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Abstract

The introduction of unary connectives has proved to be an important addition to
the categorial vocabulary. The connectives considered so far are order-preserving;
in this paper instead, we consider the addition of order-reversing, Galois con-
nected operators. In §2 we do the basic model-theoretic and proof-theoretic
groundwork. In §3 we use the expressive power of the Galois connected oper-
ators to restrict the scopal possibilities of generalized quantifier expressions, and
to describe a typology of polarity items.

1 Introduction

Categorial type logic provides a vocabulary of logical constants for the as-
sembly of form and meaning in natural language. The binary product
operator • captures the composition of grammatical parts, the residual
implications = and \ express incompleteness with respect to the composi-
tion relation. In [11,18] the categorial vocabulary has been extended with
a pair of unary operators, 3 and its residual 2#. This addition greatly in-
creases the analytical power of the categorial type language. In combina-
tion with the binary connectives, the unary operators can be used as li-
censing features, providing lexically anchored control over structural rea-
soning. But already in the grammatical base logic NL(3), the unary con-
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stants yield refinements of type assignments thatwould be over-generating
without the 3;2# decoration.
The 3;2# connectives form a residuated pair, which means they are

order-preserving operators with respect to the derivability relation. The
algebraic structure of the base logic also provides room for a pair of order-
reversing Galois connected operators, which in this paper we will write as
0·; ·0. To understand the relation between these two concepts, it may be
useful to situate them in their natural algebraic context. Residuated and
Galois connected pairs ofmappingswere studied in thework of Birkhoff [5]
and Ore [20], among others. The relevance of this early work for current
research on substructural logics has been emphasized by Michael Dunn,
from whose [7] we draw the following definitions.

Definition 1.1 Consider two posets A = (A;≤A) and B = (B;≤B), and
functions f : A → B; g : B → A. The pair (f; g) is said to be residuated iff

[RES] fa ≤B b iff a ≤A gb:

The pair (f; g) is said to be Galois connected iff

[GC] b ≤B fa iff a ≤A gb:

Keeping the posets A and B distinct helps understanding the connection
between residuated and Galois connected pairs of mappings. Let’s intro-
duce a third poset B0

= (B; (≤B)
�1

) where (≤B)
�1

= {(b; a) | a ≤B b}, and
consider a function h : B → A. Following [RES] the functions f; h form
a residuated pair iff the biconditional fa (≤B)

�1
b ⇔ a ≤A hb holds. But

now, replacing (≤B)
�1 by ≤B , we obtain that b ≤B fa ⇔ a ≤B hb, i.e.

the pair f; h is Galois connected with respect to the orders ≤B and ≤A. As
Dunn [7] puts it, the Galois connected pair is obtained by turning around
the inequality≤B in the characterization of residuation.
When we cast this algebraic discussion in terms of categorial type log-

ics the objects we will be considering are types, ordered by their deriv-
ability relation. Galois connected operators have been also studied in
the context of Linear Logic [12,1,9,21] where they are intended to exhibit
negation-like behavior. This means that the Galois properties have to be
mixed with extra features guaranteeing, for example, a double negation
law 0

(A
0
) = A = (

0
A)

0. In related work, Jim Lambek [13,14] considers
algebraic structures he calls pregroups, where each element a has a left
and a right adjoint, written a

l and a
r. Also in these structures, one has

a
lr

= a = a
rl. In this paper, we do not consider these stronger notions,

but we concentrate on the pure Galois properties and investigate the ef-
fect of adding 0·; ·0 to the base logic NL(3). We are interested in the base
logic becausewe think it opens awindowon the invariantsof grammatical
composition — the laws of the base logic are universals in the sense that
they do not depend on structural postulates (that is, non-logical axioms).
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The paper is organized as follows. In §2 we provide the basic model-
theoretic and proof-theoretic groundwork. We show how the complete-
ness result for the standard Kripke-style semantics for NL(3) can be ex-
tended to the Galois connected operators, and how a cut-free Gentzen
style presentation can be obtained. In §3, we turn to Beghelli and Stowell’s
analysis of ways of scope taking [3] and to Giannakidou’s theory of polar-
ity items distribution [8], to provide linguistic motivation for the Galois
connected operators. We exploit the new derivability patterns introduced
by the Galois operators to constrain the scopal possibilities of generalized
quantifier expressions and describe a typology of polarity items. In this
way we improve on the analysis of [4], which was given in terms of the
residuated operators 3;2#.

2 Formal preliminaries

2.1 Axiomatic presentation, completeness

There are twoways to extend the standard axiomatic presentation ofNL(3)
(see [19]) with Galois operators. The system NL(3,·0) can be obtained by
extendingNL(3) with the axioms (A1), (A2) and the rules (R1), (R2) below.
It is easy to show that (GC) is a derived rule in this setting. Alternatively,
one adds (GC) to NL(3). It can be shown then that (A1), (A2) and the rules
(R1), (R2) are derivable.

(A1) � A ⇒ 0(A0):

(A2) � A ⇒ (0A)0:

(R1) From � A ⇒ B infer � B0 ⇒ A
0
:

(R2) From � A ⇒ B infer � 0
B ⇒ 0

A:

(GC) � A ⇒ 0
B if and only if � B ⇒ A

0
:

NL(3) has aKripke-style semantics [10]which canbe straightforwardly ex-
tended to NL(3,·0). A model for NL(3,·0) is a tupleM = 〈W;R3

; R
2

1
; R

2

2
; V 〉

where W is a non-empty set, R3 ⊆ W
3, R2

i
⊆ W

2, and V is a valuation
V : PROP → 2W . The R3 relation governs the residuated triple •; \; =, the
R

2

1
relation governs the residuated pair 3;2#, while R2

2
governs the Ga-

lois connected pair ·0; 0·. For simplicity, in what follows we will restrict
ourselves to modelsM = 〈W;R; V 〉 where R is the relation governing the
Galois operators.
Given a modelM = 〈W;R; V 〉 andm ∈W we define

M; m 
 A
0 iff ∀m0

:(Rmm0 ⇒ M; m
0 �
 A):

M; m 

0
A iff ∀m0

:(Rm0
m ⇒ M; m

0 �
 A):
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Given an arrow A ⇒ B, a modelM = 〈W;R; V 〉 and m ∈ W , we say that
M; m |= A ⇒ B iffM; m 
 A impliesM; m 
 B. M |= A ⇒ B iff for all
m ∈ W ,M; m 
 A ⇒ B. We say that A ⇒ B is valid (notation |= A ⇒ B),
iff for any modelM,M |= A ⇒ B.
It is easy to show that the axioms (A1) and (A2) are true in all Kripke

models, and that the rules (R1) and (R2) preserve validity, establishing
soundness. For completeness, we can extend the formula-based canoni-
cal construction forNL(3) (cf. [6,10]). The canonical model Mc

= 〈W c; Rc; V c〉
has

W c
= FORM (the set of all formulas in the language);

¬RcAB iff � A ⇒ B0; and
A ∈ V c

(p) iff � A ⇒ p:

Notice that we define when two elements ofW are not related by R. This,
of course, defines also which elements are related. But we can do even
better thanMc. Given an arrow A ⇒ B, we can restrict W c to be simply
W c

= Sub(A) ∪ Sub(B) (the set of subformulas of A and B) and prove the
following truth lemma.

Lemma 2.1 (Truth Lemma) Given A ⇒ B, then for all A0; B0 ∈ Sub(A) ∪
Sub(B)Mc; A0


 B0 iff � A0 ⇒ B0:

With this lemma, we can prove completeness with respect to a class of
finite models, and hence obtain also decidability (actually, even an upper
bound on complexity).

Proof. The proof proceeds by induction on the complexity of the conse-
quent formula. For B ∈ PROP,Mc; A 
 B iff A ∈ V c

(B) iff, by definition
of V c, � A ⇒ B. We assume as induction hypothesis (IH) that the lemma
is true for formulas of lower or equal complexity than B.

We consider 0B (the case forB0 being even simpler).

[⇒] direction.Mc; A 
 0B iff for all B0 ∈ W c if RcB0A thenMc; B0 �
 B. By
contraposition and definition of Rc, for all B0,Mc; B0


 B implies � B0 ⇒
A0. By definition of W c, B0 is in Sub(A) ∪ Sub(B) and we can apply IH to
obtain that for all B0 ∈ W c, � B0 ⇒ B implies � B0 ⇒ A0. In particular,
B ∈W c and by (REFL) � B ⇒ B, hence � B ⇒ A0. By (GC), � A ⇒ 0B.

[⇐] direction. Assume � A ⇒ 0B to proveMc; A 

0B. Take B0 such that

RcB0A, we should proveMc; B0 �
 B. Notice that by definition of Rc, we
have that �� B0 ⇒ A0. For contradiction, supposeMc; B0


 B, then by IH,
� B0 ⇒ B, but then we can prove � B0 ⇒ A0 as follows
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� A ⇒ 0B

� B0 ⇒ B

� 0B ⇒ 0B0
(R2)

� A ⇒ 0B0
(TRANS)

� B0 ⇒ A0 (GC)
(1)

2

Theorem 2.2 (Completeness) Given A ⇒ B, then |= A ⇒ B implies �
A ⇒ B.

Proof. Suppose �� A ⇒ B. Then by Lemma 2.1Mc; A �
 B. AsMc; A 
 A,
we haveMc �|= A ⇒ B and hence �|= A ⇒ B. 2

As we already said, Lemma 2.1 actually establishes a strong finite model
property (an arrow A ⇒ B is valid iff B is satisfied inMc; A, a (pointed)
model whose size is polynomial in |A| ∪ |B|). From this, an NP upper
bound in the complexity of the validity problem for NL(3,·0) follows.
Theorem 2.3 Given A ⇒ B ∈ NL(3,·0), deciding whether A ⇒ B is valid
can be done in non-deterministic polynomial time.

2.2 Gentzen presentation, cut-elimination

In this section, we extend the Gentzen presentation of NL(3) of [18] to
NL(3,·0). We show that the Cut rule can be eliminated, yielding decidable
proof search. Our Gentzen presentation has sequents � ⇒ �, with �;� ∈
STRUC. Structures are defined as STRUC ::= FORM | [STRUC | ]STRUC,
with structural connectives [ and ]matching the logical connectives 0· and
·0, respectively.
In [9,21], the proof theory for the Galois connected operators is given

in the framework of Display Calculus. [2] shows how tomove from display
calculus to a Gentzen calculus for (unary and binary) residuated and Ga-
lois connected operators. In display calculus, [ and ] are related by (DGC)
(the structural counterpart of (GC)) � ⇒ [� iff � ⇒ ]�, which makes it
possible to give the following logical rules for the connectives:

� ⇒ A
0A ⇒ [�

(D1) � ⇒ A

A0 ⇒ ]�
(D2) � ⇒ [A

� ⇒ 0A
(D3)

� ⇒ ]A

� ⇒ A0 (D4) (2)

In the Gentzen presentation, we want to compile away (DGC) (and part of
the Cut rule) in the logical rules. Because the Galois operators are order-
reversing, we have to distinguish positive and negative contexts in the
statement of the Cut rule. We write �[�] for a structure � with a substruc-
ture� in an isotone position (dominated by an even number of structural
connectives), and �{�} for a structure � with � in an antitone position
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(dominated by an odd number of structural connectives). In (3) we give
the four instances of the Cut rule we have to consider.

� ⇒ A �[A] ⇒ �0

�[�] ⇒ �0
(C1)

�0 ⇒ �[A] A ⇒ �

�0 ⇒ �[�]
(C2)

� ⇒ A �0 ⇒ �{A}
�0 ⇒ �{�} (C3)

�{A} ⇒ �0 A ⇒ �

�{�} ⇒ �0
(C4)

(3)

The left introduction logical rules below are as in the display calculus pre-
sentation, the right introduction rules compile in an application of (DGC).

� ⇒ A
0A ⇒ [�

(0·L) � ⇒ A

A0 ⇒ ]�
(·0L) A ⇒ ]�

� ⇒ 0A
(0·R)

A ⇒ [�
� ⇒ A0 (·0R) (4)

The logical rules in (4) swap around antecedent and succedent of a se-
quent. For cut elimination to go through, we also need contextual versions
of the rules, compiling in the axiom schemata (A1)/(A2) with (C2)/(C4),
and the complementary rules (L�), (R+) replacing the logical connectives
by their respective structural counterparts.

�{A} ⇒ �

�{]0A} ⇒ �
(0·L+) �{A} ⇒ �

�{[A0} ⇒ �
(·0L+) (5)

� ⇒ �[A]

� ⇒ �[]0A]
(0·R�)

� ⇒ �[A]

� ⇒ �[[A0]
(·0R�) (6)

We will call Seq-NL(3,·0) the Gentzen presentation of NL(3,·0), to distin-
guish it from its Hilbert presentation Hil-NL(3,·0).
Theorem 2.4 (Cut elimination) In Seq-NL(3,·0), every valid sequent A ⇒
B has a cut-free proof.

The proof proceeds by induction on the complexity of the Cut inferences.
Below, we present the principal cases of the cut elimination transforma-
tion: the cases where a cut on a complex cut formula is replaced by a cut
on its subformula, thus decreasing the complexity. The other cases follow
the same ideas.
In (7) and (8), isotone cuts (C1; C3) on the complex formula A0 are re-

placed by antitone cuts (C4; C2). Similarly for cuts on 0A. (We use double
lines for the instantiation of the premise that makes a logical rule applica-
ble.)
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A ⇒ �∆
∆ ⇒ A0 (·0R)

Γ{A} ⇒ ∆0

Γ{�(A0)} ⇒ ∆0
(·0L+)

Γ[A0] ⇒ ∆0

Γ[∆] ⇒ ∆0
(C1)

Γ{�∆} ⇒ ∆0
;

Γ{A} ⇒ ∆0 A ⇒ �∆
Γ{�∆} ⇒ ∆0

(C4)

(7)

A ⇒ �∆
∆ ⇒ A0 (·0R)

∆0 ⇒ Γ[A]
∆0 ⇒ Γ[�(A0)]

(·0R�)

∆0 ⇒ Γ{A0}
∆0 ⇒ Γ{∆} (C3)

∆0 ⇒ Γ[�∆]
;

∆0 ⇒ Γ[A] A ⇒ �∆
∆0 ⇒ Γ[�∆]

(C2)

(8)

In (9) and (10), antitone cuts (C4; C2) are replaced by isotone cuts (C1; C3).

Γ{�A} ⇒ ∆0

Γ{A0} ⇒ ∆0
(·0L�) ∆ ⇒ A

A0 ⇒ �∆
(·0L)

Γ{�∆} ⇒ ∆0
(C4)

;

∆ ⇒ A Γ{�A} ⇒ ∆0

Γ{�∆} ⇒ ∆0
(C1)

(9)

∆0 ⇒ Γ[�A]
∆0 ⇒ Γ[A0]

(·0R+) ∆ ⇒ A

A0 ⇒ �∆
(·0L)

∆0 ⇒ Γ[�∆]
(C2)

;

∆ ⇒ A ∆0 ⇒ Γ[�A]
∆0 ⇒ Γ[�∆]

(C3)
(10)

2.3 Soundness and completeness of Seq-NL(3,·0)
We start by proving the following.

Proposition 2.5 Let M = 〈W;R; V 〉 be a model, andm ∈W then

(i) M; m |= � ⇒ �0[A] and |= A⇒ B then � ⇒ �0[B].

(ii) M; m |= �[A] ⇒ �0 and |= B ⇒ A then �[B] ⇒ �0.

(iii) M; m |= � ⇒ �0{A} and |= B ⇒ A then � ⇒ �0{B}.
(iv) M; m |= �{A} ⇒ �0 and |= A⇒ B then �{B} ⇒ �0.

Proof. By induction on the number of operators surrounding A. 2

Now define the following forgetting function.
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Definition 2.6 We define the following translation Tr : STRUC → FORM

as follows,

Tr(p) = p for p ∈ PROP

Tr(0(A)) = 0
(Tr(A)) Tr([(A)) = 0

(Tr(A))

Tr((A)0) = (Tr(A))0 Tr(](A)) = (Tr(A))0:

Theorem 2.7 (Soundness of Seq-NL(3,·0)) The sequent presentation of the
logic NL(3,·0) is sound.

Proof. Given a rule
A ⇒ B

C ⇒ D

we prove that if |= Tr(A) ⇒ Tr(B) then |= Tr(C) ⇒ Tr(D), and similarly for
rules with two premises.
Notice that Proposition 2.5 proves soundness of the Cut rules. For rules

(
0·R), (·0R), (0·L) and (·0L) use the fact that the (GC) rule is sound. For
rules (0·R�

), (·0R�
), (0·L+) and (·0L+) use Proposition 2.5 plus the fact that

axioms (A1) and (A2) are valid. 2

Theorem 2.8 (Equivalence of Seq-NL(3,·0) and Hil-NL(3,·0)) If A ⇒ B is a
theorem of Hil-NL(3,·0) then there is a proof of A ⇒ B in Seq-NL(3,·0). And
for every proof of a sequent � ⇒ � in Seq-NL(3,·0), Tr(�) ⇒ Tr(�) is a
theorem of Hil-NL(3,·0).

3 Linguistic application

Now that the logical properties of NL(3,·0) have been explained in detail,
let us turn to its linguistic application. In order to explore the possible uses
of the Galois unary operators it is important to look at the new properties
they introduce. As we pointed out in the beginning, these new operators
differ from the residuated ones in their monotonicity properties, and in
their derivability relation with respect to their argument when consider-
ing their composition (viz. whileA derives both (0A)0 and 0

(A
0
), it derives

2
#
3A but not32#A).
If we consider complex types as composition of functions, we realize

that having at our disposal downwardmonotonic operators gives a way to
modify the polarity position of their arguments. For example, if we con-
sider the composition of 0·with the binary function =, which is positive in
its first argument and negative in the other, we see that their monotonic
properties are reversed. More specifically, if 0A composes with B=· giv-
ing B=0(A), A will be in a positive position, and if it composes with ·=B,
resulting in 0

(A)=B,Awill be in a negative position. Since the monotonic-
ity properties of the connectives govern the derivability relation among

8
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types, having added the Galois operators increases the connections be-
tween types which is the main feature of categorial type logic.
In the next part of this section we will show how to use the derivability

patterns between the types of NL(3,·0) to account for the different distri-
bution of generalized quantifiers with respect to negation and to describe
a typology of polarity items.

3.1 Generalized Quantifiers Scope

We start with an example of how to account for scope phenomena using
the composition of the Galois operators and the fact that (0s)0 �←→ 2

#
3s,

where A −→ B means that the formula is a tautology, viz. A −→ B iff
|= A ⇒ B.
A well known problem of general quantifiers expressions (GQs) in the

categorial literature is the proper characterization of an in situbindingop-
eration such as required for the scope possibilities of GQs. In [17] a “scop-
ing constructor” operator q(A;B;C) is introduced to capture this behav-
ior. A GQ is assigned the type q(np; s; s) because it acts locally like a noun
phrase but takes scope semantically at a higher sentential level. The logi-
cal rule governing this operator is:

�[A] ⇒ B �[C] ⇒ D

�[�[q(A;B;C)]] ⇒ D
(qL):

The introduction of this connective raises a number of model-theoretical
and proof-theoretical questions which have been addressed in [16], where
it is shown that the q connective can be obtained as a defined operator of
standard categorial type systems, and the above (qL) rule as a derived rule
of inference. The solution there proposed can be further simplified, but
for reason of space we cannot go in the detail of this aspect.
The scoping constructor q is intended to provide the full set of com-

binatorially possible scope relations in a multiple quantifier context — in
that sense, it could be seen as the deductive version of May’s [15] Scope
Uniformity thesis. Beghelli and Stowell [3] have convincingly shown that
GQs have non-uniform scope possibilities. Themain claim of their theory
is that, for certain combinations of quantifier types, the natural language
grammar simply excludes certain logically possible scope construals. In
our setting this requires type-refinement of the subtypes of a q(np; s; s) as-
signment.
A first analysis following these ideas was provided in [4]. In this pa-

per, the derivability relation, 32#
s −→ s −→ 2

#
3s is used to distinguish

three different sentential levels: the one lower than negation (32#
s), the

negative one (s), and the one higher than negation (2#
3s). The different

distribution of GQs like every N, a N and some N, with respect to these
sentential levels is encoded in their type assignments.

9
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However, the linear derivability relation given by a pair of residuated
operators, is not enough to account for more complex linguistic phenom-
ena. For example, the type assignment proposed in [4] could not block
the occurrences of negative polarity expressions like any N in a positive
sentence.
Wewill show bymeans of an example, how we can use the type (0s)0 to

solve this problem and how the different scope possibilities of positive vs.
negative polarity items can be accounted for. Let’s start with the lexicon
entries we are interested in.

didn’t ∈ ((s=(np\s))\s)=(np\(0s)0).
any N ∈ q(np; (0s)0; (0s)0).

some N ∈ q(np;2#
3s;2

#
3s).

The occurrence of any in a positive context, e.g. anybody left, is blocked
as shown by the proof below (as (0s)0 −→ 2

#
3s cannot be derived in the

calculus):

np ⇒ np s ⇒ (0s)0

np • np\s ⇒ (0s)0
(\L)

(0s)0 �⇒ 2
#
3s

q(np; (0s)0; (0s)0) • np\s ⇒ 2
#
3s

(qL)

The ungrammaticality of, e.g., anybody didn’t leave is proved in a similar
way.
We now turn to the non-uniform behavior of polarity items with re-

spect to negation. The combination of GQ andnegation gives rise to scope
ambiguity, which in type logic grammars corresponds to multiple proofs.
In the case of polarity items (PI) not all the logical possibilities are allowed.
In particular, negative PI will allow only for the reading with the negation
having wide scope (¬GQ), while positive PI will produce the reading with
negation having narrow scope (GQ¬). The proof-schemata in Figures 2
and 3 illustrate how the lexicon entries above correctly predict these lin-
guistic phenomena.
When instantiating the quantifier q(np; s1; s2) with a positive polarity

item like some book, e.g. John didn’t read some book, the proof-schema
in Figure 2 will fail, while the one in Figure 3 will not. Applying the type
assigned above to some book, q(np;2#

3s;2
#
3s), the sentential types of the

quantifier, s1; s2, will both be instantiated with2#
3s. Therefore in Figure 2

the derivation s2 −→ (0s)0 will fail (as 2#
3s �−→ (0s)0). While both the

displayed derivations in Figure 3 will be provable, viz. s −→ 2
#
3s and

2
#
3s −→ 2

#
3s.

On the other hand, when considering the derivations as a proof of John
didn’t read any book, the sentential types assigned to the negative polarity
item any book, will be s1 = s2 = (0s)0, which give the correct derivations
s −→ (0s)0 and (0s)0 −→ (0s)0 in Figure 2, and block the derivation in

10



Areces, Bernardi and Moortgat

Figure 3 with (0s)0 �−→ 2
#
3s.

These simple examples show that different scope distribution exhib-
ited by itemswhich belong to the same syntactic category can beaccounted
for by means of derivability patterns among types. More precisely, the
unary operators (3;2#

;
0 ·; ·0) provide a way to encode the different fea-

tures which characterizes items of the same category. In the above ex-
amples we have used only a small part of the rich pattern of types at our
disposal in NL(3,·0). The picture in Figure 1 summarizes some of the re-
lations we have. Note that these relations can be further extended with a
third level since besides the derivation A −→ (0A)0, A −→ 0(A0) holds as
well. In the next pages we will refer to the types using the corresponding
abbreviations si given in Figure 1.

q@
@

@
@

@
@I

�
�
�
�
�
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q�
�
�
�
�
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@
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s
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Fig. 1. Some derivability patterns in NL(3,·0)
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np ⇒ np

np ⇒ np s ⇒ s1

np • np\s ⇒ s1
(\L)

np • ((np\s)=np • np) ⇒ s1
(=L)

s2 ⇒ (0s)0

np • ((np\s)=np • q(np; s1; s2) ) ⇒ (0s)0
(qL)

(np\s)=np • q(np; s1; s2) ⇒ np\(0s)0 (\R)
np ⇒ s=(np\s) s ⇒ 2

#
3s

np • (s=(np\s))\s ⇒ 2
#
3s

(\L)

np
|{z}

subject

•(((s=(np\s))\s)=(np\(0s)0)
| {z }

negation

•((np\s)=np
| {z }

trans. verb

• q(np; s1; s2)
| {z }

gen. quantifier

)) ⇒ 2
#
3s

(=L)

Fig. 2. Wide scope negation (¬GQ)

np ⇒ np

s ⇒ (0s)0 np ⇒ np

np\s ⇒ np\(0s)0 (\R;L)
np ⇒ s=(np\s) s ⇒ s1

np • (s=(np\s))\s ⇒ s1
(\L)

np • (((s=(np\s))\s)=(np\(0s)0) • np\s) ⇒ s1
(=L)

np • (((s=(np\s))\s)=(np\(0s)0) • ((np\s)=np • np)) ⇒ s1
(=L)

s2 ⇒ 2
#
3s

np
|{z}

subject

•(((s=(np\s))\s)=(np\(0s)0)
| {z }

negation

•((np\s)=np
| {z }

trans. verb

• q(np; s1; s2)
| {z }

gen. quantifier

)) ⇒ 2
#
3s

(qL)

Fig. 3. Narrow scope negation (GQ¬)
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In the remaining part of the paperwe show how the above derivability pat-
terns give a precise way to (i) gain a deeper understanding of the typology
of polarity items proposed in the literature of formal linguistics; (ii) clarify
the consequences predicted by the typologies, opening the way to further
investigations; (iii) carry out cross-linguistic comparisons. In particular
we will look at the typology of Greek polarity items discussed in [8] and
compare it with Italian data and types.

3.2 A typology of polarity items in NL(3,·0)
Extending the results presented in [23,22] Giannakidou gives in [8] an in
depth analysis of polarity items in terms of sensitivity to (non)-veridicality
—where, intuitively, a non-veridical expressionNV is such thatwhen com-
posed with a proposition p it does not entail that p is true. Besides the
standard distinctions we introduced above between negative and positive
polarity items, she gives evidence for a further classification among items
of the former group. For reasons which will become clear soon, she refers
to the whole group as affective PI (API) leaving the adjective “negative”
to denote a particular kind of API. The polarity items which do not be-
long to API are considered as positive polarity items (PPI). We now roughly
present the theory and sketch its typological account.
To give a categorial type logic (CTL) analysis of polarity items the main

observations to keep in mind are the following. (a) Episodic sentences (E)
can be either veridical or non-veridical, where the difference is marked
by the occurrences of veridical vs. non-veridical expressions (e.g. now vs.
may, respectively). (b) Among the non-veridical expressions we can dis-
tinguish the subset of the anti-veridical ones (AV) which are negation-like
operators (e.g. without, does not). (c) Among the affective polarity items
we have to differentiate negative polarity items (NPIs) which are defined
as the items which require to be the argument of AV, and APIs which are
felicitous also within the scope of NV. In CTL terms (a) means that the ap-
plication of NV (and therefore AV) expressions will return an episodic sen-
tence; (b) means that the type of AV must derive the type of NV; (c) says
that APIs are of a weaker type than NPIs, hence the type assigned to API
must derive the one of NPI. Let us illustrate this by means of the deriva-
tions sketched below.

Let NV ∈ E=PI;AV ∈ E=NPI and E=NPI −→ E=PI , then

AV ∈ E/NPI NPI ∈ NPI

AV ◦ NPI ∈ E

NV ∈ E/PI API ∈ API

NV ◦ API ∈ E

AV ∈ E/NPI

AV ∈ E/API PI ∈ API

AV ◦ API ∈ E

NV ∈ E/API

NV ∈ E/NPI
[∗]

NPI ∈ NPI
�
NV ◦ NPI ∈ E

13



Areces, Bernardi and Moortgat

The derivations show that if we assign to AV and NV types governed by the
relations above, then an anti-veridical expression will compose both with
a NPI and with an API, but a non veridical operator will not compose with
NPI (as the inference in [*] fails). Due to the logical properties of the =,
E=API �−→ E=NPI implies NPI �−→ API and E=NPI −→ E=API means
API −→ NPI . Therefore point (c) simply follows from (b).
More formally, this simple fact can be expressed using (one of) the

derivability relations given in Figure 1. But the cube offers a much richer
hierarchy of types which will allow us to make more fine-grained distinc-
tions among polarity items as actually is required by the linguistic data.
We look at the Greek data presented in [8] and to Italian data for a cross-
linguistic analysis. In Giannakidou’s analysis free choice items (FCIs) are
shown to be sensitive to (non)-veridicality, and in particular to be a spe-
cial case in the group of affective polarity items. We will include them in
our data. In the examples below the licensing operator is emphasized and
the licensed item is underlined. The > stands for the scope distribution,
e.g. Neg> API means Neg has scope over API.

Greek

NPI: ipe leksi, API: kanenan, FCI: opudhipote

1. Dhen idha kanenan. Neg> API

(tr. I didn’t see anybody)

2. Dhen ipe leksi oli mera Neg>NPI

(tr. He didn’t say a word all day)

3. *Dhen idha opjondhipote *Neg> FCI

(tr. I didn’t see anybody)

4. Opjosdhipote fititis bori na lisi afto to provlima. Modal > FCI

(tr. Any student can solve this problem.)

5. An dhis tin Elena [puthena/opudhipote], : : : Cond> API/FCI

(tr. If you see Elena anywhere, : : :)

6. An pis leksi tha se skotoso. Cond>NPI

(tr. If you say a word, I will kill you)

For the reasons discussed above the following types will correctly predict
these data. For completeness we include also the type for the PPI kapjos
(tr. somebody).
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Lexicon

PPI: q(np; s4; s4), kapjos NPI: np\s0

2
, ipe leksi

API: q(np; s0

1
; s

0

1
), kanenan FCI: q(np; s0

4
; s

0

4
), opudhipote

modal: (((s0

4
=np)\s0

4
)\s1)=(np\s0

4
), bori neg.: (np\s1)=(np\s0

2
), dhen

cond.: (s1=s0

1
)=s0

3
, an

We can compare the Greek data and types with the Italian ones.

Italian

NPI: nessuno, API: mai, FCI: chiunque

1. Non gioco mai Neg > API

(tr. I don’t play ever)

2. Non ho visto nessuno Neg >NPI

(tr. I haven’t seen anybody)

3. *Non ho visto chiunque *Neg > FCI

(tr. I haven’t seen anybody)

4. Chiunque può risolvere questo problema Modal > FCI

(tr. Anybody can solve this problem)

5. *Puoi giocare mai *Modal > API

(tr. You can play ever)

6. *Puoi prendere in prestito nessun libro *Modal >NPI

(tr. You can borrow any book)

7. Se verrai mai a trovarmi, : : : Cond > API

(tr. If you ever come to visit me, : : :)

Lexicon

PPI: q(np; s4; s4), qualcuno NPI: q(np; s0

2
; s

0

2
), nessuno

API: (np\s1)\(np\s0

1
),mai FCI: q(np; s00

4
; s

00

4
), chiunque

modal: (((s00

4
=np)\s00

4
)\s1)=(np\s00

4
), può neg.: (np\s1)=(np\s0

2
), non

cond: (s1=s0

1
)=s0

4
, se

The reader is referred to [8] for the complete analysis of the Greek data.
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We summarize the results in the table below comparing it with the Italian
ones.

Greek FCI API NPI

Veridical * * *

Negation * Yes Yes

Modal verb Yes Yes *

Conditional Yes Yes Yes

Italian FCI API NPI

Veridical * * *

Negation * Yes Yes

Modal verb Yes * *

Conditional * Yes *

Finally, the lexicon type assignments given for Greek and Italian can be
summarized as follows:
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@
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q
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API
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��

q@
@
@

@
@
@I

q@
@

@
@

@
@I

�
�
�
�
�
��

q

?
FCI/Modal q

Greek Italian

From this comparison the following conclusions can be drawn: (i) there
could be contexts where both PPI and API are felicitous (e.g. conditionals
and modal operators); (ii) there could be non-veridical operators which
do not license polarity items (eg. in Italian FCI are not allowed in condi-
tionals), (iii) there can be other sorts of polarity items sensitive to these
and to other kinds of non-veridical expressions.

4 Conclusions

In this paper, we have focused on the minimal implementation of Galois
connected operators in the base logic, and shown how this minimal addi-
tion enhances the accuracy of the grammatical logic.
An obvious topic for further research is the communication between

the Galois operators and the unary and binary residuated families.
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Another interesting direction is to investigate which is the true impact
of the addition of order-reversing operators to the categorial types. In the
main linguistic application in §3 we made use only of the composition of
Galois operators (0(·))0; 0((·)0) which are in themselves order-preserving
operators.
Furthermore, our search for the right lexical type assignments suggests

a possible connection between non-verdicality and (0·; ·0), and veridicality
and (2#

;3). This might shed light on the understanding of the semantic
interpretations of these operators when used to reason with linguistic re-
sources.
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