
Logica & Linguaggio, PL: Tableaux

RAFFAELLA BERNARDI

UNIVERSITÀ DI TRENTO
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1. Weaker Results
• If ψ is valid, can we conclude it is satifiable, falsifiable or unsatisfiable?
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1. Weaker Results
• If ψ is valid, can we conclude it is satifiable, falsifiable or unsatisfiable?

We can conclude ψ is satisfiable:

IF ∀I ,I |= ψ THEN ∃I ,I |= ψ

Satisfiability is a weaker property then validity.

• If ψ is unsatisfiable, can we conclude it is satifiable, falsifiable or valid?

We can conclude ψ is falsifiable:

IF ∀I ,I 6|= ψ THEN ∃I ,I 6|= ψ

Falsiability is a weaker property then unsatisifiability.
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3. Alberi di refutazione (tableaux
Le tavole di verità non sono l’algoritmo più efficiente. Esistono altre procedure più veloci.
Gli alberi di refutazione (tablaux) sono uno di questi:

Si formi una lista di formule con tutte le premesse e la negazione della conclu-
sione. Se si arriva a trovare un’interpretazione per la quale tale lista contiene
tutte formule vere, allora quell’interpretazione mostra che esiste un controe-
sempio: l’argomentazione non è valida (non è una conseguenza logica). Se
non si riesce a trovare nessuna interpretazione che renda vera tale lista, allora
la conclusione non è stata refutata, dunque l’argomentazione è valida.
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4. Consequences
You are asked to prove whether ψ is valid by means of tableaux.

• If all branches of your tableaux are open, what do you conclude?
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4. Consequences
You are asked to prove whether ψ is valid by means of tableaux.

• If all branches of your tableaux are open, what do you conclude?

ψ is satisfiable.

Are you sure you cannot give a stronger answer, i.e. are you sure ψ is not valid?

In order to check whether ψ is valid you have to look at ¬ψ.

If ¬ψ is unsatisfiable then ψ is also valid.

• If all branches close: ψ is unsatisfiable.

Can you make a stronger claim?

No this is already a strong result, there is no need to look at ¬ψ.
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