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Abstract
Questions are not asked in isolation. Their context, viz. the preceding interactions, might be of help to understand them and retrieve
the correct answer. Previous research in Interactive Question Answering showed that context fusion has a big potential to improve the
performance of answer retrieval. In this paper, we study how much context, and what elements of it, should be considered to answer
Follow-Up Questions (FU Qs). Following previous research, we exploit Logistic Regression Models to learn aspects of dialogue structure
relevant to answering FU Qs. We enrich existing models based on shallow features with deep features, relying on the theory of discourse
structure of (Chai and Jin, 2004), and on Centering Theory, respectively. Using models trained on realistic IQA data, we show which
of the various theoretically motivated features hold up against empirical evidence. We also show that, while these deep features do not
outperform the shallow ones on their own, an IQA system’s answer correctness increases if the shallow and deep features are combined.

1. Introduction
The goal of this paper is two-fold. First of all, we bring
evidences to the importance of evaluating Language Tech-
nologies, and in particular (Interactive) Question Answer-
ing (IQA) systems, against real users’ data sets. We do
this by comparing TREC data against a data set of gen-
uine human-computer dialogues. We show how the latter
data significantly differ from the former. Secondly, we in-
vestigate the role of deep linguistic features to accomplish
context fusion.
In (Yang et al., 2006) it is shown that shallow similarity fea-
tures between a Follow-Up Question (FU Q) and the previ-
ous utterances are useful to determine whether the FU Q is
a continuation of the topic of previous interaction (“topic
continuation”) or it is a “topic shift”. The recognition of
these two types of FU Qs is conjectured to be important
for deciding whether or not to apply context fusion tech-
niques for retrieving the answer. In (Kirschner et al., 2009),
this conjecture has been tested by harnessing Logistic Re-
gression Models (LRMs); the LRMs compute, for instance,
whether the probability that a candidate answer to a FU Q
contains the same verb of the answer provided to the previ-
ous question might help choosing the correct answer to the
FU Q among all the candidate ones. The results show that
in a real help-desk setting, some form of shallow context
detection and fusion should be considered. In particular,
the system answer preceding the FU Q seems to play an
important role, especially because of its similarity to the
FU Q. Both in (Chai and Jin, 2004) and (Sun and Chai,
2007) it is claimed that deeper linguistic knowledge might
be necessary for deciding how much and what parts of the
previous context is needed to answer a FU Q. In this paper
we want to verify these claims.
In (Chai and Jin, 2004) it is stated that context question
answering requires semantic-rich discourse representation
structure. The authors propose a classification of possi-
ble informational transitions from one question to the other,
which is meant to help deciding how context should be used
in interpreting questions and retrieving answers. The pro-
posed classification focuses on how wh-phrases, subjects
and objects, verbs and their other complements vary from

a question to the next. We have checked how often these
types of transitions occur in a real user data set and tested
whether knowing which transition has occurred in an inter-
action helps answering FU Qs. In (Sun and Chai, 2007), in-
stead, entities are considered to characterize the cohesion of
dialogue. Hence, the authors evaluate how dialogue mod-
els based on Centering Theory (Grosz et al., 1995; Poesio
et al., 2004) succeed in processing coherent context ques-
tions, viz. topic continuation FU Q.
Our goal is, given a FU Q along with its immediately pre-
ceding utterances from the IQA dialogue, to pick the best
answer from a fixed set of candidate answers, by assigning
a score to each candidate, and ranking them by this score.
As a theoretical result of this paper, we show which of our
deep features actually describe coherence relations between
utterances in IQA dialogues, thus holding up against em-
pirical data. As a practical result of this, we show that
deep features do not outperform the shallow ones discussed
in (Yang et al., 2006; Kirschner et al., 2009) on their own,
but do increase the answer ranking performance of an IQA
system, if integrated with the latter.

2. Data sets and features
In this section, we introduce three IQA dialogue data sets,
containing user-system interactions. For the purpose of cal-
culating inter-utterance features within these user-system
interactions – which we will do in Section 2.2. – we pro-
pose to represent utterances in terms of dialogue snippets.
A dialogue snippet, or snippet for short, contains a FU Q,
along with a 2-utterance window of the preceding dialogue
context. In this work we use a supervised Machine Learn-
ing approach for evaluating the correctness of a particular
answer to a FU Q; we thus represent also the answer candi-
date as part of the snippet. Introducing the naming conven-
tion we use throughout this paper, a snippet consists of the
following four successive utterances: Q1, A1, Q2, and A2.
The FU Q is thus referred to as Q2.

2.1. Data sets
TREC’01 and TREC’04 The TREC data come from the
Text REtrieval Conferences question answering (QA) track



(Voorhees, 2004), namely from its context task. This task
was designed to study contextual, interactive QA by allow-
ing for a series of questions. We use two English language
data sets from the 2001 and 2004 editions of the TREC QA
track. The TREC’01 data set consists of 32 snippets of four
turn interactions, extracted from 10 interactions, totaling 42
questions. The TREC’04 data set consists of 221 such snip-
pets, extracted from 64 interactions, totaling 286 questions.
BoB The data consists of 1,522 snippets of 4-turn human-
machine interactions in English: users ask questions and
the system answers them. The data set has been collected
via the Bolzano Bot (BoB) that has been working as an on-
line virtual help desk for the users of our University Library
since October 2008.1 The snippets were extracted from 916
users’ interactions.
Like in TREC data, the topic continuation FU Qs can con-
tain ellipses, e.g., Q1: Where can I find design books? Q2:
and dvd?. Differently from TREC, both Q1 and Q2 could
be just keywords, may contain noisy information such as
typos or bad grammar, and could be very similar: either
the user is trying to refine the question (the answer is cor-
rect but not what the user wanted to know) or the topic is
further explored by moving the focus of attention to a new
related entity or a new related action: Q1: Could you rec-
ommend me some book? Q2: Could you recommend me
some novel?. These kinds of interactions seem typical of
real user data and they have been noticed also in other cor-
pora of this type (Bertomeu, 2008; Yang et al., 2006).

2.2. Shallow and deep features
We exploit shallow features, which measure the similarity
between two utterances within a snippet, and deep features,
which encode the focus flow between two utterances at the
task or entity level. Both for the shallow and deep fea-
tures we distinguish those that relate an utterance to Q2

(Q2 (classification) features) and those that relate an utter-
ance to A2 (A2 (identification) features). For each feature
we will use names encoding the utterances involved; e.g.,
A1.Q2.distsim stands for the Distributional Similarity
feature calculated between A1 and Q2.
Shallow features The detailed description of the shallow
features can be found in (Kirschner et al., 2009). The in-
tuition is that a high similarity between Q and A tends to
indicate a correct answer, while in the case of high similar-
ity between the dialogue context and the FU Q, it indicates
a “topic continuation” FU Q (as opposed to a “topic shift”
FU Q), and thus helps discriminating these two classes of
FU Qs.

• Lexical Similarity (lexsim): If two ut-
terances share some terms, they are similar; the more
discriminative the terms they share, the more similar
the utterances. Implements a TF-IDF-based similarity
metric

• Distributional Similarity
(distsim): Two utterances are similar not
only if they share the same terms, but also if they

1http://www.unibz.it/library

share similar terms (e.g., book and journal). Term
similarity is estimated on a corpus, by representing
each content word (noun, verb, adjective) as a vector
that records its corpus co-occurrence with other
content words within a 5-word span

• Semantic similarity (semsim): Similar
utterances contain similar words; we measure word-
to-word similarity using WordNet (Fellbaum, 1998).
We use the Lin measure, which considers also the in-
formation content of words

• Action sequence (action): Based on the
notion that in our help-desk setting we are dealing with
task-based dialogues, which revolve around library-
related actions (e.g., “borrow”, “search”). Following
an analysis of library-related documents, we devised a
flat list of 18 library-related actions. The action feature
indicates whether two utterances contain the same ac-
tion. The action(s) associated with each utterance are
automatically assigned by searching for strings that
match words that we think represent one of our 18 ac-
tions

Deep features based on Chai and Jin’s theory of dis-
course structure. All the deep features we present in this
paper rely on information about the kinds of transitions a
FU Q performs wrt. the preceding utterances in the IQA
dialogue. We now turn to the transitions proposed by the
theory of discourse structure of Chai and Jin (Chai and Jin,
2004). We propose the following features that implement
three of their transitions:

• Constraint Refinement (C.Ref): The FU
Q is about a similar topic than the previous question
but with additional or revised constraints

• Participant Shift (P.Sh): The FU Q is
about a similar topic but with different participants

• Topic Exploration (T.Ex): the two ques-
tions are concerning the same topic, but with different
focus

We implemented these features based on the grammatical
relations produced by the Stanford parser (Klein and Man-
ning, 2003) in dependency mode (de Marneffe et al., 2006).
The main ideas behind the feature implementations are the
following (see (Ratkovic, 2009) for more details):

C.Ref: The two questions contain the same syntactic
predicate and the same subject or object, but Q2 has ei-
ther an additional or a missing argument (subject, ob-
ject, adverb, preposition, or adjectival modifier) when
compared to Q1

P.Sh: The two questions have the same syntactic predi-
cate, but either the subject, object or argument of some
preposition are different

T.Ex: The two questions have either the same syntactic
predicate, subject, object or preposition.2

2We found this rather lax definition to work best in FU Q clas-
sification experiments.



We have tried other versions of these features. We tried
comparing the wh-phrase of the two questions such that
they are equal in the case of (a) and (b) and they are differ-
ent in (c). Since the BoB data set contains many questions
which do not start with a wh-phrase (see below), in another
version we replaced the wh-type equivalence between the
two questions with a question type equivalence, where the
latter is assigned automatically (Dinh, 2009). However, the
best results are achieved with no comparison of this kind,
neither using the wh-type nor the question type.
Deep features based on Centering Theory. Adopting
the transition model of (Sun and Chai, 2007), we use a
four value feature, Center.Trans, that encodes the four
transitions described below. It builds on the discourse tran-
sitions between adjacent utterances that Centering Theory
introduced (Brennan et al., 1987; Grosz et al., 1995; Poesio
et al., 2004). Somewhat differently from that classic theory,
(Sun and Chai, 2007) defines the transitions depending on
whether the head and/or the modifier of the Noun Phrases
(NP) representing the preferred centers3 are continued or
switched between Q1 and Q2. Hence, the four values are:

continue: both the preferred center NP heads and NP mod-
ifiers are the same

retain: the preferred center NP heads are the same, but the
NP modifiers are different

smooth shift: the preferred center NP heads are different,
but the NP modifiers are the same

rough shift: both the preferred center NP heads and the
NP modifiers are different

The next feature, Center.Reference, implements the
idea behind the reference model of (Sun and Chai, 2007). It
is a binary feature that indicates whether a specific coher-
ence relation holds between Q2 and A2. First of all, we re-
solve any anaphora present in Q2, providing Q1 as dialogue
context.4 The Center.Reference feature evaluates to
1 (or true) if the noun phrase head of any antecedent is men-
tioned in A2. For anaphora that are not personal pronouns,
but rather definite NPs or proper names, the “antecedent” is
the identical string as the anaphora.
The Center.Forward feature implements the forward
model of (Sun and Chai, 2007). It is again a binary fea-
ture, this time indicating the presence of a specific coher-
ence relation holding between Q1 and A2. After resolving

3Centers are noun phrases. The syntactic structure of a noun
phrase comprises a head noun, and possibly a modifier, e.g., an
adjective. We use the following approach, proposed in (Ratkovic,
2009), to identify the preferred center of each question. For all
anaphora found in the question, we use GuiTAR (Poesio and
Kabadjov, 2004; Kabadjov, 2007) to extract their antecedents,
again using the previous questions as context; the first (in terms
of linear order) antecedent which is not a first or second person
pronoun becomes the preferred center of the question. If no pre-
ferred center was found so far, the first noun phrase (which is not
a first or second person pronoun) appearing in the question itself
becomes the preferred center.

4Note that the dialogue context in this case does not include
the preceding answers.

anaphora in Q1 – using Q2 from the previous dialogue snip-
pet as context – the Center.Forward feature becomes
1 if either the noun phrase head of any antecedent is men-
tioned in A2, or any forward-looking center from Q1 can
be found also in A2.
We will refer to Center.Reference and
Center.Forward as A2 deep features, since of all
the deep features described in this paper, they are the ones
concerning A2 identification.
BoB vs. TREC: deep features By inspecting the cor-
pora at disposal, we found that whereas in TREC most of
the questions are wh-questions (41/42 in TREC 2001, and
279/286 in TREC 2004), in BoB data, non-wh-questions
are more prevalent 2167/3044. In Table 1 we report the
numbers of each type of transition, considering both Chai
and Jin and Centering Theory features.5
Since we calculate the feature values automatically, as de-
scribed in (Ratkovic, 2009), we want to assess the algo-
rithm’s precision and recall measures. For the Chai and Jin
features, they are as follows: Constraint Refinement 47%
recall (R) and 54% precision (P); Participant Shift: 76% R
and 73% P; Topic Exploration: 81% R and 93% P.

3. Evaluation
Following (Kirschner et al., 2009), we use Logistic Regres-
sion Models (LRMs). Logistic Regression is a statistical
modeling and analysis paradigm that can also be seen as a
method of supervised Machine Learning. This double role
makes LRM suitable for tackling both main goals of our
work: modeling and analyzing the structure of IQA dia-
logues, and learning from dialogue data how to rank an-
swers to FU Qs. LRMs are generalized linear models that
describe the relationship between some features (indepen-
dent variables) and a binary outcome (Agresti, 2002). Re-
call that our goal is, given a FU Q (Q2 in our dialogue snip-
pets), to pick the best answer from a fixed A2 candidate set,
by assigning a score to each candidate, and ranking them
by this score. In our case, we have 306 answer candidates
to choose from. The binary outcome of the LRM is its pre-
diction whether each possible A2 candidate is correct or
not. The predictors in the LRM are the shallow and deep
features described above. In other words, we use logistic
regression to verify which of the features that have been
claimed to be relevant in processing FU Q in the literature
do turn out to play an important role. We will be using the
following notation whenever we describe a model formula
throughout this section:
answerCorrect ˜ predictor1 + predictor2
The tilde separates the dependent variable to its left from
the independent variables to its right. We try to predict
whether a given A2 is correct, considering the feature val-
ues underlying the predictors.
In all the experiments described below, we estimate the
model parameters using maximum likelihood estimation.
Moreover, we put each model we construct under trial
by using an iterative backward elimination procedure that

5Note that we did not list counts for the Centering Theory A2

features for TREC, since we were not able to obtain the set of
(correct) A2s for these data.



BoB TREC’01 TREC’04
Nr. snippets 1,522 32 221
C.Ref 58 (3.8%) 1 (3.1%) 18 (8.1%)
P.Sh 61 (4.0%) 1 (3.1%) 13 (5.9%)
T.Ex 428 (28.1%) 9 (28.1%) 114 (51.6%)
center.Trans = continue 130 (8.5%) 5 (15.6%) 89 (40.3%)
center.Trans = retain 24 (1.6%) 0 3 (1.4%)
center.Trans = smoothShift 11 (0.7%) 0 7 (3.2%)
center.Trans = roughShift 1357 (89.2%) 27 (84.4%) 122 (55.2%)
center.Reference 3% – –
center.Forward 39% – –

Table 1: Distribution of positive feature values in BoB and TREC data

takes off all those terms whose removal does not cause a
significant drop in goodness-of-fit.6 All the results we re-
port in this paper are obtained with models that underwent
this trimming procedure. For clarifying the modeling ex-
periments in this section, we will present the model formu-
las both before and after predictor elimination.
In this work, we use LRMs to empirically verify certain
theoretical claims, i.e., which particular features are infor-
mative as predictors in our models. To be able to show
that our results generalize beyond our particular sample of
training data, we need to validate LRMs against keeping
predictors in the model that might be significant and infor-
mative only for the specific sample of training data at hand.
Even if we take the mentioned measure of backward predic-
tor elimination to eliminate uninformative predictors from
our regression models, we are still in potential danger of
overfitting the models to the training data. In fact, regres-
sion models have a tendency to overfit the training data, in
that the model describes the training data well, but does not
generalize well to new and unseen data.
One popular approach to validate regression models against
overfitting is using the bootstrap. Bootstrapping is a partic-
ular method of resampling the training data, to simulate the
process of sampling from the original, underlying popula-
tion. We proceed as follows: for each bootstrap sample,
we run the backward elimination routine described above.
We then analyze which predictors were kept for how many
bootstrap samples. Often enough, the resulting frequency
distribution of retained predictors across the bootstrap sam-
ples sheds light on how much the set of informative predic-
tors depends on the particular data sample: if for a majority
of bootstrap samples the number of predictors that are re-
tained by the backward elimination routine is the same, we
can assume that the amount of overfitting is not problem-
atic.
Finally, when comparing A2 ranking results of our exper-
imental models with their corresponding baseline models,
we use two alternative hypothesis tests for checking if one
model achieves better (i.e., lower) ranks for the correct A2

than the other in a statistically significant way. Along with
the mean scores of correct A2s we will thus cite p-values,

6Following (Harrell, 2006), we choose backward elimination,
where we start with the full regression model, and keep eliminat-
ing the least significant predictors from the model, one by one,
until a stopping criterion is satisfied.

both for the parametric paired t-test, and the non-parametric
Wilcoxon signed rank test. Adopting a conservative pol-
icy, we propose to generally consider the less significant of
the two tests’ results for evaluating whether two particular
models yield significantly different ranking results.

3.1. Baseline models used in experiments
In the first experiment, described in Section 3.2., we
will test if there is empirical evidence for our deep Q2

classification features, i.e., C.Ref, P.Sh, T.Ex and
center.Trans. Each of these features is incorporated
into the LRM by adding it as an interaction term. These in-
teraction terms thus play the role of distinguishing between
different types of FU Qs (as classified by the Q2 features),
and accordingly, to trigger different A2 identification strate-
gies accordingly. In our case, an interaction term provides
an extra parameter to assign a differential weight to an A2

feature depending on the value of some Q2 feature. In the
simplest case of interaction with a binary 0-1 feature (as in
the case of C.Ref, P.Sh, and T.Ex), the interaction pa-
rameter weight is only added when the binary feature has
the 1-value. We will test each Q2 classification feature by
comparing a model using that particular interaction term to
a corresponding baseline model.
Baseline model 1: without interactions In this case,
baseline model 1 uses a combination of the shallow A2

identification features introduced in Section 2.2., plus all
Centering Theory-based A2 identification features. The
model contains no interaction terms. Models 1 and 2 give
the model specifications before and after running the back-
ward predictor elimination procedure. We will continue us-
ing the latter, pruned model in our experiments. See Table
3 for the A2 identification performance of this model.
answerCorrect ˜
action.A1.A2 + action.Q2.A2
+ lexsim.A1.A2 + lexsim.Q2.A2
+ distsim.A1.A2 + distsim.Q2.A2
+ semsim.A1.A2 + semsim.Q2.A2
+ center.Reference + center.Forward

(Model 1)

answerCorrect ˜
action.A1.A2 + action.Q2.A2
+ lexsim.A1.A2 + lexsim.Q2.A2
+ distsim.Q2.A2 + semsim.A1.A2
+ center.Reference (Model 2)



Baseline model 2: with only shallow A2 identification
features As a baseline model for evaluating the effects of
deep A2 identification features, we strip baseline model 1
of its Centering Theory A2 features. Models 3 and 4 give
the model specifications before and after running the back-
ward predictor elimination procedure; again, the latter will
be used in our LRM experiments. Table 6 shows the A2

identification performance of Model 4.

answerCorrect ˜
action.A1.A2 + action.Q2.A2
+ lexsim.A1.A2 + lexsim.Q2.A2
+ distsim.A1.A2 + distsim.Q2.A2
+ semsim.A1.A2 + semsim.Q2.A2

(Model 3)

answerCorrect ˜
action.A1.A2 + action.Q2.A2
+ lexsim.A1.A2 + lexsim.Q2.A2
+ distsim.Q2.A2 + semsim.A1.A2 (Model 4)

Baseline model 3: interaction with shallow Q2 classi-
fication feature This model takes baseline model 1 and
incorporates a shallow feature as an interaction term. We
pick the best-performing Q2 classification feature from
(Kirschner et al., 2009), A1.Q2.distsim, which we be-
lieve approximates the distinction between Topic Shift and
Topic Continuity. Model specifications before and after the
backward elimination routine are given in Models 5 and 6,
respectively. The latter model’s performance is given in Ta-
ble 8.

answerCorrect ˜ distsim.A1.Q2 *
( action.A1.A2 + action.Q2.A2
+ lexsim.A1.A2 + lexsim.Q2.A2
+ distsim.A1.A2 + distsim.Q2.A2
+ semsim.A1.A2 + semsim.Q2.A2
+ center.Reference + center.Forward )

(Model 5)

answerCorrect ˜
distsim.A1.Q2 + action.Q2.A2
+ lexsim.A1.A2 + lexsim.Q2.A2
+ distsim.A1.A2 + distsim.Q2.A2
+ semsim.A1.A2 + center.Reference
+ distsim.A1.Q2 * action.A1.A2
+ distsim.A1.Q2 * distsim.Q2.A2

(Model 6)

3.2. Experiments with Chai and Jin-based Q2

classification features
Having introduced the three baseline models, we are now
ready to describe the first set of modeling experiments. We
add each of the three (Chai and Jin, 2004)-based features as
an interaction term for Q2 classification to baseline model
1, one at a time. In the case of T.Ex, the interaction term
is kept in the model by the backward predictor elimination
routine, which yields Model 8 from Model 7.

answerCorrect ˜ T.Ex *
( action.A1.A2 + action.Q2.A2
+ lexsim.A1.A2 + lexsim.Q2.A2
+ distsim.A1.A2 + distsim.Q2.A2
+ semsim.A1.A2 + semsim.Q2.A2
+ center.Reference + center.Forward )

(Model 7)

answerCorrect ˜
T.Ex + action.A1.A2
+ action.Q2.A2 + lexsim.A1.A2
+ lexsim.Q2.A2 + distsim.Q2.A2
+ semsim.A1.A2 + center.Reference
+ T.Ex * action.A1.A2
+ T.Ex * lexsim.A1.A2
+ T.Ex * distsim.Q2.A2

(Model 8)

Model 8 also yields a minor, but nevertheless statistically
significant improvement of A2 ranking results compared to
the baseline 1 model with no interactions; Table 3 com-
pares the ranking results, showing also how the improve-
ment reaches statistical significance.
We perform bootstrapping to validate the model against
over-fitting. Looking at the validation results provided in
Table 2, and considering the selection of predictors that are
retained by the backward elimination routine in the various
bootstrap models, we find some variability of the number
of retained predictors. After an analysis of the particular
predictors that are most often dropped from the bootstrap
models, we note that only the following three main effects
predictors tended to get eliminated: distsim.A1.A2,
semsim.Q2.A2 and center.Reference. Some of
the other factors that were occasionally dropped were inter-
actions between T.Ex and some A2 identification feature.
However, some interaction term involving T.Ex generally
survived the pruning procedure, which is what we are re-
ally interested in, since it shows that even if we generalize
over different data samples, Q2 classification via T.Ex has
a general potential to improve a model of IQA dialogue
structure.
As for the other two (Chai and Jin, 2004) features, C.Ref
and P.Sh, the interaction was either dropped by the back-
ward elimination routine, or the interactive model did not
yield better A2 ranking results than the baseline, and we do
not report the model here.

3.3. Experiments with Centering Theory-based Q2

classification feature

We now perform the same experiments on the Centering
Theory-based Q2 classification feature center.Trans.
Model 9 shows the result of the backward elimination rou-
tine. Again, we compare the A2 ranking performance of
Model 9 to that of the main effects model baseline 1. Table
3 shows the minimal, yet statistically significant A2 selec-
tion performance gain of this interactive model.



Nr. of factors retained 8 9 10 11 12 13 14 15 16
Frequency 1 2 8 28 30 19 7 3 2

Table 2: Results of 100-sample bootstrap validation of model with T.Ex interaction term (Model 8)

Model ID Interaction term Mean rank SD p (Paired p (Wilcoxon
correct A2 t-test) signed rank )

2 (baseline 1) none 49.62 68.58
8 T.Ex 48.95 68.35 0.0018 0.0030
9 center.Trans 49.12 67.96 0.016 0.000006

Table 3: Improving mean ranks of correct A2 (out of 306 answer candidates) by adding interactions with Chai and Jin-based
or Centering Theory-based features

Nr. of factors retained 9 10 11
Frequency 40 53 7

Table 4: Results of 100-sample bootstrap validation of
model with center.Trans interaction term (Model 9)

answerCorrect ˜
center.Trans.num + action.A1.A2
+ action.Q2.A2 + lexsim.A1.A2
+ lexsim.Q2.A2 + distsim.Q2.A2
+ center.Trans * lexsim.A1.A2
+ center.Trans * semsim.A1.A2
+ center.Trans * center.Reference

(Model 9)

Finally, we validate this model against over-fitting. Ta-
ble 2.2. has the validation results. Inspecting the predic-
tors that are most likely to be dropped, we notice only
center.Reference. We thus assume that this fea-
ture is generally less informative a feature than the other
(shallow) A2 identification features in the model. Overall,
center.Trans seems to be more consistently informa-
tive across bootstrap samples than e.g., T.Ex.

3.4. Experiments with Centering Theory-based A2

identification features

We now turn to the A2 identification features based on Cen-
tering Theory. We test the implications of adding these
“deep” A2 identification features as predictors to a model
containing the set of shallow A2 identification features
described in Section 2.2.. Models 10 and 11 show the
model specifications before and after the predictor back-
wards elimination routine, respectively. Of the four Cen-
tering Theory-based features, only center.Reference
is kept as a predictor in the pruned model. Table 5 shows
results of checking the latter model for any signs of over-
fitting: all 100 bootstrap samples retained all 7 predictors.
Finally, Table 6 compares Model 11 in terms of A2 ranking
performance with the corresponding baseline model, show-
ing how the improvement is statistically significant.

Nr. of factors retained 7
Frequency 100

Table 5: Results of 100-sample bootstrap validation
of model with added center.Reference predictor
(Model 11)

answerCorrect ˜
action.A1.A2 + action.Q2.A2
+ lexsim.A1.A2
+ lexsim.Q2.A2 + distsim.A1.A2
+ distsim.Q2.A2 + semsim.A1.A2
+ semsim.Q2.A2 + center.Reference
+ center.Forward

(Model 10)

answerCorrect ˜
action.A1.A2 + action.Q2.A2
+ lexsim.A1.A2 + lexsim.Q2.A2
+ distsim.Q2.A2 + semsim.A1.A2
+ center.Reference

(Model 11)

3.5. Experiments with crossed shallow and deep
interaction terms

Finally, we want to explore if information from the two
“deep” Q2 classification features that we had determined to
be useful (see Table 3) can further improve an interaction
model that already contains a shallow feature as its interac-
tion term. More specifically, we are interested in evidence
for three-way interactions between a shallow and a deep
Q2 classification feature, and one of our usual shallow or
deep A2 identification features. To this end, we now intro-
duce two models where a shallow Q2 classification predic-
tor is crossed7 with either one of the two deep Q2 classi-
fication features described in Table 3. Models 12 and 13
show the formulas involving T.Ex as the interaction term,
before and after running the backward elimination routine.
In the latter, one instance of a three-way interaction was
deemed useful and thus retained.8 Table 7 shows results

7The crossed interaction term a× b is a short-hand notation of
a + b + a ∗ b in the specification of the LRM formula.

8We do not provide the model formulas involving the other
deep feature here for presentational reasons.



Model ID Add. feature Mean rank SD p (Paired p (Wilcoxon
correct A2 t-test) signed rank)

4 (baseline 2) - 50.35 69.00
11 center. Reference 49.24 68.57 0.00027 0.00003

Table 6: Improving mean ranks of correct A2 (out of 306 answer candidates) by adding Centering Theory-based A2

identification features

from performing the bootstrap validation routine on Model
13. There is a wide variability in the number of predictors
retained for the bootstrap models. An analysis of which
predictors are often dropped from the models reveals that
the three-way interaction term is very often discarded. Not
surprisingly, the three-way interaction term has a high p-
value in the model trained on the original data sample, sig-
naling that there is little evidence for keeping the predictor
in the model in the first place.9 We thus have to conclude
from model validation that there is not enough evidence
in favor of our three-way interaction term; we attribute to
over-fitting the fact that this term was actually retained in
Model 13.
Table 8 compares the A2 ranking performance of the mod-
els against a competitive baseline model with just a shallow
interaction term. While the improvement caused by adding
the interaction term T.Ex is significant only according to
the non-parametric Wilcoxon test, both our statistical tests
indicate significant improvements for the combination in-
volving center.Trans.

answerCorrect ˜
(distsim.A1.Q2 * T.Ex) *
( action.A1.A2 + action.Q2.A2
+ lexsim.A1.A2 + lexsim.Q2.A2
+ distsim.A1.A2 + distsim.Q2.A2
+ semsim.A1.A2 + semsim.Q2.A2
+ center.Reference + center.Forward )

(Model 12)

answerCorrect ˜
distsim.A1.Q2 + action.Q2.A2
+ lexsim.A1.A2 + lexsim.Q2.A2
+ distsim.A1.A2 + distsim.Q2.A2
+ semsim.A1.A2 + center.Reference
+ distsim.A1.Q2 * action.A1.A2
+ distsim.A1.Q2 * distsim.Q2.A2
+ distsim.A1.Q2 * T.Ex

* lexsim.A1.A2
(Model 13)

4. Conclusion
With the A2 ranking results in the previous section we
have shown that for certain deep features based on either
Chai and Jin’s theory of discourse structure or on Center-
ing Theory there is empirical evidence that they can de-
scribe the structure of realistic human-machine dialogues

9Looking at the model statistics corresponding to the interac-
tion term distsim.A1.Q2 × lexsim.A1.A2 × T.Ex, we
have the following values: coefficient = 1.37, p = 0.2525.

in the help-desk setting. Relying on the same machine-
learning framework used in previous work, and building on
previous results based on using shallow features to describe
inter-utterance relations, we have shown that certain com-
binations of shallow and deep features as predictors in the
models improve the models’ A2 ranking performance. A
sophisticated shallow feature outperforms any of our deep
features for Q2 classification. Although we have demon-
strated experimental results of how certain three-way com-
binations of shallow and deep features for Q2 classification
can lead to a significant improvement in our experiment,
we believe that these particular findings might not hold in
general for similar IQA data, but might be artifacts of over-
fitting.
For the case of A2 identification features, we have shown
how features based on Centering Theory add important ex-
tra information to a model built on a powerful combina-
tion of four shallow features, again leading to a significant
increase in A2 ranking performance. In this case, the im-
provement is stable across different data samples.
Looking at the still relative high mean ranks in which even
our best models find the correct A2, we notice two things.
Firstly, our A2 evaluation scheme tends to be overly pes-
simistic, since it only considers exactly one “gold standard”
answer to be correct for each given FU Q, while simply
considering all remaining 305 answer candidates as com-
pletely false. However, there should clearly be major over-
laps in the information content of the answer candidates,
which would possibly render more than just the gold stan-
dard A2 a good answer candidate for a particular FU Q.
Secondly, for all our competitive models, the distribution of
ranks of the correct answer has properties similar to those
of the last model in Table 8, which we shall use as the ex-
ample here. Table 9 gives descriptive statistics of the ranks
of the correct A2, out of an answer repository of 306; for
half of all snippets, the correct A2 is thus among the 12
highest-ranked candidates. The mean of the rank of correct
A2s therefore deteriorates considerably because of a rather
low count of bad ranking decisions. In future work we will
thus study the cases where our models tend to do worst, and
thus try to find intelligent ways of improving their ranking
performance.
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