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ABSTRACT
This paper addresses the problem of human action recogni-
tion. Typically, visual action recognition systems need visual
training examples for all actions that one wants to recognize.
However, the total number of possible actions is staggering
as not only are there many types of actions but also many
possible objects for each action type. Normally, visual train-
ing examples are needed for all actions of this combinatorial
explosion of possibilities. To address this problem, this paper
is a first attempt to propose a general framework for unseen
action recognition in still images by exploiting both visual
and language models. Based on objects recognized in images
by means of visual features, the system suggests the most
plausible actions exploiting off-the-shelf language models.
All components in the framework are trained on universal
datasets, hence the system is general, flexible, and able to
recognize actions for which no visual training example has
been provided. This paper shows that our model yields good
performance on unseen action recognition. It even outper-
forms a state-of-the-art Bag-of-Words model in a realistic
scenario where few visual training examples are available.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Language Models, Text Analysis; I.4.8 [Image Pro-
cessing and Computer Vision]: Scene analysis—Object
Recognition

General Terms
Theory, Experimentation

Keywords
human action recognition, object recognition, language mod-
els
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Figure 1: Human action suggestion framework: Ob-
ject recognizers and language models are learned
from general datasets. Actions are suggested based
on objects recognized in images.

1. INTRODUCTION
The problem of action recognition has challenged the Com-

puter Vision community for quite a long time. Currently,
research on action recognition in still-images focuses on data
sets of around 40 human actions defined by “verb-object”
relations, like “playing violin” or “riding a bike”, where each
action has a good number of training examples. However,
the combinatorial explosion of verb-object relations makes
the task of learning human actions directly from their vi-
sual appearance computationally prohibitive and makes the
collection of proper-sized image datasets infeasible. Further-
more, actions are a rather complex semantic concept, since
an action is expressed by the combination of a verb with an
agent and a patient, as well as other possible elements of
what, in computational linguistics and artificial intelligence,
is known as a “frame”. We assume that one can know an
action by knowing the frame it belongs to.

Therefore, we aim to develop an action recognizer that can
recognize unseen actions based on their frames, where unseen
means that no visual training examples with action labels are
available. Having such a system enables us to handle much
more actions than currently considered within the Computer
Vision community and will guarantee the scalability and
stability of results. To this end, we propose a framework
in which the knowledge extracted from language models is
learned from an open domain and very large text corpora.

Like other action recognition work, we consider only images
that contain human actions. We focus on identifying these
actions based on objects which are recognized in the images.
In brief, this paper addresses the following research questions:
(1) Can language models built from general text corpora



suggest good actions given the objects in the image? (2)
How can we integrate a language model with an object
recognition model to recognize unseen actions? (3) How does
our resulting framework compare to a state-of-the-art Bag-
of-Words model on action recognition in a realistic scenario
where only few examples are available for training?

2. RELATED WORK

Visual features.
Several researchers noted that actions are highly semantic

and can therefore best be recognized through their compo-
nents rather than global appearance. [6] proposes a model
of person-object interaction features based on spatial co-
occurrences of body parts and objects, expressing the posi-
tion in terms of scale-space coordinates. [13, 26] shows the
importance of exploiting human poses too, while [11] investi-
gates the interaction with spatial information. Recently, [28]
integrated recognized objects, scenes, and human poses into
one model: An action is represented by a sparse, weighted
sum of action bases, consisting of attributes (verbs related to
the action) and parts (objects and poses). All these methods,
while successful, need many visual training examples. Our
work aims to reduce the reliance on visual training data;
we exploit language models to provide probabilities on the
relation between those entities for which good detectors exist.

Linguistic features.
Language models have been successfully used in computer

vision. In [8], the meaning of images is represented through
object-verb-scene triples. A triple works as an intermediate
representation of images and descriptive sentences and is used
to match the two. [24] also attempt to generate sentences
for images by using an online learning method for multi-
keyphrase estimation using a grammar model. Similarly, [27]
take an image description to consist of a noun, a verb, a
scene, and a preposition and aim to generate a never seen
descriptive sentence for a given image. To this end, they com-
bine object and scene detectors from computer vision with
language models extracted from a dependency parsed corpus
to compute the probability of the action and of the prepo-
sition to be associated with the image. In particular, they
define their vocabulary to consist of verbs, nouns, locations,
and prepositions. They select the most likely description by
calculating probabilities from co-occurrence statistics from
a subset of the Gigaword corpus [10]. Similarly to [27] we
extract co-occurrence statistics from a text corpus and trans-
form them into probability scores. Differently from them, we
exploit language models which are not tailored to the spe-
cific action detection task but which are built independently.
This might effect our system performance, but it makes our
results more general and stable. Moreover, we perform action
recognition rather than generating descriptive sentences.

Unseen action/event recognition.
Several other studies have been able to do unseen event

or action recognition. Both [16] and [14] learn attributes
of an image. Unseen events can be retrieved by a manual
definition of such event in terms of attributes. [22] use a
manually defined ontology of events in terms of objects to
recognise previously unseen events. In contrast, we learn
relations between objects and actions from language.
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Figure 2: Generative graphical model of LDA (left)
vs. ROOTH-LDA (right)

3. RECOGNIZING UNSEEN ACTIONS
We propose a framework (see Figure 1) able to recognize

human actions in still images (e.g., “a person is riding a bike”)
without having previously seen their image representations;
we do not rely on the standard visual learning paradigm
where many training images are needed to learn a specific
action. Instead, we only learn the visual appearance of
objects. Then we exploit linguistic corpora to learn which
verbs can relate a human actor with the visually detected
objects. The object appearance models and language models
are learned from unrelated datasets, which makes our system
highly flexible and ensures stability and scalability.

Specifically, we first learn the appearance models for a set
of objects O using standard object localisation systems [9,
25]. Then, given an image I, we use the localization systems
to predict the probability of the presence of an object oi ∈ O.
From our previously built universal language model, har-
vested from general text corpora, we predict the probability
that a verb vj is associated with an object: P (vj |oi). Hence
the object recognizer suggests objects for the language model
which in turn finds the most probable actions. We use a
weighted linear combination to combine these two probability
models for the prediction of the action aij ≡ {oi, vj}:

P (aij |I) = α× P (oi|I) + (1− α)× P (vj |oi, φ). (1)

3.1 Language Model
We exploit a language model to select plausible verbs for

a recognized object in an image (P (V |O)). Computational
linguists have already tackled an analogous task, known as
“selectional preferences”: compute the plausibility of a noun
to be the object of a given verb. Such systems have obtained
high correlation with human judgements. In this paper, we
compare two language models: We take an off-the-shelf Distri-
butional Semantics Model (DSM) called Type Distributional
Memory (TypeDM) [1], and implement ROOTH-LDA [21]
which is a variant on Latent Dirichlet Allocation.

TypeDM.
DSMs are based on the hypothesis that the meaning of a

word is given by the contexts in which it occurs. Distribu-



tional Memory (DM) [1] is a DSM built as a multitask seman-
tic model, viz. distributional information are extracted once
and for all from the corpus in the form of a set of weighted
〈word1, link,word2〉 tuples; the weights are assigned by Local
Mutual Information (LMI); the links could be of different
levels of lexicalization giving rise to different DM models.
TypeDM has shown to perform best on different tasks. We
have used TypeDM directly as a pre-computed semantic
resource of weighted tuples: we extracted all tuples in which
a verb is linked to a noun 〈word-v, link,word-n〉, where we
ignored link for simplicity; we ranked all these tuples based
on the noun (the object) and compute the probability of the
verb given the object as follows:

P (vj |oi) =
P (vj , oi)

P (oi)
=

LMIijPL
j=1 LMIij

(2)

where L is the number of tuples with w2 = oi, and the LMI
are the weights provided by the TypeDM tuples.

Since we took directly the weights of tuples from TypeDM,
this model can only predict verb-object pairs that have oc-
curred in the corpora.1 Every association (V,O) that has not
been seen in the corpora will be assigned 0 to its probability.

ROOTH-LDA.
A topic model (e.g., LDA [2]) is a generative model that

discovers the abstract “topics” in a collection of documents.
LDA was used successfully for preference selection [19, 21].

The most straightforward way of applying LDA (Figure 2,
left) provides us with semantic clusters of verbs/objects, but
does not jointly model both of them. Therefore it does not
provide the conditional probability of a verb given an object.
This joint probability is instead obtained by the ROOTH-
LDA model (Figure 2, right) proposed in [21] inspired by [20].
We follow this method and adapt it to our goal.

A relation m is a pair of < vm, om >, which is generated

by picking up a distribution over topics
−→
ϑm from a Dirichlet

distribution (Dir(−→α )). Then the topic assignment zm for
both vm and om is sampled from a multinomial distribu-

tion Mult(
−→
ϑm). Finally, a particular verb vm is generated

by sampling from multinomial distribution Mult(
−→
ψ zm) and

a particular object om is generated from Mult(−→ϕ zm) (Fig-
ure 2, right). In this way, we keep two different verb-topic and
object-topic distributions that share the same topic indica-
tors. We have estimated the model by Gibbs Sampling with
relatively simple algorithms following the sampling method
for LDA described in [12]. In particular, the topic zi of a
particular verb vi and object oi is sampled from the following
multinomial distribution:

p(zi = k|−→z ¬i,
−→v ,−→o ) =

n
(o)
k,¬i + βPVo

o=1 n
(o)
k,¬i + Vo × β

×
n

(v)
k,¬i + γPVv

v=1 n
(v)
k,¬i + Vv × γ

×
n

(k)
m,¬i + αPK

k=1 n
(k)
m,¬i +K × α

(3)

where −→v , −→o and −→z are the vectors of all verbs, objects
and their topic assignment of the whole data collection; α,

β, γ are Dirichlet parameters. n
(o)
k,¬i, n

(v)
k,¬i is the number of

1TypeDM could also be used to compute the plausibility of
verb-object pairs never occurred in the corpus.

times object o and verb v is assigned to topic k accept the
current one. Let Vo and Vv be the number of objects and
verbs in the dataset and K be the number of topics, the two
verb-topic and object-topic distributions are computed as:

ϕk,o =
n

(o)
k + βPVo

o=1 n
(o)
k + β

; ψk,v =
n

(v)
k + γPVv

v=1 n
(v)
k + γ

(4)

Finally, to get the conditional probability of a verb vj given
an object oi, we calculated it through the topic indicator z by
summing up over z all products of the conditional probability
of the corresponding verb and object given the same topic.

P (vj |oi) =
P (vj , oi)

P (oi)
∝

PK
k=1 P (vj |z = k)× P (oi|z = k)PK

k=1 P (oi, z = k)

=

PK
k=1 ψvj ,k × ϕoi,kPK

k=1 ϕoi,k

(5)

As LDA-ROOTH is a generative model, it also predicts the
probability of (V,O) pairs that did not occur in the corpus.

3.2 Object Localisation System
In this paper we use two different object localisation sys-

tems [25, 9]. We do not want to base our object recognition
on a global image impression, such as the common image-
based BoW representation, as an action is really between a
human and an object and less dependent on its surroundings.

The two object localisation systems [25, 9] differ in visual
features but share similarities in training: Both need training
images where objects are annotated using bounding boxes. In
both methods, negative examples are automatically obtained
from the training data by finding so-called hard examples:
image windows that yield high object probabilities but do
not correspond to the object. Given an image, both systems
predict the most likely bounding boxes where a specific object
oi is present, together with its probability P (oi|I).

The part-based method of Felzenszwalb et al. [9] is based
on a sliding window approach and Histogram of Oriented Gra-
dient (HOG) [5]. For each object class the method automati-
cally determines several poses. For each pose HOG-templates
are learned for the complete object and for object-parts, the
latter which are automatically determined using a latent,
linear SVM. During testing, the HOG-templates are applied
to a dense, regular search grid within the image. Locations
with the highest template response for both parts and the
complete object yield a predicted location with correspond-
ing probability. The framework is widely used and this paper
uses their publicly available code (see [9]).

The method of [25] is based on the BoW paradigm [4]. In
common BoW, SIFT-descriptors [17] or variants are extracted
on a densely sampled grid. Using a previously learned visual
vocabulary (e.g. created by kmeans) each SIFT desciptor is
assigned to a specific visual word. The BoW representation is
given by a histogram of visual word counts within the image,
often using the Spatial Pyramid [15] which regularly divides
the image to introduce a rough form of spatial consistency.

In [25], the authors propose to represent not a complete im-
age but only the object using BoW. However, such represen-
tation is computationally too expensive for a sliding window
approach which visits over 100,000 locations. Therefore the
authors propose Selective Search which uses multiple hierar-
chical segmentations to generate around 1500 high-quality,



class independent, object locations. The BoW representation
for these 1500 locations can be generated within reasonable
time. In this paper, we model the BoW based localisation
method after [25], using the publicly available selective search
code. The BoW implementation itself is modelled after the
fast implementation proposed by [23]. In experiments we
denote this BoW localisation method by BoWL.

The details of our implementation are as follows. First,
we extract SIFT descriptors [17] and two colour variants,
RGB-SIFT and Opponent SIFT [25] at every single pixel in
the image (ultra-dense). We use a single scale of 16 by 16
pixels and a Gaussian derivative filter with sigma = 0.667.
Principal Component Analysis is used on the descriptors
to reduce their dimensionality by a factor 3. Then each
descriptor is assigned to a visual word using a Random Forest
based visual vocabulary [18, 23], which is as accurate as the
usual k-means clustering yet is much more computationally
efficient. Specifically, we use four trees of depth ten, resulting
in 4096 visual words per SIFT variant. The trees are learned
beforehand on a random subset of all descriptors in the
training set using the global image labels. The visual words
and their locations are stored to be able to quickly compute
visual word histograms from subregions within an image.

4. DATASETS
In this section, we will describe all datasets that we use

in our experiments: a new action dataset, which contains
89 actions annotated by us to evaluate the performance of
the action suggestion system; the image datasets used for
training our object recognizers and the corpora from which
we have built our language models.

4.1 89 action dataset
Most available datasets used for evaluating action recog-

nizers are restricted to specific domains (e.g., playing musical
instruments, sport activities, etc.) or consider a limited num-
ber of actions (7 everyday action, Stanford 40 action dataset).
Moreover, all these data sets contain many learning examples
well distributed over all actions, but this distribution does
not reflect the reality where many more possible actions exist
for which few examples are available. To overcome these lim-
itations, we have collected a new dataset from 11.5 thousand
images of the PASCAL 2012 VOC trainval set [7] selecting all
those images representing a human action, obtaining 2,038
images. In PASCAL 2012 VOC there are in total 20 objects.
Figure 3 reports for each object the number of images in
total and the number of images that contain human actions.

As the images in this dataset were not collected for any
specific kind of actions, we believe it gives a general overview
of the possible human actions, involving the PASCAL objects.
Starting from the object label assigned to each image in the
PASCAL data set, we manually annotated the 2,038 images
with a verb to obtain the label of the human action (verb-
object). The data sets is annotated with 19 objects and 36
verbs, that combine into 89 actions. Considering the training
vs. validation split used in the PASCAL competition, our
human action data set consists of 1,104 images in the training
set and 934 images in the validation set2.

In the data set, there are objects, such as aeroplane, bird,
potted plant, which are associated with only few actions

2We made the dataset available at
http://disi.unitn.it/ dle/pascalaction.php
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Figure 3: Images containing actions in the PASCAL
VOC 2012 trainval dataset

(e.g., 8 images with actions related to aeroplanes, 15 images
with birds). Objects that are involved in more actions are
bicycle (ride, fix), chair (sit), motorbike (ride), bottle (drink).
In many pictures, the action is simply a person touching or
holding an object.

4.2 Language datasets
The language models are built from large open domain

corpora. TypeDM [1], has been harvested from a concate-
nation of three corpora: Web-derived ukWac; a mid-2009
dump of the English Wikipedia; and the British National Cor-
pus (BNC).3 The model contains 2.83 billion tokens: 20,410
nouns and 5,026 verbs.

We have built the LDA-ROOTH model using our imple-
mentation (Section 3) estimating it on the BNC, which was
PoS-tagged, and lemmatized with TreeTagger4 and depen-
dency parsed with MaltParser.5 We have not estimated the
LDA-ROOTH model on the whole corpus used to built the
TypeDM, since building the LDA-ROOTH model is compu-
tationally expensive. The chosen number of topics is 200,
the hyper-parameters α, β, γ were set to 0.5, 0.1 and 0.1
respectively and the number of iterations is set to 1,000.

Suggested verb-object combinations look quite interpretable
and satisfactory as shown in Table 1. For example, verbs like
“wear”, “buy”, “hang”, “design”, “dress” have a high weights in
the cluster (Topic 46) in which the most probable object is
“clothes” ; “spend”, “take”, “enjoy” are matching with nouns
like “time”, “day”, “hour” (Topic 0); “carry”, “conduct” with
“research”, “interview” (Topic 138) and so on. Totally, there
are 33,258 objects and 8,888 verbs.

4.3 Object recognizer dataset
To train the object recognizer, [9, 25] used the trainval

set of PASCAL VOC 2007 [7], which contains 20 objects:
person, bird, cat, cow, dog, horse, sheep, aeroplane, bicycle,
boat, bus, car, motorbike, train, bottle, chair, dining table,
potted plant, sofa, TV/monitor. The training set consists
of 5,011 images and 12,608 objects. Note that there is no
overlap between this dataset and the 2012 VOC dataset from
which we created our 89 action dataset.

3http://www.natcorp.ox.ac.uk/
4http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
5http://www.maltparser.org/



Topic 26: Topic 46: Topic 0: Topic 88:

Verb Object Verb Object Verb Object Verb Object
keep 0.56 pace 0.02 wear 0.48 clothes 0.04 spend 0.53 time 0.13 reduce 0.3 cost 0.06

maintain 0.04 record 0.02 remove 0.03 hat 0.03 take 0.02 day 0.06 increase 0.1 risk 0.04
gather 0.03 watch 0.01 buy 0.03 dress 0.02 enjoy 0.01 hour 0.06 cut 0.07 amount 0.02
check 0.02 secret 0.01 take 0.02 jacket 0.02 leave 0.01 year 0.05 incur 0.02 loss 0.01
stand 0.01 distance 0.01 pull 0.02 suit 0.02 last 0.01 night 0.03 control 0.02 emission 0.01
take 0.01 company 0.01 hang 0.01 shirt 0.02 work 0.01 lot 0.02 limit 0.02 number 0.01
mean 0.01 momentum 0.01 don 0.01 coat 0.01 devote 0.01 life 0.02 minimise 0.02 time 0.01
pick 0.01 control 0.01 sport 0.01 shoe 0.01 ask 0.01 evening 0.01 avoid 0.01 pollution 0.01
allow 0.01 child 0.01 put 0.01 uniform 0.01 use 0.01 month 0.01 eliminate 0.01 unemployment 0.01
force 0.01 peace 0.01 design 0.01 trouser 0.01 kill 0.01 week 0.01 involve 0.01 liability 0.01

remain 0.01 house 0.01 get 0.01 cap 0.01 talk 0.01 rest 0.01 reflect 0.01 intake 0.01
stay 0.01 diary 0.01 match 0.01 boot 0.01 visit 0.01 minute 0.01 impose 0.01 expenditure 0.01
steal 0 pressure 0.01 like 0.01 skirt 0.01 mean 0.01 deal 0.01 create 0.01 power 0.01
send 0 mind 0.01 knit 0.01 glass 0.01 read 0.01 part 0.01 assess 0.01 dependence 0.01
step 0 level 0.01 tear 0.01 jean 0.01 waste 0.01 weekend 0.01 curb 0.01 use 0.01

Table 1: Random ROOTH-LDA topics with their most probable verbs and objects

5. EXPERIMENTS
We test the performance of our framework in two settings:

categorization and retrieval. In the categorization setting we
test how well our framework can predict an action given a
specific image and estimate the usefulness of the language
model. For evaluation, for each image i we measure the
position of the correct action pi, and report both the average
and median position (AvgPos, MedPos) over all N images,

where: AvgPos =
PN

i=0 pi

N
, and MedPos is the median of the

set {p1, · · · , pn}. In the retrieval setting we test how good
our system is in retrieving images for a particular action. We
determine its performance in ranking the images for each
action, and measure the Average Precision. We compare
our system with a state-of-the-art BoW retrieval framework.
Like in most work on human action recognition, we assume
all images contain human actions.

5.1 Categorization experiments
We run three kinds of categorization experiments: first we

evaluate the language model on its own – hence we take the
correct object in the image as given by the gold standard;
then we optimize our integration of the language model with
an object recognizer. Finally, we evaluate our integrated
framework on unseen action recognition.

5.1.1 Language model with object gold standard
In this experiment, we want to determine how well the

respective language models can suggest the correct action in
an image given that we know the correct objects that appear in
the image. For the TypeDM, we extract all tuples associated
with these objects. Totally, there are 14.2 thousand possi-
ble actions related to the 19 objects (viz., the PASCAL 20
objects without “person”). For the LDA-ROOTH model, we
generate all possible combinations between these 19 objects
and the 8.888 verbs in its vocabulary, obtaining 169 thousand
combinations. We use the two models to suggest actions for
each image given the correct objects. Remark: there are 5
actions in 36 images that do not occur in TypeDM: clean
aeroplane, touch aeroplane, touch bus, touch motorbike, and
touch sheep. As we cannot predict the correct action for these
images using TypeDM, we cannot measure their position.
Therefore we exclude these 36 images from our evaluation.

Figure 4 and Table 2 report the results. First of all, we
observe that the average position is 28.8 for TypeDM model
and only 73.6 for LDA-ROOTH. Furthermore, the boxplots
in Figure 4 show that the average position is significantly
affected by a few images for which the position number for

TypeDM LDA-ROOTH
Average Position 28.8 73.6
Median Position 1 45

Table 2: AvgPos and MedPos within 2,038 images
of the 89 action dataset given object gold standard������
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Figure 4: Correct action positions of 2,038 images in
the 89 action dataset given the object gold standard.
Boxplots show the smallest position, lower quartile,
median, upper quartile and highest position

the correct action is high. For the median position, which
is unaffected by outliers, we see a position of 1 for TypeDM
and 45 for LDA-ROOTH. In fact, TypeDM puts the correct
action at the first position in 65% of the images(!).

We conclude that TypeDM performs much better than
LDA-ROOTH. There is one caveat: TypeDM was learned
on more data. But this is made possible because TypeDM
is computationally less expensive to learn. Hence, from a
practical perspective, TypeDM is the model of choice. In the
experiments below, we will evaluate the integration of the
object recognizer considering only TypeDM.

5.1.2 Parameter optimization for the integration of
the visual and language models

Our aim for this experiment is to find an optimal way
to combine TypeDM with the object recognizer to suggest
actions for images. We use a weighed linear combination as
defined in Equation 1. We experiment with weight values α:
{0.1, 0.2, ..., 0.9}. To avoid overfitting, we report results on
three repetitions of two-fold cross-validation (Figure 5). The
optimal values are: 0.4 for BoWL and 0.6 for the part-based
method. We will use these alphas in the experiments below.



������

����	


��
 �� ��� ��� ��� ��� ��� ��� ���

��

�

��

��

��

��

�

��

��

��

����

������

Figure 5: Alpha values and the corresponding aver-
age position over three runs

Model BoWL Felzen
AvgPos MedPos AvgPos MedPos

General model 52.6 5 57.1 6
Tailored model 48.6 4 53.7 5
89 action model 10.3 3 12.3 4

Table 3: Average and median position obtained by
two object recognizers integrated with TypeDM

5.1.3 Integrated visual and language models
In these experiments, we evaluate how a real system, con-

sisting of a language model and an object recognizer, performs
in three different scenarios.

Unbounded Action Prediction.
In this experiment, for each image the model assigns a

ranked list of all 14.2 thousand actions in TypeDM, viz., the
same scenario considered in the previous experiments. See
Table 3 for the results achieved by integrating TypeDM with
the BoWL and Felzen object recognizers.

First of all, one can see that the integration of TypeDM
with BoWL performs better than the Felzenszwalb object
recognizer (Felzen) in terms of AvgPos (52.6 and 57.1, re-
spectively). Moreover, the median for both methods is pretty
low: 5 for BoWL and 6 for the part-based object detector.
This shows that our combination of TypeDM with the object
recogniser yields an accurate action recognition system.

Tailored Action Prediction.
The verb and object co-occurrence frequency in texts may

be different from the one in images. Therefore, in this experi-
ment we want to adapt TypeDM to reflect the use of actions
in the image dataset so to improve the model predictions.

To do this, we first define general verbs as those that go
with many different objects. In images, the more objects a
verb goes with, the more general it is (Figure 6). The top 5
general verbs based on this definition are: touch, sit, hold,
feed, look. Similarly, general verbs in text are those whose
probability distributions over objects do not vary much. That
means, if a verb goes most of the time with a small number
of objects, it is more specific; if a verb occurs with many
different objects with similar probability, this verb is more
general. Given this definition, we count within 90% of the
probability distribution of a verb, how many objects a verb

is associated with (Figure 7). The top 5 most general verbs
according to this definition are: use, take, get, see, stay.

We first make some qualitative observations: Most of the
specific verbs in images are also quite specific in text (≈70%
verbs with 1 object in images have ≤ 8 objects in text).
Most of the general verbs in images are also quite general in
text (≈80% verbs with more than 4 objects in images have
≥11 objects in text). However, there are some verbs (e.g.,
push, follow, stay, use) that are general in text but more
specific in images. Some specific verbs in text (e.g., ride,
feed) are general in the image dataset, this is due to the fact
that our image dataset has several objects like sheep, horse,
motorbike, bike that often go with these verbs.

To tailor the language model to further improve the per-
formance of the system, we adjust the probability of each
verb by exploiting the analysis of verbs in the image dataset.
Our tailoring technique is rather soft, since we require to
know only the number of the objects that go with each verb
in the dataset. Theoretically, the specific objects used here
do not need to coincide with the ones from the particular
image dataset on which we do action prediction. Therefore,
we could also obtain this information from another image
dataset. In this paper, we do not, hence there is some bias.

The main idea is to lower down the probability of verbs
general in text but specific in images and vice versa. We do
this as follows. Let NO(V ) be the number of objects a verb
V goes with in our image dataset, we tailor the probability
as: Ptailored(V,O) = P (V,O)×NO(V ).

The results in Table 3 show that this tailored model
achieves better average position than the not-tailored one
(from 52.6 to 48.6 and from 57.1 to 53.7 for BoWL and Felzen
object recognizer, respectively). In Table 3, the median of
BoWL is 4 and Felzen is 5, one position better than the
general model. The results show the effectiveness of our
tailoring method based on the generality of verbs.

Bounded Action Prediction.
In this last scenario, we assume that we want to predict

the presence of an action out of the 89 actions in the image
dataset. This setting corresponds to the standard scenario
used in the action recognition literature, since most state-of-
the-art methods are unable to recognise unseen actions.

As shown in Table 3 the AvgPos for BoWL is 10.3 and for
Felzen is 12.3. The AvgPos improvement is mostly due to
the fact that the lowest possible position in this evaluation
scenario is only 89, it is mostly in the difficult images as it is
highlighted by the median: 3 (BoWL) and 4 (Felzen), viz.,
only one position higher than the results we achieved for
the tailored model and only two positions higher than the
general model.

We conclude that our framework yields accurate action
predictions, even in the more difficult and realistic scenario
where the possible actions are not known beforehand.

Human Evaluation.
Finally, we briefly evaluate to which extent the results of

the unbounded action scenario are underestimated because
of an incomplete annotation. In particular, we randomly
selected 100 images, where the gold standard is found within
top 40 actions. A human annotator went through the ranked
lists proposed by the tailored model using BoWL as object
recognizer. Then the annotator manually marked the first
correct action in the ranked list by looking at each image.
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Figure 6: General verbs in images: based on verb-
object associations (nr. of objects they go with)
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Figure 7: General verbs in text: based on verb-
object associations (nr. of objects accounting for
90% of the probability distribution over the total
objects of a given verb)

The AvgPos of these 100 images according to the gold
standard is 17.2 and the AvgPos according to the human
annotation is 5.6. This shows that the action performance of
the system could be higher than that based on our current
annotation. The reason is that there is usually more than
one way of describing the same action in an image and that
sometimes there are also different actions presented in the
same image. This qualitative analysis suggests that our
system for unseen action recognition works even better than
is suggested by the experiments above.

5.2 Retrieval experiments
In this section we carry out an image retrieval experiment.

We compare our system with a state-of-the-art BoW imple-
mentation. This BoW implementation uses the same features
as BoWL (see Section 3.2), yet it represents the complete
image using a Spatial Pyramid [15] of 1x1 and 1x3. Results
on the Pascal VOC 2007 classification challenge are 60.4
MAP (mean average precision), sufficiently close to the 61.7
MAP reported by Chatfield et al. [3].

As the BoW method needs training examples, we split our
action dataset into two by using the predefined Pascal 2012
training and validation split. To be able to optimize the
parameters of the SVM using cross-validation we demand
that an action has at least two training examples. For evalu-
ation, an action should have at least one test example. These
constraints results in a data set with 44 actions (whereas
our model can retrieve all 84 actions found in the language
model (89 minus the 5 not present in TypeDM).

Results on the action retrieval task for the BoW approach
and our proposed model are reported in Table 4. Surprisingly,
our model with BoWL object recognizer outperforms the

BoW approach: 0.22 vs. 0.19 MAP, respectively. The BoW
method suffers, of course, from a lack of training examples.
Yet our method has only seen the objects itself but never
how an action looks like. Still, it gives results slightly better
than the BoW system.

We conclude that our system is able to achieve good perfor-
mance in image retrieval on unseen actions. In a real-world
scenario, where training data is limited, our system even
outperforms a state-of-the-art BoW implementation.

6. CONCLUSIONS
This paper has presented a framework for unseen action

prediction in still images based on visual and language models.
Particularly, we used a visual model to detect the appearance
and locations of objects, and a language model for inferring
the possible relations between these objects. We combine
these to recognize unseen actions for which no visual training
examples have been provided. All components of the system
rely on general datasets and hence can be used to predict
actions in any image dataset.

Empirical results on a real image dataset have shown
that the system achieved good performance in predicting
unseen actions: the median ranking of correct actions of a
general model and of a model tailored to the image dataset
is 5 and 4, respectively. In a realistic scenario where few
training examples are available, our model outperforms with
0.22 MAP, a state-of-the-art Bag-of-Words approach that
achieves 0.19 MAP.

In future work we want to investigate other visual infor-
mation, such as relative positions between objects, scene
recognition and exploit language models to find relations
between them for a more accurate action prediction. For



Action Classic Unseen Unseen Action Classic Unseen Unseen Action Classic Unseen Unseen
BoW Felzen BoWL BoW Felzen BoWL BoW Felzen BoWL

drive bus (25) 0.717 0.816 0.814 pat dog (10) 0.083 0.050 0.220 watch TV (8) 0.032 0.114 0.243
sail boat (23) 0.822 0.444 0.657 hold bird (3) 0.015 0.013 0.207 feed bird (2) 0.009 0.005 0.068
sit table (111) 0.678 0.352 0.652 walk horse (8) 0.226 0.064 0.201 touch horse (8) 0.040 0.027 0.062

ride motorbike (85) 0.553 0.448 0.609 hold dog (35) 0.210 0.140 0.191 walk dog (16) 0.144 0.088 0.061
ride horse (75) 0.594 0.669 0.607 get bus (6) 0.118 0.122 0.183 take bus (2) 0.362 0.049 0.054
feed sheep (7) 0.040 0.096 0.540 row boat (24) 0.473 0.105 0.182 stay boat (8) 0.024 0.019 0.032
sit chair (148) 0.410 0.406 0.468 touch cat (7) 0.071 0.041 0.173 sit car (7) 0.354 0.068 0.028
sit sofa (59) 0.371 0.299 0.458 touch dog (6) 0.236 0.028 0.164 play dog (11) 0.020 0.011 0.021
hold cat (19) 0.123 0.060 0.395 lay sofa (11) 0.086 0.034 0.160 touch motorbike (14) 0.100 0.020 0.020
ride bike (84) 0.440 0.489 0.378 drive train (4) 0.074 0.417 0.130 drink bottle (15) 0.024 0.013 0.019
drive car (23) 0.204 0.612 0.367 hold bottle (40) 0.158 0.160 0.126 feed cat (4) 0.007 0.172 0.018
take train (8) 0.108 0.149 0.356 sit motorbike (18) 0.132 0.162 0.118 carry dog (2) 0.003 0.008 0.007
get train (3) 0.031 0.181 0.339 hold bike (10) 0.045 0.056 0.087 push chair (2) 0.009 0.001 0.006

walk bike (14) 0.127 0.192 0.280 herd sheep (2) 0.002 0.006 0.077 feed bottle (5) 0.033 0.008 0.004
milk cow (2) 0.006 0.003 0.003 touch sheep (5) 0.032 0.002 0.002 MAP 0.19 0.16 0.22

Table 4: (Mean) Average Precision of Classical BoW and our approach which integrates a Felzen/BoWL
object recogniser with TypeDM. The number of training examples for Classical BoW are in brackets.

example, the positions between objects might correlate with
prepositions used in language models (e.g., position “on” of-
ten goes with “ride horse”) and some actions might appear
more often in some specific scenes in images as well as in
language models. Furthermore, we also want to consider
the harder, rarely considered scenario where images may not
contain any human action at all.
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