ( ~young · ~dog){ a new vector.
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6. Back to the Logic View: what else?
1. The meaning of a sentence is its truth value, 2. is built from the meaning of its words;
3. is represented by a FOL formula, hence we use logic entailment to handle inferences.
Moreover,

I The meaning of most words refers to objects in the domain – it’s the set of entities,
or set of pairs/triples of entities. Quantifiers are second order functions.

I Composition is obtained by function-application.

I Syntax guides the building of the meaning representation. Lambek: function ap-
plication (elimination) and abstraction (introduction rule).

Open questions in DM view What’s the meaning of a sentence? What’s the meaning of
“entities”, e.g., “John”. Does a DM representation of e.g. quantifiers differ from a matrix?
How can structure be de-composed in a DM representation?
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