
Journal of Logic, Language and Information 13: 121–137, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

121

Analyzing the Core of Categorial Grammar

CARLOS ARECES
LORIA, Langue et Dialog (LED), IMRIA Lorraine, 615 Rue du Jardin Botanique,
54602 Villers lès Nancy Cedex, France
E-mail: carlos.areces@loria.fr

RAFFAELLA BERNARDI
UiL-OTS, University of Utrecht, Utrecht, The Netherlands
E-mail: raffaella.bernardi@let.uu.nl

(Received in final form 14 January 2004)

Abstract. Even though residuation is at the core of Categorial Grammar (Lambek, 1958), it is not
always immediate to realize how standard logical systems like Multi-modal Categorial Type Logics
(MCTL) (Moortgat, 1997) actually embody this property. In this paper, we focus on the basic system
NL (Lambek, 1961) and its extension with unary modalities NL(�) (Moortgat, 1996), and we spell
things out by means of Display Calculi (DC) (Belnap, 1982; Goré, 1998). The use of structural
operators in DC permits a sharp distinction between the core properties we want to impose on the
logical system and the way these properties are projected into the logical operators. We will show
how we can obtain Lambek residuated triple \, / and • of binary operators, and how the operators �

and �↓ introduced by Moortgat (1996) are indeed their unary counterpart.
In the second part of the paper we turn to other important algebraic properties which are usually

investigated in conjunction with residuation (Birkhoff, 1967): Galois and dual Galois connections.
Again, DC let us readily define logical calculi capturing them. We also provide preliminary ideas on
how to use these new operators when modeling linguistic phenomena.

Key words: Categorial grammar, categorial type logics, display calculi, Galois connections,
residuation

1. Categorial Grammar

In the Categorial Grammar approach to natural language analysis (Ajdukiewicz,
1935; Bar-Hillel, 1953) sentences are seen as sequences of function applications
starting from the categories assigned to the lexical items in the lexicon. In 1958,
Lambek shows that the categorial grammar intuitions can be formalized into a log-
ical calculus: the grammaticality of a sentence can be decided by means of logical
rules, if we consider categories as logical formulas. This idea is at the heart of
what are today called Categorial Type Logics (CTLs). By means of these logics we
can investigate logical properties of linguistic composition (like the impact of as-
sociativity and permutation in natural language phenomena). In other words, CTLs
can account for grammaticality in a purely proof-theoretical way, and moreover,
typical CTLs are decidable, that is they are amenable to computational treatment.

122 C. ARECES AND R. BERNARDI

More precisely, the standard categorial approach is to develop the correct “type
assignment” for basic lexical items, from which certain linguistic phenomena will
be predicted by the logic. Once the basic types have been fixed, parsing a linguistic
expression to check its membership to a given type, amounts to inferring the type
in the logical system from the types assigned to its lexical components.

In addition to this pure proof-theoretical use of categorial systems, there is
also an important semantic byproduct: the interpretation of (formally, the lambda
term associated to) a linguistic expression can be obtained while inferring its type
(Moortgat, 1997). This connection offers a rich framework where linguistic issues
can be investigated from all three different points of view: Purely syntactic check-
ing of type composition, the compositional meaning of the linguistic expression,
and their interface. Actually, the CTL approach can be understood as the result
of analyzing this three sided linguistic picture (of syntax, semantics and their in-
terface) from the standpoint of its syntactic vertex. Types, how to form them and
which inference patterns they give rise to, are core issues in categorial type logics.
In this paper, we will study some of these systems, analyze how their inference
rules have been obtained, and in which way they define the behavior of their type
forming operators.

The original sequent system NL, introduced by Lambek in 1961, consists of
the operators \, / and •, indirectly governed by the algebraic law of residuation.
While • can be seen as playing the role of linguistic composition, \ and / allow the
definition of functional types, which are sensitive to order. In Section 2.1 we will
show how display calculi (DC) (Belnap, 1982; Goré, 1998) let us directly specify
the residuation law by means of structural rules. The residuation behavior is then
projected into the logical operators in a standard way.

Modern systems like those discussed in Moortgat (1997) are richer than NL.
They incorporate unary logical operators and special devices to handle structures.
In Section 2.2, we study NL(�) introduced by Moortgat (1996) by extending NL
with unary operators � and �↓, and show that they are indeed the unary counterpart
of Lambek’s residuated triple. This is no new result, the standard proof proceeds
by showing that derivations in NL(�) exactly match theorems obtained from the
algebraic laws governing (unary and binary) residuation (see Moortgat, 1996). But
this method provides little help on how to actually obtain the sequent rules of
NL(�) – capturing residuation and no more – in the first place; DC instead achieve
this straightforwardly.

Interestingly, DC do not let us handle only residuation. The method described in
Section 2 can be applied to other algebraic properties. In Section 3 we investigate
Galois and dual Galois connections, and define logical calculi capturing them. Ga-
lois connections are interesting because they give rise to new derivability relations
among types while their composition is still a closure operator (as we discuss in
Section 4).

We believe that the main contribution of this paper is methodological, and that
display calculi do provide new light and help understand standard categorial type

ANALYZING THE CORE OF CATEGORIAL GRAMMAR 123

logics. More generally, we describe a recipe that helps us explore a landscape
of algebraic principles. We exemplify this method by showing how to extend the
basic calculus NL with residuated, Galois and dual Galois connected operators of
different arities in a systematic way.

2. Capturing Residuation

We start by formally introducing residuation and its ramifications in modern
categorial type logics (see Moortgat, 1996, for a much more complete discussion).

The property of residuation arises in the study of order-preserving mappings
(Fuchs, 1963; Blyth and Janowitz, 1872; Dunn, 1991). Intuitively, in any partial
order with a “product-like” operator •, the (right) residual for an element a with
respect to b is the largest c such that b•c is less than or equal to a. When the residual
always exists for any two elements a, b in the structure, we can define the function
·\· returning it. \ and • are said to be residuated. If • is not commutative, then
also a notion of left-residual naturally arises. For example, in the rational numbers
(without 0), given any rational a, the residual with respect to b is simply a/b, and
in this structure product and division are residuated functions.

More abstractly, the notion of residuated functions can be generally introduced
for maps with n-ary arguments, but we restrict ourselves to unary and binary
functions.

DEFINITION 1 (Residuation). Let Ai = (Ai,�Ai
) be a partially ordered set. A

pair of functions (f, g) such that f : A1 → A2 and g : A2 → A1 forms a
residuated pair if [RES1] holds.

[RES1] ∀x ∈ A1, y ∈ A2

(
f x �A2 y iff

x �A1 gy

)
.

A triple of functions (f, g, h) such that f : A1 × A2 → A3, g : A1 × A3 → A2,
h : A3 × A2 → A1 forms a residuated triple if [RES2] holds.

[RES2] ∀x ∈ A1, y ∈ A2, z ∈ A3


 f (x, y) �A3 z iff

y �A2 g(x, z) iff
x �A1 h(z, y)


 .

In both cases the function f is said to be the head of the residuated pair or triple.

Remark 1. It is important to mention that residuation has an impact on mono-
tonicity behavior. In fact, saying that (f, g) is a residuated pair is equivalent to
the conditions (1) and (2) below, where we write f is a [↑]-function (f is a [↓]-
function) meaning that f is upwards (downwards) monotonic in its argument,

1. f and g are [↑]-functions.
2. ∀y ∈ A2(fgy �A2 y) and ∀x ∈ A1(x �A1 gf x).

124 C. ARECES AND R. BERNARDI

Similarly, saying that (f, g, h) is a residuated triple is equivalent to requiring

1. f is a [↑,↑]-function, g is an [↓,↑]-function and h is an [↑,↓]-function.
2. ∀x ∈ A1, y ∈ A2, z ∈ A3((f (x, g(x, z)) �A3 z) & (y �A2 g(x, f (x, y)))

& (f (h(z, y), y) �A3 z) & (x �A1 h(f (x, y), y))).

In what follows we will be mainly interested in logical operations Oi : FORMk →
FORM, and we will investigate their behavior with respect to the poset 〈FORM,�〉
where � is the derivability relation.

We now turn to categorial type logics which are also commonly known as “log-
ics of residuation.” Let us see why by considering the system NL introduced in
Lambek (1961).

DEFINITION 2 (Logical language of NL). Given the set ATOM of atomic proposi-
tional symbols, the logical language of NL is defined recursively as

FORM ::= ATOM | FORM/FORM | FORM\FORM | FORM • FORM.

An axiomatic deductive system for NL is given as follows:

DEFINITION 3 (NL: Axiomatic system). The system NL is defined by the axiom
and rules below. Given A,B,C ∈ FORM

[REFL] A � A,

[TRANS] If A � B and B � C, then A � C,

[RES] A • B � C iff B � A\C iff A � C/B.

NL is commonly called the pure logic of residuation and rightly so as we can see
from its axiomatic presentation. [REFL] and [TRANS] define minimal properties
for the inference relation � while [RES] characterizes •, \ and / as a residuated
triple.�

The axiomatic presentation of NL clearly shows that residuation directly gov-
erns the behavior of its type forming operators. But even though axiomatic
deductive system can be effectively used when establishing model-theoretical prop-
erties like completeness, it is not appropriate for proof-theoretical investigations. In
particular, the [TRANS] rule above violates the sub-formula property, introducing
non determinism in the proof search. As with classical propositional logic, an alter-
native is the formulation of an equivalent Gentzen style presentation, in which the
use of the counterpart of [TRANS], the [Cut] rule, can be proved to be redundant
([Cut] elimination).

� [RES] could also be understood as a kind of deduction theorem. But while a deduction theorem
is better seen as a link between the meta-language and the object language, [RES] relates three
operators in the object language.

ANALYZING THE CORE OF CATEGORIAL GRAMMAR 125

A � A
[Ax] � � A �[A] � C

�[�] � C
[Cut]

� � B �[A] � C

�[(A/B,�)] � C
[/L] (�,B) � A

� � A/B
[/R]

� � B �[A] � C

�[(�,B\A)] � C
[\L] (B, �) � A

� � B\A [\R]

�[(A,B)] � C

�[A • B] � C
[•L] � � A � � B

(�,�) � A • B
[•R]

Figure 1. Gentzen sequent calculus for NL.

Standard Gentzen systems in which [Cut] can be eliminated do enjoy the sub-
formula property, and hence the search space for proofs of a given sequent is finite.
The sequent presentation of NL is proof theoretically well behaved: It enjoys the
subformula property and provides a backward-chaining decision procedure (Lam-
bek, 1958, 1961). This good computational behavior makes these systems well
suited to the study of the inference relations between types.

While in the axiomatic presentation the derivability relation holds between for-
mulas of the logical language, in a Gentzen system it is stated in terms of sequents:
pairs � � A where � is a structured configuration of formulas or structural terms
and A is a logical formula. The set TERM of structural terms needed for a sequent
presentation of NL is very simple

TERM ::= FORM | (TERM, TERM).

The logical rules in the Gentzen system for NL are given in Figure 1. In the figure,
A,B,C are formulas, �,� are structural terms and the notation �[ϕ] is used to
single out a particular instance of the substructure ϕ in �.

As we can see from inspecting the rules in Figure 1, it is not immediately
obvious that they are characterizing the same derivability relation as the one char-
acterized by the axiomatic presentation of NL. To establish the equivalence between
the two presentations, define the translation ·t : TERM → FORM as

(�1, �2)
t = (�t

1 • �t
2),

At = A, for A ∈ FORM.

PROPOSITION 1 (See Lambek, 1958, 1961). If A � B is a theorem of the ax-
iomatic presentation of NL then there is a Gentzen proof of A � B. And for every
proof of a sequent � � B, �t � B is a theorem.

126 C. ARECES AND R. BERNARDI

The system presented in Figure 1 includes the [Cut] rule but Lambek proved, also
in Lambek (1958), that the rule is admissible, in the sense that it does not increase
the set of theorems that can already be derived using just the other rules.

PROPOSITION 2 ([Cut] elimination and decidability). The [Cut] rule is admissi-
ble in NL, and the system is decidable.

There seems to be a tension in the standard approach we described above. On the
one hand, while the axiomatic calculus crisply captures the notion of residuation
we are interested in, it is not appropriate for proof-theoretical manipulation. On
the other hand, the decidable [Cut] free sequent presentation hides the residuated
behavior of the operators, requiring a “verification check” as shown in Proposi-
tion 1. In the next section we will explain how display calculi are able to resolve
this tension.

2.1. DISPLAYING RESIDUATION

Display calculi, introduced by Belnap (1982), provide a Gentzen style proof-
theoretical framework designed to capture many different logics in one uniform
setting. DC generalize Gentzen’s notion of structures by using multiple, complex,
structural connectives. One of the main characteristics of DC is a general cut-
elimination theorem, which applies whenever the rules of the display calculus
obey certain, easily checked, conditions. We will base our presentation on the
system introduced by Goré (1998). The main innovation of Goré’s system over
Belnap’s concerns the use of additional structural connectives to capture the inher-
ent duality of every logic, by means of dual sets of display postulates. Building
on these features, DC obtain the “display property” which gives them their name:
Any particular constituent of a sequent can be turned into the whole of the right or
left side by moving other constituents to the other side. This property is strongly
used in the general cut-elimination method. But for our approach more interesting
than the display property is the ability of DC to define the behavior of their logical
operators in terms of structural properties – sequent rules involving only structural
operators.

Let us start by introducing the appropriate logical and structural language for
the DC we want to investigate.

DEFINITION 4 (DC language). Given a set ATOM of atomic propositional sym-
bols and the sets OP2

s = {; ,<,>} and OP2
l = {⊗,←,→} of structural and logical

operators respectively, the set FORM of logical formulas and the set STRUCT of
structural formulas are defined as

FORM ::= ATOM | FORM ∗ FORM for * ∈ OP2
l ,

STRUCT ::= FORM | STRUCT ∗ STRUCT for * ∈ OP2
s .

ANALYZING THE CORE OF CATEGORIAL GRAMMAR 127

The behavior of the structural operators is explicitly expressed by means of display
postulates. In what follows, we will use variables X,Y,Z, V,W to denote struc-
tural formulas, and reserve A,B,C for logical formulas. In the case of residuation,
we can directly express that (; ,<,>) is a residuated triple by encoding the relation
holding among the operators (Definition 1) in the following structural rule.

[rp]

X;Y � Z

Y � X > Z

X � Z < Y

Notice that � and the double lines replace the �Ai
and the “iff condition” of

Definition 1, respectively.
What remains to be done is to project the residuation behavior of (; ,<,>)

into the corresponding logical operators (⊗,←,→). The general methodology is
described in detail in Goré (1998). In a nutshell, it works as follows. We are in
search of a right and left introduction rule for each of the logical operators, we can
obtain [⊗ �], [�←] and [�→] directly from [rp] by projection. In the literature on
DC these rules are usually called rewrite rules.

To obtain the still missing rules we have to work only slightly harder. As we
pointed out in Remark 1, from the fact that (; ,<,>) are residuated, we know their
monotonicity behavior, and this is exactly what we need. Let s be a structural oper-
ator and l its corresponding logical counterpart. In the schema below we will select
whether the consequent of the rule is s(X, Y) � l(V ,W) or l(X, Y) � s(V ,W)

depending on the needed rule.

V � X W � Y
[l, s](X, Y) � [s, l](V ,W)

if s is [↓,↓]
X � V Y � W

[l, s](X, Y) � [s, l](V ,W)
if s is [↑,↑]

X � V W � Y
[l, s](X, Y) � [s, l](V ,W)

if s is [↑,↓]
V � X Y � W

[l, s](X, Y) � [s, l](V ,W)
if s is [↓,↑]

Applying the schema above, we obtain [� ⊗], [←�], and [→�]. The full set of
rules is as follows:

A � X Y � B
A ← B � X < Y

[←�] Z � A < B
Z � A ← B

[�←]

A;B � Z

A ⊗ B � Z
[⊗ �] Y � B X � A

Y ;X � B ⊗ A
[� ⊗]

X � A B � Y
A → B � X > Y

[→�] Z � A > B
Z � A → B

[�→]

128 C. ARECES AND R. BERNARDI

These rules will immediately encode the proper tonicity of the operators. It is also
easy to prove that the logical operators indeed satisfy the residuation property. We
show two of the required four derivations below.

B � A → C
A � A C � C

A → C � A > C
[→�]

B � A > C
[Cut]

A;B � C
[rp]

A ⊗ B � C
[⊗ �]

A � A B � B
A;B � A ⊗ B

[� ⊗]
A ⊗ B � C

A;B � C
[Cut]

B � A > C
[rp]

B � A → C
[�→]

Similarly, we can also prove the “composition property” we mentioned in Re-
mark 1.

As we can see, DC provide guidance in our logic engineering task of designing
a sequent calculus characterizing the behavior of a triple of residuated operators.
Moreover, we can readily verify the conditions specified by Belnap and conclude
that the calculus is cut-free. If we compare the calculus just obtained with the
one introduced in Figure 1 we immediately notice similarities, but also important
differences, the most relevant being the presence of only one structural operator,
and the restriction to a single formula in the right hand side of sequents. It is not too
difficult to restrict the language to obtain a perfect match (but of course, in doing so
we would be giving up the display property, and “abandoning” DC and its general
theorem concerning cut-elimination). Consider, for example, the [→�] rule

X � A B � C
A → B � X > C

[→�]

by [rp]

X � A B � C
A → B � X > C

[→�]
X;A → B � C

[rp]

hence

X � A B � C
X;A → B � C

.

By replacing “;” by “,” and “→” by “\” and adding structural contexts (which are
now required given that we have lost the display property) we obtain [\L]

X � A �[B] � C

�[(X,A\B)] � C
[\L].

ANALYZING THE CORE OF CATEGORIAL GRAMMAR 129

In the next section we will treat in detail unary residuation and investigate the pair
of operators � and �↓.

2.2. THE UNARY OPERATORS

The system NL(�) introduced in Moortgat (1996, 1997) is obtained from NL by
the addition of the unary modalities � and �↓, and it is actively used in the analy-
sis of linguistic phenomena. But � and �↓ have been sometimes “looked down
upon” as extraneous to a calculus of pure residuation. We will show that we can
straightforwardly mimic what we did in the previous section. Starting by spelling
out the law of residuation for unary functions, we derive a sequent calculus that
can be compiled into the standard calculus for NL(�).

Given a set ATOM of atomic propositional symbols and the sets OP1
s = {•, ◦}

and OP1
l = {�,�} of unary structural and logical operators and the sets OP2

s =
{; ,<,>} and OP2

l = {⊗,←,→} of binary structural and logical operators, the set
FORM of logical formulas and the set STRUCT of structural formulas for a display
calculus presentation of NL(�) are in the standard way.�

Again we start by specifying the behavior of the residuated structural pair (◦, •),
•X � Y

X � ◦Y [rp],

and we obtain the rules for the logical operators by projection and monotonicity
behavior. The full set of rules is given below.

A � X
�A � ◦X [� �] X � ◦A

X � �A
[� �]

•A � X
�A � X

[� �] X � A
•X � �A

[� �]

We can prove that (�,�) is a residuated pair.

A � �B
B � B

�B � ◦B [� �]
A � ◦B [Cut]
•A � B

[rp]
�A � B

[� �]

A � A
•A � �A

[� �] �A � B

•A � B
[Cut]

A � ◦B [rp]
A � �B

[� �]

Now we “compile” the structural postulate [rp] to obtain the logical rules in the
standard Gentzen presentation of NL(�), as we did in the case of binary operators.

� Again we will first follow the notation of Goré (1998) to revert to the standard notation used in
NL(�) during the compilation step.

130 C. ARECES AND R. BERNARDI

We spell out the needed steps for the � operator and obtain the rules [�↓L] and
[�↓R] as presented in Moortgat (1997).

A � B
�A � ◦B [� �] by [rp]

A � B
�A � ◦B [� �]
•�A � B

[rp]

by compilation
�[A] � B

�[〈�↓A〉] � B
[�↓L].

X � ◦A
X � �A

[� �] by [rp]

•X � A
X � ◦A [rp]
X � �A

[� �]

by compilation

〈X〉 � A

X � �↓A
[�↓R].

The logical rules for � are obtained straightforwardly in a similar way.
As we said in the Introduction, DC are not limited to residuation properties (even

though they are an important example, as residuation aids in achieving the display
property). The method we have used above can handle other kinds of algebraic
properties, assuming that they can be encoded in terms of structural rules. In the
next section we turn to Galois and dual Galois connections.

3. Capturing Galois and Dual Galois Connections

If we look at NL and at examples of how it is used in modeling linguistic phenom-
ena, we notice that sometimes only the \ and / operators are required, and their
behavior is not characterized by a residuation law. Actually, \ and / form a Galois
connection when their positive argument is fixed. This is exactly what is used in
CTL, for example, to account for the rising of noun phrases np to generalized
quantifiers (s/np)\s. The fact that / and \ are Galois connected means exactly
that for any two types A and B we can infer (B/A)\B from A.

Under this light, even though calling NL the pure calculus of residuation is
correct, it is also misleading as it hides the fact that a Galois connected pair is also
“living” inside as a subsystem. And in line with the work we did in Section 2.2 we
could wonder whether we can also extend NL(�) with a pair of independent unary
Galois connected operators. But let us start by formally introducing the algebraic
properties we want to investigate.

DEFINITION 5 (Galois connections). Let Ai = (Ai,�Ai
) be a partially ordered

set. Consider a pair of functions f : A1 → A2 and g : A2 → A1. The pair (f, g)

is called a Galois connection if [GC] below holds.

[GC] ∀x ∈ A1, y ∈ A2

(
y �A2 f x iff
x �A1 gy

)
.

ANALYZING THE CORE OF CATEGORIAL GRAMMAR 131

The pair (f, g) is called a dual Galois connection if [DGC] below holds.

[DGC] ∀x ∈ A1, y ∈ A2

(
f x �A2 y iff
gy �A1 x

)
.

As with residuation, there is an equivalent formulation of these properties in terms
of their monotonicity behavior and a composition rule. [GC], for example, is equiv-
alent to require that f and g are both [↓]-functions, and that for all x, x � fgx,
and x � gf x (here again, we just consider f and g as functions defined on the
same poset).

Galois connected operators have been also studied in the context of Linear
Logic (see Lambek, 1993; Abrusci, 1991; Goré, 1998; Restall, 2000), and by
Lambek in, e.g., Lambek (2001). In contrast with this line of work, in which
Galois properties are mixed with extra features guaranteeing, for example, a double
negation law, we focus on the pure Galois properties and investigate the effects of
adding Galois connected operators to the base multimodal logic of residuation,
NL(�).

The steps we will take to provide a display calculus encoding [GC] and [DGC]
should be by now well known. We only provide details for [GC]. We start by
explicitly writing the algebraic property characterizing a Galois connection for a
pair of structural operators (�, �).

Y � �X

X � �Y
[gc].

We now project this behavior into the logical operators (0(·), (·)0) as it is shown
below.

Z � A
0(A) � �Z

[0(·) �] Z � �A

Z � 0(A)
[� 0(·)]

Z � A

(A)0 � �Z
[(·)0 �] Z � �A

Z � (A)0 [� (·)0]

To move closer to standard sequent presentations of CTL, we need to compile [gc]
into the logical rules. We can take [0(·) �] and [(·)0 �] as they are as our [0(·)L]
and [(·)0L]. To obtain [0(·)R] and [(·)0R] we need to apply [gc],

Z � �A

Z � 0(A)
[� 0(·)] by [gc]

A � �Z

Z � �A
[gc]

Z � 0(A)
[� 0(·)] by compilation

by compilation

A � �Z

Z � 0(A)
[0(·)R].

132 C. ARECES AND R. BERNARDI

Z � �A

Z � (A)0 [� (·)0] by [gc]

A � �Z

Z � �A

Z � (A)0 [� (·)0]

by compilation

A � �Z

Z � (A)0 [(·)0R].

The full set of rules obtained is shown below. Notice that given the nature of
Galois connections (which involves a permutation in the order of the poset), it
is not possible to eliminate the structural operators from the right hand side of
the sequents. This is an important difference with respect to what we obtained in
the previous sections. For similar reasons, the system looses its cut elimination
property. See Areces et al. (2001) for a cut-free version.

Z � A
0(A) � �Z

[0(·)L] A � �Z

Z � 0(A)
[0(·)R]

Z � A

(A)0 � �Z
[(·)0L] A � �Z

Z � (A)0 [(·)0R]

X � Y Y � Z
X � Z

[Cut]

The proofs below show that the (·)0 and 0(·) operators are indeed Galois connected,

A � (B)0
B � B

(B)0 � �B
[(·)0L]

A � �B
[Cut]

B � 0(A)
[0(·)R]

A � 0(B)

B � B
0(B) � �B

[0(·)L]
A � �B

[Cut]
B � (A)0 [(·)0R]

That is, the rule [gc] holds for 0(·) and (·)0. Moreover, the operators satisfy the
appropriate Galois composition laws [gcl].

A � A

(A)0 � �A
[(·)0L]

A � 0((A)0)
[0(·)R]

A � A
0(A) � �A

[0(·)L]
A � (0(A))0 [(·)0R]

From these, the fact that the operators are [↓]-functions follows immediately.

A � B

A � 0((B)0)
[gcl]

(B)0 � (A)0
[gc]

A � B

A � (0(B))0
[gcl]

0(B) � 0(A)
[gc]

ANALYZING THE CORE OF CATEGORIAL GRAMMAR 133

4. New Derivability Relations

In this section, we discuss possible applications of some of the logical properties
of the systems we have been investigating above.

When working with a logic to reason with linguistic resources, one of the most
important features are the derivability relations among types the proof system can
establish. A well-known application of this aspect of the Lambek calculi is the logi-
cal treatment they offer of the lifting of np, (np � (s/np)\s) first used by Montague
(1974), and the value raising principle (e.g., np/n � (s/(np\s))/n)) introduced
as a primitive postulate in (Partee and Rooth, 1983). If we compare Definition 5
of Galois connections with the inferences used in the analysis of these properties,
we clearly see that they hinge on the fact that (/, \) is a Galois connected pair. The
lifting and value rising properties are indeed instantiations of the composition law
for Galois connections.

As pointed out in Moortgat (1997) the composition of Galois connections
defines an upwards monotonic function ∗ which is a closure operator satisfying
A � A∗ and (A∗)∗ � A∗. The same holds for the composition of residuated pairs,
i.e.,

A � (0(A))0 � (0((0(A))0))0 A � �↓�A � �↓��↓�A.

Similar derivability relations are used in Bernardi and Moot (2002) to account for
scope ambiguity phenomena. In that paper the attention is focused on the different
scope possibilities of generalized quantifiers (GQs) with respect to negation. The
derivability relation ��↓s � s � �↓�s is used to distinguish three different
sentential levels: the one lower than negation (��↓s), the negative one (s), and
the one higher than negation (�↓�s) (notice how we can use the type hierarchy
obtained by means of the residuated unary operators to account for the variety
among expressions of the same linguistic category). The different scope possibili-
ties of generalized quantifiers like any n, a n and some n are anchored to their type
assignments. However, the one dimensional derivability relation given by a pair of
residuated operators may not be enough to account for more intriguing linguistic
phenomena, as we will exemplify below in the modeling of GQs sensitive to the
polarity of their context. In particular, the proposal presented in (Bernardi and
Moot, 2002) does not account for the fact that negative polarity expressions like
any cannot occur in a positive sentence. We will show how Galois operators can be
used to solve this problem.

We consider a linguistic string to be a grammatical sentence if it is proved to
be of type �↓�s. We use the following abbreviations: s1 := ��↓s, s2 := s and
s3 := �↓�s, viz. s1 � s2 � s3, to better visualize the different “sentential levels”
encoded in the types. Consider the following type assignments,

didn’t ∈ (np\s2)/(np\s2) any n ∈ (s1/np)\s1

directed ∈ (np\s1)/np a n ∈ (s2/np)\s2

some n ∈ (s3/np)\s3

134 C. ARECES AND R. BERNARDI

From these type assignments, it follows that when parsing a “negative sentence”
with a GQ in object position, e.g., Coppola didn’t direct any movie or Coppola
didn’t direct some movie, the proofs [1a] and [1b] below are obtained, providing
the two readings with negation having wide and narrow scope, respectively.

[1a] ¬GQ

np � np np � np s1 � sx sy � s2
....

((np\s1)/np, (sx/np)\sy) � np\s2

np � np s2 � s3

np, np\s2 � s3
[\L]

np︸︷︷︸
sub

, ((np\s2)/(np\s2)︸ ︷︷ ︸
didn’t

, ((np\s1)/np︸ ︷︷ ︸
tv

, (sx/np)\sy︸ ︷︷ ︸
GQ

)) � s3
[/L]

[1b] GQ¬

np � np np � np s1 � s2 np � np s2 � sx
....

np, ((np\s2)/(np\s2), (np\s1)/np) � sx/np sy � s3

np︸︷︷︸
sub

, ((np\s2)/(np\s2)︸ ︷︷ ︸
didn’t

, ((np\s1)/np︸ ︷︷ ︸
tv

, (sx/np)\sy︸ ︷︷ ︸
GQ

)) � s3
[\L]

When instantiating the GQ with any movie the reading [1a] with the GQ in the
scope of the negation will be derivable, whereas the other will fail since sx will be
s1 and s2 �� s1. The opposite holds when considering some movie: since sy = s3,
the proof in [1a] fails in s3 �� s2, whereas [1b] is derivable. But from the types given
above it also follows that any movie can occur in a positive context, e.g., Coppola
directed any movie, as shown below.

[2a]

np � np np � np s1 � s1....
np, (np\s1)/np � s1/np s1 � s3

np︸︷︷︸
Coppola

, ((np\s1)/np︸ ︷︷ ︸
directed

, (s1/np)\s1︸ ︷︷ ︸
any movie

) � s3
[\L]

In Areces et al. (2001), Galois connections are used to add the needed expres-
sivity to solve this problem by enlarging the type hierarchy with a fourth type
s4 := (0s)0 representing the ungrammatical sentential level. Negative Polarity
Items (NPIs) carry this ungrammatical features in their type assignments, e.g., any
n ∈ (s4/np)\s4. This type will block the occurrences of any n in positive contexts
like [2a]. Similarly, any n will not be able to take wide scope over negation as
the reader can check by instantiating the type of the GQ in [1b] with the one of
any n. However, in order to be licensed by the negative auxiliary didn’t and occur
in its scope, didn’t must be assigned a type compatible with the NPI, viz. didn’t
∈ (np\s2)/(np\s4). Since s2 � s4, the new type assignment derives the one we
have previously assigned to didn’t and the derivations given above can still be
proved.

In Bernardi (2002), the richer structure of derivability relations provided by the
addition of Galois connections is exploited to describe a classification of NPIs.
Essentially, this analysis is based on the fact that a function of type A/B composes

ANALYZING THE CORE OF CATEGORIAL GRAMMAR 135

with an expression of any type C such that C � B. The main novelty introduced by
Galois connections is the possibility of reversing the derivability relation between
types. Schematically, a function of type A/(C)0 composes with any expression of
type (B)0 such that C � B. These two composition patterns are summarized by
the inference schemata below, where [·] and {·} are positive and negative contexts,
respectively (see Bernardi, 2002, for details).

�[B] � A

�[C] � A
and

�{C} � A

�{B} � A
for C � B

The two inferences can be used to model licensing and antilicensing relations. The
first pattern is used to model an item which must be in a context satisfying certain
property to be grammatical. The second pattern models an item that is allergic to a
certain property and therefore cannot occur within contexts having such property.
A concrete example is given by the syntactic distribution of Dutch negative and
positive polarity items with respect to downward monotone functions (van der
Wouden, 1994). Consider the following data, where the underlined words are the
polarity items.

1a. Niemand zal ook maar iets bereiken.
(tr. Nobody will achieve anything.)

1b. Niemand hoeft te fietsen.
(tr. Nobody has to bike.)

2a. Weinig monniken zijn een beetje gelukkig. (tr. Few monks are a bit happy.)
2b. Weinig kinderen wil nog Donne lezen. (tr. Few children still want to read

Donne.)

Let A/B and B be the types of the function niemand and of the NPI ook maar iets
in its scope. A NPI is said to be “weaker” than ook maar iets if it is felicitous also in
“less negative” contexts, e.g., hoeft which is grammatical also when composed with
zelden (tr. seldom). This relation among these two kinds of NPIs can be modeled by
assigning to hoeft a weaker type than the one of ook maar ites: C � B. The function
niemand composes with any NPI weaker than ook maar iets and in particular with
hoeft, as predicted by the types.

Conversely, a property of a function like weinig is compatible with a positive
polarity item like een beetje and consequently is compatible also with a weaker
one, like nog which is allergic to stronger properties than een beetje. The relation
among the PPIs forces the type assigned to nog to derive the one assigned to een
beetje: C � B. But this will require the function weinig to be of type A/(C)0: it
composes with any type stronger than C.

136 C. ARECES AND R. BERNARDI

5. Conclusion

As we said in the Introduction, the main aim of this paper is to provide new insight
on categorial type logics by the use of display calculi. The logical systems encoding
residuation we discussed (NL and NL(�)) are well known in the field, and their
meta-logical and proof-theoretical properties have been established long ago. Still,
we feel that DC do provide further insight on how these systems came to be, and
in which sense they indeed encode in a “pure” state important algebraic properties
like residuation and Galois connections. In our analysis, we directly used systems
introduced by Goré (1998), our main contribution in the first part of the paper is
puzzling out how these systems relate to those standard in the categorial grammar
community. Building on our work in Section 2.2, we move on to define the system
NL (�, 0(·)), having both unary residuated and Galois connected operators. In other
words we define a system with operators that resemble a pair of split negations as
primitives. Finally, in Section 4, we provide some ideas on how the systems can be
used in analyzing linguistic phenomena.

References

Abrusci, M., 1991, “Phase semantics and sequent calculus for pure noncommutative classical linear
propositional logic,” The Journal of Symbolic Logic 56, 1403–1451.

Ajdukiewicz, K., 1935, “Die Syntaktische Konnexität,” Studia Philosophica 1, 1–27. (English
translation in Storrs McCall, ed., Polish Logic, 1920–1939, Oxford, 1996, pp. 207–231).

Areces, C., Bernardi, R., and Moortgat, M., 2001, “Galois connections in categorial type logic,” in
Proceedings of FGMOL’01, R. Oherle and L. Moss, eds., Special Issue of the Electronic Notes
in Theoretical Computer Science, Vol. 53.

Bar-Hillel, Y., 1953, “A quasi-arithmetical notation for syntactic description,” Language 29, 47–58.
Belnap, N., 1982, “Display logic,” Journal of Philosophical Logic 11, 375–417.
Bernardi, R., 2002, “Reasoning with polarity in categorial type logic,” Ph.D. Thesis, UiL OTS,

University of Utrecht.
Bernardi, R. and Moot, R., 2002, “Scope ambiguities from a proof-theoretical perspective,” pp. 9–23

in Proceedings of ICoS-2, J. Bos and M. Kohlhase, eds., Special Issue of the Journal of Language
and Computation, to appear.

Birkhoff, G., 1940, 1948, 1967, Lattice Theory, Providence, RI: American Mathematical Society.
Blyth, T. and Janowitz, F., 1872, Residuation Theory, New York: Pergamon Press.
Dunn, J., 1991, “Gaggle theory: An abstraction of Galois connections and residuation with appli-

cations to negation and various logical operations,” pp. 31–51 in JELIA 1990: Proceedings of
the European Workshop on Logics in Artificial Intelligence, J. van Eijck, ed., Lecture Notes in
Computer Science, Vol. 478, Berlin: Springer-Verlag.

Fuchs, L., 1963, Partially-Ordered Algebraic Systems, New York: Pergamon Press.
Goré, R., 1998, “Gaggles, Gentzen and Galois: How to display your favourite substructural logic,”

Logic Journal of the IGPL 6, 669–694.
Goré, R., 1998, “Substructural logics on display,” Logic Journal of the IGPL 6, 451–504.
Lambek, J., 1958, “The mathematics of sentence structure,” American Mathematical Monthly 65,

154–170.
Lambek, J., 1961, “On the calculus of syntactic types,” pp. 166–178 in Structure of Languages and

Its Mathematical Aspects, R. Jakobson, ed., Providence, RI: American Mathematical Society.

ANALYZING THE CORE OF CATEGORIAL GRAMMAR 137

Lambek, J., 1993, “From categorial to bilinear logic,” pp. 207–237 in Substructural Logics, K.D.P.
Schröder-Heister, ed., Oxford: Oxford University Press.

Lambek, J., 2001, “Type grammars as pregroups,” Grammars 4, 21–39.
Montague, R., 1974, Formal Philosophy: Selected Papers of Richard Montague, New Haven: Yale

University Press.
Moortgat, M., 1996, “Multimodal linguistic inference,” Journal of Logic, Language and Information

5, 349–385.
Moortgat, M., 1997, “Categorial type logics,” pp. 93–178 in Handbook of Logic and Language, J.

van Benthem and A. ter Meulen, eds., Cambridge, MA: The MIT Press.
Partee, B. and Rooth, M., 1983, “Generalized conjunction and type ambiguity,” pp. 361–383 in

Meaning, Use, and Interpretation of Language, R. Bäuerle, C. Schwarze, and A. von Stechow,
eds., Berlin, New York: De Gruyter.

Restall, G., 2000, An Introduction to Substructural Logics, London: Routledge.
van der Wouden, T., 1994, “Negative Contexts,” Ph.D. Thesis, University of Groningen.

