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Abstract

This paper describes the process to construct a categorial grammar deriva-
tions bank for [talian by means of an incremental statistical parser based on
proof nets. The main research line behind this work lies on the attempt to
merge the advantages of a logical approach to linguistic analysis with the
ones of statistical and data-driven methods. In particular, we aim to maintain
the basic idea of CG framework and overcome its limitations when turning
to real life applications. We first introduce the reader to Categorial Type
Logic formalism, a particular extension of CG, then we address the issue
of enhancing the syntactic categories composition via statistical information
along with the overall procedure of building the derivations bank. Finally,
we present our first evaluation of the system.

1 Introduction

Categorial Grammar (CG) is a lexicalized formal grammar well known for its
tied connection between syntax and semantics. Variants of it have been used to
reach wide coverage grammar for English [8] and Dutch [13]. Its elegant syntax-
semantics interface has already provided promising preliminary results that could
bring to enrich the English CCGbank with semantic information [2]. A semanti-
cally annotated treebank would be a highly valuable resource for many language
technology applications. We believe CG can help reaching this ambitious goal.
We propose to extend the logical framework shown in [13] following a sta-
tistical approach as in [8] to help building a bank of Italian CG derivations. The
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focus of the present paper is on the use of an incremental statistical parser based
on proof nets to be trained on a set of CG derivations obtained by starting from the
dependency treebank developed at Turin University, TUT [3].

Our work is closely related to the recent developments of the TUT project based
on the use of incremental processing and of a Dynamic Version of Tree Adjoining
Grammar (DVTAG) [11] to reach a wide coverage Italian grammar. Since we have
started from the same training set, a comparison between their DVTAG and our CG
might shed lights on similarity and differences between the two formalisms and
extend the results presented in [14].

The main research line behind the work presented in this paper lies on the at-
tempt to merge the advantages of a logical approach to linguistic analysis with
the ones of statistical and data-driven methods. In particular, we aim to maintain
the basic idea of CG framework which captures the essential nature of linguistic
structure composition and overcome its limitations when turning to real life appli-
cations. So far our attention has been focused on the enhancement of the syntactic
categories composition via statistical information, we plan to make a similar move
at the semantic level too and exploit the link between syntax and semantics to im-
prove the performance of the parser when applied to large data.

In Section 2 we introduce the version of CG used as formal grammar as well
as the proof system adopted and the parser we developed. In Section 3, we briefly
describe the dependency tree bank used to derive the training set of proof nets on
which we train our parser. Finally, in Section 4 we present our first evaluation.

2 Categorial Type Logic

Categorial Type Logic (CTL) [12] is a family of logics tracing back to CG. As in the
latter grammar, in CTL categories are either atomic formulae (e.g. n,s,np,dp for
noun, sentence, noun phrase and determiner phrase), or functional formulae (e.g.
(np\s)/dp could be assigned to an expression that requires a determiner phrase on
the right and a noun phrase on the left to yield a sentence). Differently from CG,
in CTL recognizing that a given string of categories, Cati,...Cat,, is of a certain
category C means to prove that the former derives the latter: Caty,...Cat, - C. The
logics of the CTL family share logical rules, namely function application and ab-
straction, and differ with respect to their packages of structural rules. This distinc-
tion is reflected on the linguistic theory behind the approach: the main linguistic
claim is that the core logic captures the core of linguistic structure composition,
while structural rules capture cross-linguistic variations. The parser presented in
this paper accounts for the core logic only. The usage of structural rules allows
to avoid multiple type lexical assignments when linguistically unjustified and re-
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duces the size of the lexicon. They extend the set of derivability relations among
categories, allowing to use only the simpler type (the one that derives the others)
in the lexicon with obvious advantages both at theoretical linguistics and computa-
tional linguistics level. In further works we will employ structural rules to reduce
the number of lexical types assigned to a same word. In this paper, we are going
to focus on CG functor-argument (fa) structures and on structural and dependency
information carried by the syntactic categories.

An fa-structure for an expression is a binary tree where the leaf nodes are la-
beled by lexical expressions (words). We use < and > symbols in the internal nodes
to indicate the position of functors as illustrate in Figure 1.

i\<
—
—
/ T
/ /N

sldp dp/n n (n\n)/(dp\s) (dp\s)/dp dp/n n

| I [ I I | 1
Governd il partito che vinse le elezioni
governed the party that won the elections

Figure 1: Example of binary tree.

For example, ‘vinse’ is the functor taking ‘le elezioni’ as argument on its right
(>), whereas ‘che vinse le elezioni’ is the functor taking ‘partito’ as argument on
its left (<).

Note how much structural information is carried by a category. For example,
the category assigned to the relative pronoun ‘che’ says that: (i) it takes on its right
a sentence missing a dp in a subject position and that (ii) the composed constituent
(‘che vinse le elezioni’) modifies the noun occurring on the left of the relative
pronoun. In this way, it percolates the dependency relation between the verb ‘vinse’
of the relative clause and the missing subject to the noun ‘partito’, subject of the
main sentence.

Different bracketing of the linguistic structures corresponds to different depen-
dencies among words. For instance, the string ‘sede del partito comunista’ could
receive the two parse trees in Figure 2. For easy of later references to the atomic
formulae we need to number them, but numbers do not express any conceptual
difference.

In CTL these differences boil down to differences between the matching among
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sede del partito comunista sede del partito comunista
seat of the party communist seat of the party communist

Figure 2: Structural ambiguity example.

atomic formulae. For instance the different dependency relation between ‘partito’
with ‘del” and with ‘comunista’ in the left and right trees, respectively, is captured
by the different matching holding for the atomic formula #ns: it matches n4 in the
left tree and ng in the right tree. This intuitive idea has been formalized in the proof
system known as proof nets used by our parser and briefly introduced below.

Polarity position The main observation to highlight is the well known notion
of polarity position of the implication (—), namely in 4 — B, 4 is in a negative
position (it is what the function is looking for to yield B ) and B is in a positive
position (it is the value that will be obtained if the 4 is provided). We mark negative
and positive positions by means of e and o, respectively, 4* — B°. The counting of
polarity satisfies the basic equivalences: ++ = +,—+ = —,—— = +, hence in a higher
order function like (4* — B°)* — C°, 4 is in a positive position, since it is under o
twice.

Within the CTL framework, this notion appears both at the level of categories
and at the level of derivation due to the connection between \,/ and + with —:

1. functional categories: B°/A® and A°\B°

2. derivation: Cats,...,Caty v C°

notice, how the counting of polarity is applied at the functional category
level, for instance in the case of the higher order category assigned to ‘che’

is (n*\n®)/(dp°\s®).

Function application corresponds to the matching of categories of opposite po-
larity. For instance in the trees given in Figure 2 we have the following situation:

left tree right tree
—(0) +@)|-(0 +()
ni na ni na
n3 Hg ns ng
ns n4 ny n4
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This information among the atomic formulae captures the relations represented
by the different links in the corresponding dependency trees below.

T SN TN N

sede del partito comunista sede del partito comunista
seat of the party communist seal of the pary communist

Figure 3: Dependency trees.

2.1 Proof Nets

The main concepts behind the use of proof nets are (i) the order of occurrences and
polarity of the leaves (i.e. the atomic sub-formulae of the structure to be parsed) and
(i1) the shape of their links. The former is determined by recursively applying the
unfolding rules in Figure 4, which formally express the idea of polarity introduced
intuitively above (see [19, 14] for further details)!

A0 B A B B A B A
A4 N /SN S N/
AVBe A/B* AVBe A/Be

Figure 4: Unfolding rules for building proof nets.

The proof net of the sentence considered above is given in Figure 5.

n Vi
e dp\s >[§s/
®
&/dp dp/n ( n\n )/( dp\s ) ( dp\s )dp® dp/n 5°
Governo 11 pamto che vmse le elezmm
governed the party that won the elections

Figure 5: Example of proof net.

An unfolded structure could be completed by means of different links among
the leaves. Correctness criteria have been defined to rule out those proof struc-

'The unfolding rules simply capture the logical equivalences: A — B= AV B, =(4V B) = =4 A
—B and ——4 = 4 Think of ® and ’® as A and V respectively and e as —, we have that e.g. (s/dp)® =
(5°9dp*)® =s*®dp°.
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tures that do not correspond to logical proofs, hence are not proof nets. We take as
formally acceptable only those proof nets that are planar DR-acyclic proof struc-
ture [5], i.e. proof nets with no crossing axiom links and with specific paths linking
the formulae in the trees.

Finally, note that for a same structure there could be more than one axiom
linking possibility. This means that there could be more than one proof net that
satisfies the correctness criterion. In some cases this is due to real ambiguity of
natural language structures, in others to syntactic ambiguities that would be ruled
out if semantics is also taken into consideration. Furthermore, among the former,
there are attachments that are more plausible than others. For instance, the two
formally correct proof structures of the example considered above ‘sede del partito
comunista’ are given in Figure 6.

”° n2°  nst na’ ns* ne° n7 n® n2®  n3t na’ ns* ns° n7
na\ns 2 naws® 2
& &)
nr* (n2\is)/ne* ns* newns n* (n2\ns)/na * ns* newnz *
1 | I | I | 1
sede del partito comunista sede del partito comunista
seat of the party communist seal of the party communist

Figure 6: Proof structure for the sentence ‘sede del partito comunista’.

In the following we will show how our incremental statistical parser checks the
correctness criteria, links the axioms and rank the probability of the proof nets.

2.2 Incremental Parsing

Incremental processing is relevant for language modeling [11] and dynamic formal
semantic representation [20]. By parsing the input words from left to right, the
language processor may carry out a semantic interpretation of the partial structures.
Incremental parsing for CTL family is a challenging approach to natural language
processing and has been well discussed in the literature [16, 17, 18].

This section explains our statistical CTL parser based upon the hypothesis of
incrementality: words are processed in a left-to-right fashion, and all the correct
proof structures are kept at each step, returning a set of proof nets when the sen-
tence processing is ended [17, 5]. After explaining our implementation of incre-
mentality, we will switch to analyze more in depth how we improve parser capabil-
ities with statistical information. Statistic information allows the parser to choose
solutions with high likelihood, speeding the parsing operation by pruning bad syn-
tactic representation during the left-to-right processing. Many researchers have
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investigated how parsing for CG benefits from statistic information. Our work has
been inspired mostly by the results obtained in [9, 15].

In order to build linkages that allows to incrementally check the proof nets in-
tegrity we adopted the switch graph method proposed in [5] that however does not
handle the planarity criterion. The latter requires axiomatic linkages to be drawn
as a planar graph above the sequence of axiomatic formulae. The planar connec-
tion of axiomatic polar types of a proof structure is not difficult to implement, for

example in [16] a CKY-style algorithm is proposed.

Because an axiomatic linkage corresponds to the bracketing of a string accord-
ing to a context-free grammar [18], in order to tabulate axiomatic links we used a
Earley-style parser [7] over a fixed grammar, here expressed in Backus-Naur form:

S:u=48S S =4
Au=a®°Sa® A:=a"S a® forevery atomic category a
A=a%a’ A=a*a® for every atomic category a

S corresponds to those subsequences of axiomatic formulae over which a sub-
linkage (or sub proof structure) exists, while 4 corresponds to those subsequences
over which a sub-linkage bracketed by a single axiom link exists. For instance,
S may correspond to the subsequence dp® dp° n® n° n® n° of Figure 5, while 4
may correspond to the subsequence n* n° n* n°. Any proof structure or sub-linkage

constructed with this grammar will satisfy the planarity property of proof nets.
For the running example started in Figure 5 we obtain the following grammar:

HS =48 2)S =4 3NAu=dp®dp* 4)A.=dp°Sdp*

5YAu=dp*dp® 6)A:=dp*Sdp® T)A:=5°s* 8 Au=5°S5s*

NA:=5*s° 10)A4::=5*S s° 1) A:=n°n® 12)4::=n°S n*

13)4 ::=n"n° 14y 4:=n*S n°
These rules can be obtained out of the sequence of axiomatic formulae by checking
for each literals all the literals on its right, requiring a quadratic time of complexity.

Given a CG lexicon, the parser discussed so far is able to retrieve all the pos-
sible proof nets for an input sentence, i.e. all the possible derivations for an input
sentence within the CTL logical framework. Of course many of these solutions are
undesired, because they refer to wrong bracketing, representing wrong dependency
assignments. We use statistic information to assign a weight to each solution and
choose the solution with highest likelihood. To this end, we improved the incre-
mental parser by assigning each axiom link with a probability value extracted from
a given training Treebank. During the parsing axiom links are placed from left
to right upgrading with their own probability the whole probability of the proof
structure they belong to.

Given two unfolded structures S and S, whose roots and leaves are the cate-
gorial types T and 7> and the atomic formulae a} ...aj and a; .. .a’z‘ , respectively.
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Let them be connected by an axiom link between ali and aé with polarity p; and p;,
respectively, we call extended axiom link the tuple o = (T, p1,i, 12, p2, j).

Let D be the set of all the extended axiom links, we define the function prob :
D — [0,1] as following

_ | freq(Ty,p1,i. T2, p2, ) | freqT1,p1,i))  ifpr=o
probi@) = { Sreq((T1,p1,6. T2, p2, ) | freq({T2, p2, /) ifpa=o

where freq is a function which returns the frequency of its input, that is the
number of times its input has appeared. Therefore, for each extended axiom link «,
its probability is calculated as the ratio between the frequency of & and the overall
frequency of the root categorial type containing the positive atomic formula of the
axiom link.

Finally, we define the probability of a given proof net P (prob(P)) as the prod-
uct of all extended axiom links of P, that is prob(P) = Ilyaepprob(a).

0.25 0.3

0.6 0.4 '—|

dp*

§ dp ° dp . ne n . n o n- ),3 (lp. ne n §° dpc dpa 5 dpc KOk dp Bl
\/ ‘ N A 4 W \/
@ ) nw*® dp\s® AV dp\s® dp\s® ®
@ & &
s/dp® dp/n® ne (na)/(dp\s)*® (n\)/(dp\s)* (dp\s)/dp® stdp® 5°
0.3 0.55 0.45 0.7
1 1 J 1
ne  n®  ont s° dpt dp° s dp® dp* n° n®  nt s° dp* dp° s* dp° dpt n° n*
N4 W \?% N4 W \/ )
® v * dp\s® dp\s® AN dp\s® dp\s® ®
(2 & =g &)
dp/n® (n\/(dp\s)® (dp\s)/dp* dp/n® (n\n)/(dp\s)* (dp\s)ldp* dp/n® nt

Figure 7: Example of probability weight assignment for axiom links

We used TUT as training Treebank to collect the statistical information for each
possible extended axiom link. Figure 7 shows an example of probability weight
assignments for the extended axiom links of the example seen so far. Given these
values, the probability of the proof net of Figure 5 is equal to 0.9355x1073 .
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3 Training set: Converted Turin University Treebank

The Turin University Treebank (TUT) [3] is a publicly available corpus of ca. 1800
sentences”. The annotation format is based on the dependency paradigm centered
upon the notion of predicate-argument structure. The relations of TUT trees are an-
notated by following a model called Augmented Relational Structure (ARS) which
allows for a clear distinction of various components in each relation. Each rela-
tion is therefore implemented as a feature structure that can include values for a
morpho-syntactic, a functional-syntactic and a semantic component.

VERB-RMOD+RELCL

VERB-SUBJ DET+DEF-ARG VERB-SUBJ \ VERB-OBJ DET+DEF-ARG
Governo il partito che vinse le elezioni
governed the party that won the elections
V TOP-VERB DT N PR REL \ DT N

Figure 8: Example of TUT dependency annotation.

Figure 8 shows an example of TUT dependency annotation for the sentence
‘Governo il partito che vinse le elezioni’3. Each node in the dependency structure
contains a terminal word and the PoS tag of the word. Each label on the edges
represents a head-dependent relation, following the ARS model. For example, the
relation DET+DEF-ARG, that links the dependent noun ‘partito’ with the head
determiner ‘il°, contains the syntactic information that the noun is argument of the
determiner.

3.1 Translating TUT Trees to CTL Proof Net

In order to obtain a CG lexicon suitable for parsing within CTL formalism, we con-
verted TUT dependency format to binary constituency format. Thus, we translated
TUT trees into binary trees which represent CG derivations through application
rules, and therefore correspond uniquely to CTL proof nets. This operation re-
quired a preprocessing of the starting Dependency Structure, however we won’t go
into the details of this process since it is out of the scope of this paper.

thtp://www.di.unito.it/~tutreeb/index.htm1

3This sentence does not belong to TUT, it is the adaptation of the example seen so far to the TUT
representation format. Moreover, the image presented here graphically differs from the graphic tree
representation done by TUT’s authors, but it is easier to compare with fa-structures and proof nets
and still equivalent to the original ones.
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The next step in building a CTL lexicon consists in extracting categorial types
by means of type inference algorithms which create a set of word-type pairs. [4]
proposes a categorial type induction algorithm that takes as input functor-argument
structures. The algorithm follows two steps: type assignment and type unification.
The type assignment operation works top-down starting from the type of the root
node of an fa-structure and applying two simple rules based on the direction of the
function-argument relation, either < or >. These rules are depicted in Figure 9.
The type unification reduces the set of type assignments to a word by identifying
type assignments that can be unified (see [1].)

T Te——

type of the root

< >
direction of W/ Dypes
Functor-Argument /
Y Y\T

relation T/X X

Figure 9: Type assignment

We instantiate atomic categories using the grammatical relations and the PoS
information given in TUT. By running the unification algorithm we induce a lexi-
con containing all the types obtained per each word.

4 Evaluation

There exists a one to one correspondence between binary tree obtained from TUT
and CTL proof nets. For example, the binary tree depicted in Figure 1 corresponds
to the proof net in Figure 5. By translating trees from TUT treebank into CTL
derivations we are already building a first CTL derivations bank. Therefore statis-
tical information can be extracted in order to obtain a database of weighted axiom
links, see by means of example Figure 7.

In order to run a first experiment, we have chosen to start from a subset of
TUT that contains dependency structures with a low level of structural complex-
ity. To this end, we have adopted the structural complexity definition proposed
in [10]: the structural complexity of a dependency structure is the total length of
the dependency links in the structure, where the length of a dependency link is one
plus the number of words between the head and the dependent. This made possi-
ble to execute a first grammar induction and collect a first database of axiom links
probability.

From the 1800 trees of TUT we extracted 443 trees with structural complexity
less than 70, obtaining our initial gold standard. Then we translate these trees into
a CTL derivations bank as explained in Section 3.1.
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So far, we have extracted statistical information only for the first 400 trees,
leading to the creation of the training set of trees. The remaining 43 trees formed
the test set. The induced lexicon consists of 1909 words, 480 categories, with an
average of two categories per word.

We have run a first experiment to evaluate the parser performance with re-
spect to the constituents bracketing along with the indication of functor positions,
expressed in fa-structures by means of < and > labels. The experiment consists
of two steps: first we tested precision and recall for the bracketing performances
only, and then for the bracketing and functor labels. The incremental parsing with
statistical information leaded to precision and recall results shown in Table 1.

bracketed precision (BP) | bracketed recall (BR)
0.818 0.815
labelled precision (LB) labelled recall (LR)
0.787 0.782

Table 1: Evaluation results

In the majority of the cases, mistakes were due to a high use of adjectives and
adverbs which pushed the parser to choose bad sub-bracketings. Most of these
mistakes will be overcome by extending the training treebank, others will require
semantic information to be taken into account.

5 Future Works

We will use the induced lexicon and the weighted axiom links to convert the re-
maining part of TUT, extend both the lexicon and the database of weighted axiom
links, and test the parser. Furthermore, we will work on the evaluation of parsing
long distance dependency relations along with the work carried out in [6]. There,
it is shown how to capture long distance dependencies occurring in English, simi-
larly we plan to deepen our study of these structures in Italian exploiting the sys-
tem presented in this paper. Finally, we are studying how to add dynamic semantic
composition to improve the parser performance.
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