Indexing and Querying

Inverted lists and index compression

pdf page 2

Index construction

pdf page 17

Accessing the Lexicon and Boolean queries

pdf page 25

Querying and Ranking
pdf page 39

ompressing the information to be stored in a full-text database is only part

of the solution to the information explosion. The techniques described in

Chapter 2 may save a great deal of disk space, making it possible to store far
more than might otherwise be handled, but compression does nothing to address
the issue of how the information should be organized so that queries can be resolved
efficiently and relevant portions of the data extracted quickly. For that, an index is
necessary.

Most people are familiar with the use of an index in a book—there is one at the
end of this book, for example, and if you look up the word index in it, it should
refer you to this page. Using an index, it is possible to find information without
resorting to a page-by-page search, and, provided that the index itself can be under-
stood, it is possible to locate relevant pages in a book even if the book is written in
another language. Indeed, if you wanted to obtain information from a book written
in a foreign language, having an index would save an enormous amount of effort,
since a translator could then be employed to “decode” just the pages actually re-
quired rather than the entire book. Although this scenario may sound far-fetched,
it is in fact exactly the situation we are advocating in this book since the com-
pressed documents that are stored in an information retrieval system might as well
be stored in a foreign language, and some translation cost must certainly be paid to
access them.

A book without an index can give rise to great frustration. Most people, at some
time or another, have looked through a book for something they are sure is there
but they simply cannot find. Tracking down the telephone number of a govern-
ment department in a telephone directory is one such task that immediately springs
to mind—you are never quite sure whether to look for “Taxation Department,” or
“Department of Taxation,” or “Federal Office of Revenue,” and so on. (In New
Zealand, the correct answer is “Inland Revenue Department”; in Australia, it is the

103

CHAPTER THREE: INDEXING

143

ustralian Taxation Office”; in Canada, it is “Revenue Canada” or “Revenu Canada”;
and in the United States, it is universally known as the “IRS.”)

This difficulty of searching is the result of an inadequate index or no index at all.
Of course, with a normal book (including this one) it is possible to skim-read every
page, with a reasonable chance of being able to zero in, by various contextual clues,
to the desired section. But with computers we are talking about gigabytes of data,
millions of pages rather than hundreds, and with little structure and no contextual
clues such as headings. Casual browsing of this much data by human means would
be very costly, and even exhaustive searching by mechanical means is expensive. If
no index is available, efforts to extract information are doomed to failure. For this
reason, it 1s crucial to the success of an automated retrieval system that the stored
information be accurately and comprehensively indexed; otherwise we might as well
not have bothered accumulating the documents in the first place.

In this chapter we discuss a variety of indexing methods and show how the re-
sulting indexes can themselves be compressed. For the most part it is supposed that
a document collection or document database can be treated as a set of separate docu-
ments, each described by a set of representative terms, or simply terms, and that the
index must be capable of identifying all documents that contain combinations of
specified terms or are in some other way judged to be relevant to the set of query
terms. A document will thus be the unit of text that is returned in response to
queries.

For example, if the database consists of a collection of electronic office memo-
randa, and each memo is taken to be one document, then the representative terms
might be the recipient’s name, the sender’s name, the date, and the subject line of
the memo. It would then be possible to issue queries such as find memos from Jane
to John on the subject of taxation. If a more detailed index is required, the entire
text of the message might be regarded as its own set of representative terms, so that
any words contained in the message could be used as query terms. If the docu-
ments are images, the terms to be indexed might be a few words describing each
image, and a query might, for instance, ask that all images containing an elephant
be retrieved. Note that in this latter case it is supposed that someone has examined
the collection of images and decided in advance (by creating representative terms)
which ones show elephants. The task of taking an arbitrary image and deciding me-
chanically what objects are portrayed is a major research area in its own right and
is certainly not the subject of this book. Nevertheless, for certain restricted types of
image, such as faxes and other scanned text, it is sometimes possible to infer a set of
representative terms using OCR.

There will also be situations in which it is sensible to choose a document in the
database to be one paragraph, or even just one sentence, of a source document.
This would allow paragraphs that meet some requirement to be extracted, inde-
pendent of the text in which they are embedded. In the previous example of office
memos, it would be of dubious merit, but certainly possible, to define each field as
one document—one document storing the sender, another the recipient, another
the subject, and a fourth the actual message text. Similarly, it would be possible,
but probably confusing, to store as a document a group of 10 memos on disparate

CHAPTER THREE: INDEXING] ﬂ 5

topics. As in this example, it is normally easy to decide, for a given collection, what
the documents should be.

The database designer is also free to choose the granularity of the index—the
resolution to which term locations are recorded within each document. Having
decided for the office information system that a document will be a single memo,
the system implementer may still require that the index be capable of ascertaining
a more exact location within the document of each term, so documents in which
the words tax and avoidance appear in the same sentence can be located using only
the index, without recourse to extensive checking of every document in which they
appear anywhere.

In the limit, if the granularity of the index is taken to be one word, then the
index will record the exact location of every word in the collection, and so (with
some considerable effort) the original text can be recovered from the index. In this
case it is unlikely that the index can be stored in less space than the least amount
that is possible for the main text using a normal text compression algorithm. If it
could, the index compression method could be used as a better text compression
algorithm, and, given the discussion in Chapter 2, that seems unlikely.

When the granularity of the index is coarser—to the sentence or document level—
the input text can no longer be reproduced from the index, and a more economical
representation becomes possible. Most of this chapter is devoted to index compres-
sion, the problem of representing the index efficiently. Fach entry in a document-
level index is a pointer to a particular document, and for a collection of a million
documents, such a pointer would take 20 bits uncompressed. However, it is possi-
ble to reduce this to about 6 bits for typical document collections, a very worthwhile
saving indeed.

The database designer is also free to decide how the representative terms for tex-
tual documents should be created. One simple possibility is to take each of the
words that appears in the document and declare it verbatim to be a term. This tends
to both enlarge the vocabulary of the collection—the number of distinct terms that
appear—and increase the number of document identifiers that must be stored in
the index. Having an overlarge vocabulary not only affects the storage space re-
quirements of the system but can also make it harder to use since there are more
potential query terms that must be considered when formulating requests of the
system. For these reasons it is more usual for each word to be transformed in some
way before being included in the index.

The first of these transformations is known as case folding—the conversion of
all uppercase letters to their lowercase equivalents (or vice versa). For example, if
all uppercase letters are folded to lowercase, ACT, Act, and act are all indexed as
act and are regarded as equivalent at query time, irrespective of which original ver-
sion appeared in the source document. This transformation is carried out so that
those querying the database need not guess the exact case that has been used and
can pose case-invariant queries. Certainly, we would not wish to distinguish be-
tween the two sentences Data compression ... and Compression of data ... when
querying on data AND compression—Dboth sentences (or rather, the documents con-
taining them) should be retrieved. Of course, as with most generalizations, there are

106

3.1

CHAPTER THREE: INDEXING

counterexamples. In Australia, “ACT” stands for Australian Capital Territory, which
is the seat of the federal government. This is quite different from the verb fo act and
only tenuously related to the noun Act (of parliament). And, given the authorship
of this book, unification of Bell and bell might also introduce problems.

A second, less obvious, transformation is for words to be reduced to their mor-
phological roots—that is, for all suffixes and other modifiers to be removed. For ex-
ample, compression, compressed, and compressor all have the word compress as their
common root. This process is known as stemming and is carried out so that queries
retrieve relevant documents even if the exact form of the word is different. If the rep-
resentative terms are created using stemming, and all query terms are also stemmed,
the query data AND compression would retrieve documents containing phrases such
as compressed data is and also documents containing the likes of to compress the
data. It is difficult to deny the usefulness of this transformation, but the user needs
to remember that it is taking place, as it can easily cause the retrieval of seemingly
extraneous material.

A final transformation that is sometimes applied is the omission of stop words—
words that are deemed to be sufficiently common or of such small information con-
tent that their use in a query would be unlikely to eliminate any documents since
they are likely to be present in almost every document. Hence, nothing will be lost
if they are simply excluded from the index. At the top of any stop word list for
English is usually the, closely followed by a, it, and so on. Other terms might also
be stopped in particular applications—in an online computer manual, appearances
of the terms options and usage might not be indexed, and a financial archive might
choose to stop words such as dollar and stock and perhaps even Dow and Jones. One
automatic method that is sometimes used to derive a set of stop words is to deter-
mine, for each term, the extent to which it can be described by a random process,
accepting as stop words those that appear in the collection as if they were randomly
distributed.

All these transformations, and the effect they have upon index size, are consid-
ered in this chapter. A further possible transformation that we do not consider is
that of thesaural substitution, where synonyms—fast and rapid, for example—are
identified and indexed under a single representative term.

Sample document collections

To allow practical comparison of various algorithms and techniques, experiments
have been performed on some real-life document collections. This section describes
the four collections that have been used in preparing this book.! Some statistics for

Three of the four collections were modified slightly (to correct errors in the data) between
1993, when the results of the first edition of this book were prepared, and 1998, when the
second edition was prepared. The stemming program used in 1998 is also different from that
used in 1993. This is why most of the collection statistics listed in Table 3.1 are different from

3.1 SAMPLE DOCUMENT COLLECTIONS]”7

Collection
Bible GNUbib Comact TREC
Documents N 31,101 64,343 261,829 741,856
Number of terms F 884,994 2,570,906 22,805,920 333,338,738
Distinct terms n 8,965 46,488 36,660 535,346
Index pointers f 701,412 2,226,300 12,976,418 134,994,414
Total size (Mbytes) 4,33 14.05 131.86 2070.29

Genesis 1 1
In the beginning God created the heaven and the earth.

Genesis 1 2

And the earth was without form, and void; and darkness was
upon the face of the deep. And the Spirit of God moved upon
the face of the waters.

Figure 3.1 Sample text from the Bible collection.

them are listed in Table 3.1. In Table 3.1, and throughout the remainder of this book,
N is used to denote the number of documents in some collection; n is the number
of distinct terms—that is, stemmed words—that appear; F' is the total number of
terms in the collection; and f indicates the number of pointers that appear in a
document-level index. That is, f is the number of distinct “document, word” pairs
to be stored—the size of the index.

Collection Bible is the King James version of the Bible, with each verse taken
to be a document, including the book name, chapter number, and verse number.
The first two documents in this collection, shown in Figure 3.1, are the well-known
verses from Genesis.

The second collection, GNUbib, is a set of about 65,000 citations to papers that
have appeared in the computing literature. These documents are again very short;
for example, all of document number 8,425 is shown in Figure 3.2.

Collection Comact stores the Commonwealth Acts of Australia, from the 1901
constitution under which Australia became a federation through legislation passed
in 1989. Each document in this collection corresponds to one physical page of
an original printed version and contains 50 to 100 words. Two typical pages are

those listed in the corresponding table in the first edition. The various compression results
in the remainder of this chapter are correct for the modified collections.

108

CHAPTER THREE: INDEXING

%A Tan H. Witten

%A Radford M. Neal

%A John G. Cleary

%T Arithmetic coding for data compression
%J Communications of the ACM

$K cacm

%V 30

SN 6

%D June 1987

%P 520--540

Figure 3.2 Sample text from GNUbib.

Page 92011

EVIDENCE AMENDMENT ACT 1978 No. 14 of 1978---SECT. 3.
‘‘derived’’ means derived, by the use of a computer or
otherwise, by calculation, comparison, selection, sorting or
consolidation or by accounting, statistical or logical
procedures;

‘‘*document’’ includes---

(a) a book, plan, paper, parchment, film or other material
on which there is writing or printing, or on which there are
marks, symbols or perforations having a meaning for persons
qualified to interpret them;

Page 92012

EVIDENCE AMENDMENT ACT 1978 No. 14 of 1978---8SECT. 3.

(b) a disc, tape, paper, film or other device from which
sounds or images are capable of being reproduced; and

(c) any other record of information;

‘‘proceeding’’ means a proceeding before the High Court or
any court (other than a court of a Territory) created by the
Parliament;

‘‘qualified person,’’ in relation to a statement made in the
course of, or for the purposes of, a business, means a
rerson who---

Figure 3.3 Sample text from Comact.

shown in Figure 3.3. As in all these examples, some liberties have been taken with
formatting—line breaks have been altered and some white space has been removed.

The final collection that has been used is the first two disks of TREC, an acronym
for Text REtrieval Conference. This is a very large document collection distributed
to research groups worldwide for comparative information retrieval experiments.
The documents in the first two disks of TREC are taken from five sources: the Asso-

3.2

3.2 INVERTED FILE INDEXING] ”g

ciated Press newswire; the U.S. Department of Energy; the U.S. Federal Register; the
Wall Street Journal; and a selection of computer magazines and journals published
by Ziff-Davis. In these five subcollections there is a total of more than 2 Gbytes of
text and nearly 750,000 documents. These documents are much longer than those
of the other three collections, averaging about 450 words. One document in the Fed-
eral Register subcollection is more than 2.5 Mbytes long. All the documents contain
embedded standard generalized markup language (SGML) commands; one docu-
ment (selected because it matched the query managing AND gigabytes) is shown in
part in Figure 3.4. In dealing with TREC, all the SGML tags were stripped out be-
fore any indexing took place, and the values reported in Table 3.1 exclude the SGML
markup.

[tis also worth stating the definition of word that was used to obtain the statistics
in Table 3.1. A practical rule of thumb for identifying words for indexing is

A word is a maximal sequence of alphanumeric characters, but limited to at most
256 characters in total and at most four numeric characters.

The latter restriction is to avoid sequences of page numbers becoming long runs of
distinct words. Without this restriction, the size of the vocabulary might be un-
necessarily inflated. For example, Comact contains 261,829 pages, beginning with
page 1. Using this definition, a string such as 92011 is parsed as two distinct words,
9201 and 1. Similarly, queries on 92011 are expanded to become 9201 AND I, in-
troducing some small but acceptable likelihood of false matches—documents that
satisfy the query according to the index but in fact are not answers—on queries in-
volving large numbers. For example, a document containing the text totalling 9201,
of which 1 would be retrieved as a false match. (A more robust but more expen-
sive strategy is to expand a query on 92011 into 9201 AND 2011, supposing that a
similar rule had been used during the creation of the index.) Years, such as 1901,
at four digits, were preserved as words., Of course, this whole strategy would have
to be revised for a document such as the dictionary of real numbers mentioned in
Chapter 1 (page 11) (Borwein and Borwein 1990).

All the words thus parsed are then stemmed to produce index terms, as described
in Section 3.7.

Inverted file indexing

An index is a mechanism for locating a given term in a text. There are many ways
to achieve this. In applications involving text, the single most suitable structure is
an inverted file, sometimes known as a postings file and in normal English usage as a
concordance. Other mechanisms—notably signature files and bitmaps—can also be
used and may be appropriate in certain restricted applications. The emphasis in this
section is on inverted file indexing; signature file and bitmap indexing are discussed

110

CHAPTER THREE: INDEXING

<DoC>

<DOCNO> ZF07-781-012 </DOCNO>

<DOCID> 07 781 012. </DOCID>

<JOURNAL> Government Computer News Oct 16 1989 v8 n21 p39(2)
* Full Text COPYRIGHT Ziff-Davis Pub. Co. 1989,

</JQURNAL>

<TITLE> Compressing data spurs growth of imaging. </TITLE>
<AUTHOR> Hosinski, Joan M. </AUTHOR>

<DESCRIPTORS> Topic: Data Compression, Data Communications,
Optical Disks, Imaging Technology. Feature: illustration
chart. Caption: Path taken by image file. (chart)
</DESCRIPTORS>

<TEXT>

Compressing Data Spurs Growth of imaging

Data compression has spurred the growth of imaging
applicationsg, many of which require users to send large
amounts of data between two locations, an Electronic Trend
Publications report said.

Data compression is an ‘‘essential enabling technology’’
and the ‘‘importance of the compression step is comparable
to the importance of the optical disk as a cost-effective
storage medium, '’ the Saratoga, Calif., company said in the
report, Data Compression Impact on Document and Image
Processing Storage and Retrieval.

Document images need to be viewed at a resolution of 100
to 300 dots per inch, and files quickly grow to the gigabyte
or terabyte range, the report said. Data typically
compresses at a 10-to-1 ratio, but can go up to a 60--to-1
ratio.

''Use of document imaging has been slow to unfold, ' * but
it is gaining acceptability beyond desktop publishing, where
document imaging already has been used, researchers said.
However, document imaging can be complex and can be
misapplied, they said. Also, vendors have changed standards
or used only subsets of the standards in their products.

The Defense Department’s Computer-Aided Logistics Support
(CALS) program and use of image compression format standards
will help the government avoid problems with interchanging
data between systems, researchers said.

[Three paragraphs omitted]

</TEXT>
</DOC>

Figure 3.4 Sample text from TREC.

3.2 INVERTED FILE INDEXING]]]

 Tabl32_ Exampl o ach fino is on document

Document Text
1 Pease porridge hot, pease porridge cold,
2 Pease porridge in the pot,
3 Nine days old.
4 Some like it hot, some like it cold,
5 Some like it in the pot,
6 Nine days old.

in Section 3.5, and then Section 3.6 examines the factors that influence the choice
of indexing method. However, as an initial rule of thumb:

In most applications inverted files offer better performance than signature files and
bitmaps, in terms of both size of index and speed of query handling.

Let us now define exactly what we mean by an inverted file index. An inverted
file contains, for each term in the lexicon, an inverted list that stores a list of pointers
to all occurrences of that term in the main text, where each pointer is, in effect,
the number of a document in which that term appears. The inverted list is also
sometimes known as a postings list and the pointers as postings. This is perhaps the
most natural indexing method, corresponding closely to the index of a book and to
the traditional use of concordances as an adjunct to the study of classical tracts such
as the Bible and the Koran.

An inverted file index also requires a lexicon—a list of all terms that appear in
the database. (The word “vocabulary” is also used to denote this list. We prefer
“lexicon” when talking about the data structure that holds the list and “vocabulary”
when referring to linguistic aspects of the text.) The lexicon supports a mapping
from terms to their corresponding inverted lists and in its simplest form is a list of
strings and disk addresses.

As an example of an inverted file index, consider the traditional children’s nursery
rhyme in Table 3.2, with each line taken to be a document for indexing purposes.
The inverted file generated for this text is shown in Table 3.3, where the terms have
been case-folded but with no stemming applied and no words stopped. Because
of the unusual nature of the example, each word appears in exactly two of the lines.
This would not normally be the case, and in general, the inverted lists for a collection
are of widely differing lengths.

A query involving a single term is answered by scanning its inverted list and re-
trieving every document that it cites. For conjunctive Boolean queries of the form
term AND term AND ... AND term, the intersection of the terms’ inverted lists is
formed. For disjunction, where the operator is OR, the union is taken; for negation

112

CHAPTER THREE: INDEXING

~ Table3.3 Inverted file for text of Table 3.2.

Number Term Documents
1 cold (2,1, 4)
2 days (2;3,6)
3 hot (2,1,4)
4 in (2;2,5)
5 it (2,4,5)
6 like (2;4,5)
7 nine (2;3,6)
8 old (2;3,6)
9 pease (2,1,2)

10 porridge (2,1,2)
1 pot (2,2,5)
12 some (2;4,5)
13 the (2,2,5)

using NOT, the complement is taken. The inverted lists are usually stored in order of
increasing document number, so that these various merging operations can be per-
formed in a time that is linear in the size of the lists. As an example, to locate lines
containing some AND hot in the text of Table 3.2, the lists for the two words—(4, 5)
and (1, 4), respectively—are merged (or, strictly speaking, intersected), yielding the
lines that they have in common, in this case the list (4). This line is then fetched,
using whatever mechanism is being used to store the main text, and finally displayed.

The granularity of an index is the accuracy to which it identifies the location of a
term. A coarse-grained index might identify only a block of text, where each block
stores several documents; an index of moderate grain will store locations in terms of
document numbers; while a fine-grained one will return a sentence or word num-
ber, perhaps even a byte number. Coarse indexes require less storage, but during
retrieval, more of the plain text must be scanned to find terms. Also, with a coarse
index, multiterm queries are more likely to give rise to false matches, where each
of the desired terms appears somewhere in the block, but not all within the same
document. At the other extreme, word-level indexing enables queries involving ad-
jacency and proximity—for example, text compression as a phrase rather than as two
individual words fext AND compression—to be answered quickly because the desired
relationship can be checked before the text is retrieved. However, adding precise lo-
cational information expands the index by at least a factor of two or three compared
with a document-level index since not only are there more pointers in the index (as
explained below), but each one requires more bits of storage because it indicates a
more precise location. Unless a significant fraction of the queries are expected to
be proximity-based, the usual granularity is to individual documents. Proximity-

3.2 INVERTED FILE INDEXING]] 3

_ Table34 Word-level inverted file for text of Table 3.2.

Number Term (Document; Words)

1 cold (2:(1;6), (4; 8))

2 days (2;(3;2),(6;2))

3 hot (2;(1;3), (4;4))

4 in (2,(2;3), (5, 4))

5 it (2;14;3,7),(5;3))

6 like (2;14;2,6),(5;2)

7 nine (2;(3;1),(6; 1))

8 old (2;(3;3),(6;3))

9 pease (2,(1;1,4),(21))
10 porridge (2:(1;2,5),(2,2))
1 pot (2;(2;5),(5;6))
12 some (2;(4;1,5),(5; 1))
13 the (2;(2;4),(5;5))

and phrase-based queries can then be handled by the slightly slower method of a
postretrieval scan.

Table 3.4 shows the text of Table 3.2 indexed by word number within document
number, where the notation (z; ¥y, 1, . . .) indicates that the given word appears in
document z as word number 1, 1,,.... To find lines containing hot and cold less
than two words apart, the two lists are again merged, but this time pairs of entries
(one from each list) are only accepted when the same document number appears
and the word number components differ by less than two. In this example there
are no such entries, so nothing is read from the main text. The coarser inverted
file of Table 3.3 gives two false matches, which require certain lines of the text to be
checked and discarded.

Notice that the index has grown bigger. There are two reasons for this. First,
there is more information to be stored for each pointer—a word number as well as a
document number—and, given the discussion in Chapter 2, it is not surprising that
more precise locational information requires a longer description. Second, several
words appear more than once in a line. In the index of Table 3.3, duplicate appear-
ances are represented with a single pointer, but in the word-level index of Table 3.4,
both appearances require an entry. A word-level index must, of necessity, store one
value for each word in the text (the value F in Table 3.1), while a document-level
index benefits from multiple appearances of the same word within the document
and stores fewer pointers (listed as f in Table 3.1).

More generally, an inverted file stores a hierarchical set of addresses—in an ex-
treme case, a word number within a sentence number within a paragraph num-
ber within a chapter number within a volume number within a document number.

14

3.3

CHAPTER THREE: INDEXING

Each term location could be considered to be a vector (d, v, c, P, 8, w) in coordinate
form. However, within each coordinate the list of addresses can always be stored in
the form illustrated in Table 3.4, and all the representations described in this chapter
generalize readily to the multidimensional situation.

For this reason, throughout the following discussion it will be assumed that the
index is a simple document-level one. In fact, given that a document can be defined
to be a very small unit, such as a sentence or verse (as it is for the Bible database), in
some ways word-level indexing is just an extreme case in which each word is defined
as a document.

Uncompressed inverted files can consume considerable space and might occupy
S0 to 100 percent of the space of the text itself For example, in typical English
prose the average word contains about five characters, and each word is normally
followed by one or two bytes of white space or punctuation characters. Stored as 32-
bit document numbers, and supposing that there is no duplication of words within
documents, there might thus be four bytes of inverted list pointer information for
every six bytes of text. If a two-byte “word number within a document” field is
added to each pointer, the index consumes six bytes for roughly each six bytes of
text.

For a text of N documents and an index containing f pointers, the total space
required with a naive representation is J - [log N bits, provided that pointers are
stored in a minimal number of bits.2 Using 20-bit pointers to store the TREC docu-
ment numbers gives a 324 Mbyte inverted file. This is already a form of compression
compared to the more convenient 32-bit numbers usually used when pro gramming,
but even so, the index occupies a sizable fraction of the space taken to store the text.
For the same collection, a word-level inverted file using 29-bit pointers requires
approximately 1,200 Mbytes.

The use of a stop list (or rather, the omission of a set of stop words from the
index) yields significant savings in an uncompressed inverted file since common
terms usually account for a sizable fraction of total word occurrences. However, as
will be demonstrated in the next section, there are more elegant ways to obtain the
same space savings and still retain all terms as index words. Our favored approach
is that all terms should be indexed—even if, to make query processing faster, they
are simply ignored when present in queries.

Inverted file compression

The size of an inverted file can be reduced considerably by compressing it. This
section describes models and coding methods to achieve this,

The key to compression is the observation that each inverted list can, without any
loss of generality, be stored as an ascending sequence of integers. For example, sup-

The notation [z] indicates the smallest integer greater than or equal to z; hence, [3.3] = 4.
Similarly, [z | denotes the greatest integer less than or equal to z; [3.3] =3.

3.3 INVERTED FILE COMPRESSION]] 5

pose that some term appears in eight documents of a collection—those numbered
3,5, 20, 21, 23, 76, 77, 78. This term is described in the inverted file by a list:

(8;3,5,20,21,23,76,77,78),

the address of which is contained in the lexicon. More generally, the list for a term ¢
stores the number of documents f; in which the term appears and then a list of f;
document numbers:

(ft;dlad?.: coe :dft)s

where d;, < dpy;. Because the list of document numbers within each inverted list
is in ascending order, and all processing is sequential from the beginning of the list,
the list can be stored as an initial position followed by a list of d-gaps, the differences
di+1 — dy. That is, the list for the term above could just as easily be stored as

(8;3,2,15,1,2,53,1,1).

No information has been lost, since the original document numbers can always be
obtained by calculating cumulative sums of the d-gaps.

The two forms are equivalent, but it is not obvious that any saving has been
achieved. The largest d-gap in the second representation is still potentially the same
as the largest document number in the first, and so if there are N documents in
the collection and a flat binary encoding is used to represent the gap sizes, both
methods require [log N'| bits per stored pointer. Nevertheless, considering each
inverted list as a list of d-gaps, the sum of which is bounded by V, allows improved
representation, and it is possible to code inverted lists using on average substantially
fewer than [log N'| bits per pointer.

Many specific models have been proposed for describing the probability distri-
bution of d-gap sizes. The ones we will look at are listed in Table 3.5, along with
references to papers where they are described. They are grouped into two broad
classes: global methods, in which every inverted list is compressed using the same
common model, and local methods, where the compression model for each term’s
list is adjusted according to some stored parameter, usually the frequency of the
term. Local models tend to outperform global ones in terms of compression and are
no less efficient in terms of the processing time required during decoding, though
they tend to be somewhat more complex to implement. Global models themselves
divide into parameterized and nonparameterized, the latter being fixed codes and the
former involving some parameter that can be tailored to the actual distribution of
gap sizes. Local methods are always parameterized—otherwise there would be no
point in using them.

Global models are generally outperformed by local ones, and the following rule
holds:

For the majority of practical purposes, the most suitable index compression tech-
nique is the local Bernoulli method, implemented using a technique called Golomb
coding.

3.4

CHAPTER THREE: INDEXING

Performance of index compression methods

Table 3.8 shows the compression obtained on the four test collections by the vari-
ous methods described above. Output sizes are expressed as bits per pointer. The
total size of the index can be calculated by multiplying by the appropriate f value
from Table 3.1. For example, use of the interpolative code yields a TREC index of
83.4 Mbytes, or just 4 percent of the text that it indexes. This is quite a remarkable
achievement when it is remembered that a document number for every word and
number in this 2 Gbyte collection is stored in the index. As a reference point, the
second row of values shows the space that would be required, per pointer, by an
ordinary binary encoding of the gap sizes.

The results of Table 3.8 include any necessary overheads, such as the v-coded fi
values for the local Bernoulli model and the complete set of models and model se-
lectors for the batched frequency model. The figures for unary-coded compression
are less than what the average would be for a pure bitmap because in the unary-
coded file 7y is used to represent the local value f; for each inverted list, followed by
f¢ unary codes rather than a complete bitvector. For example, a word with f; = 1
that appears in the first document (number one) would be counted as taking two
bits in the unary-coded implementation—one bit for the v code for f; and one bit
for the unary code for 1.

Though it is the best of the global models, the global observed frequency model
is outperformed by remarkably simple local models. The frequency of a term is a
much better predictor of the distribution of its gap sizes than is the overall gap size
distribution for all terms. Furthermore, given that the local Bernoulli or skewed
Bernoulli models need just one parameter to be stored in memory during decod-
ing, compared with the hundreds and possibly thousands of parameters required
by the various observed frequency models, there is no contest—the local models
are significantly better. Even the global v and § codes come surprisingly close to
the compression attained by the global observed frequency model. These latter two
codes also have the major advantage of requiring no parameters. This is useful when
storing dynamic collections, which will be discussed in Chapter 5.

Of the results listed, only the hyperbolic model assumes the use of arithmetic
coding. All of the other mechanisms rely upon prefix codes, so slight compression
gains might result if the underlying probability distributions were used to drive an
arithmetic coder instead. It is, however, unlikely that any gains would be sufficiently
large to warrant the extra decoding time.

The interpolative code gives the best results on all four of the test files, followed
by the batched frequency model and the skewed Bernoulli model, with the param-
eter b chosen as the median gap size in each inverted list. Furthermore, all of these
codes require relatively modest computational resources during index compression
and decompress as quickly during index access as do simple binary codes. The local
Bernoulli model, coded using the Golomb code, is also a good choice, obtaining
slightly less compression than the interpolative code but with a correspondingly
simpler implementation. Compared to both of these mechanisms, the batched fre-
quency model has the extra disadvantage that during inverted file decompression,

3.5

3.5 SIGNATURE FILES AND BITMAPS] 29

~ Table 3.8 Compression of inverted files in hits per pointer =~ = = -

Method Bits per pointer
Bible GNUbib Comact TREC
Global methods
Unary 262 909 487 1918
Binary 15.00 16.00 18.00 20.00
Bernoulli 9.86 11.06 10.90 12.30
Y 6.51 5.68 4.48 6.63
) 6.23 5.08 4.35 6.38
Observed frequency 5.90 4.82 4.20 5.97
Local methods
Bernoulli 6.09 6.16 5.40 5.84
Hyperbolic 5.75 5.16 4.65 5.89
Skewed Bernoulli 5.65 470 4,20 5.44
Batched frequency 5.58 4.64 4,02 5.41
Interpolative 5.24 3.98 3.87 5.18

either the appropriate model must be read off disk and stored in memory while the
inverted list is being decoded, at the cost of an extra disk access, or the complete set
of models must be held resident in memory. The latter choice can involve significant
memory resources.

Signature files and bitmaps

Signature files and bitmaps are two further approaches to indexing. In certain com-
binations of circumstances both can offer faster query processing than inverted files
but in those same situations are likely to require a great deal more storage space,
which often outweighs that advantage. Signature files have been particularly pop-
ular in the past because they are, in a sense, implicitly compressed and so can con-
sume less storage space than uncompressed inverted files.” The previous two sec-
tions have shown how much has been learned about inverted index representations
in the last 10 years, and signature files no longer enjoy the relative advantage that
they used to.

For example, the 1992 text Information Retrieval: Data Structures and Algorithms by Frakes
and Baeza-Yates includes a chapter on signature files but no material on the compression of
indexes.

naex Lonstruction

hapters 3 and 4 avoid the question of how the index is created: they sim-

ply suppose that it exists and can thus be compressed or queried. In reality,

constructing the index is one of the most challenging tasks to be faced when
a database is built. This chapter addresses the problem of creating the various in-
dex structures described in Chapters 3 and 4. The emphasis here, as in those two
chapters, is on inverted file indexing since this is the most practical form of index
for both Boolean and ranked queries.

The process of building an index is known as the inversion of the text. The Concise
Oxford Dictionary defines “inversion” as “turning upside down, reversal of normal
position, order, or relation,” and this is exactly what must be done to create an index.
“Inversion” is also used in a technical sense by meteorologists, musicians, electrical
engineers, and mathematicians, to name but a few. In fact, to a mathematician the
operation being performed here is more usually known as transposition (which is
also a musical term); when a mathematician inverts a matrix, it is to calculate a
multiplicative inverse. And, of course, the author of a technical book knows the
required process only too well; it is the task of indexing. Indeed, the task of indexing
was known and described well before the computer made it easy, and there are books
on the subject that make interesting reading. In Indexing Books: A Manual of Basic
Principles, Collison (1962, 16-17) instructs us:

Whether handwriting or a typewriter is used, it is essential to have on hand a large number
of slips or thin cards of the same size. . . . Indexing needs a lot of stationery, and it is best
to order ten thousand slips at a time.

Given that we propose to deal with texts containing more than 1,000 individual
books, it is clear that a very large number of “slips” indeed might be required.

To illustrate the magnitude of the inversion problem, we will first describe,
through the use of an example, what is perhaps the most obvious method. Con-
sider again the simple text that was used in Chapter 3, reproduced in Table 5.1.

113

CHAPTER FIVE: INDEX CONSTRUCTION

o T e

Document Text

Pease porridge hot, pease porridge cold,
Pease porridge in the pot,

Nine days old.

Some like it hot, some like it cold,

Some like it in the pot,

Nine days old.

gy Ul = W -

~ Table5.2 Frequency matrix for text of Table 5.1.

Term

cold days hot in it like nine old pease porridge pot some the
1 1 e 2 2 _ = —
2 e 1 1 1 —_ 1
3 — 1T - = - — 1 1 — — _ - —
4 1 -1 - 2 2 - - — — —_ 2 —
5 _ = — 1 1T - - — — 1 1
6 — 1T - = — — 1 1 — — _ = —

Each line (document) of this text contains some index terms, and each index term
appears in some of the lines. This relationship can be expressed with a frequency
matrix, in which each column corresponds to one word, each row corresponds to
one document, and the number stored at any row and column is the frequency, in
that document, of the word indicated by that column. The frequency matrix for the
text of Table 5.1 is shown in Table 5.2.

In effect, each document of the collection is summarized in one row of this
frequency matrix. To create an index, the matrix must be transposed, forming a
new version in which the rows are the term numbers. The inverted frequency ma-
trix is shown in Table 5.3. From this it is easy to construct an inverted file of the
form described in Chapter 3 or an augmented inverted file of the form described in
Chapter 4.

One algorithm to create an inverted file is now clear: build in memory a trans-
posed frequency matrix, reading the text in document order, one column of the ma-
trix at a time; then write the matrix to disk row by row, in term order. Despite the
attractive simplicity of this approach, in reality inversion is a much more difficult
task. The problem is the size of the frequency matrix. Suppose that the text Bible is

CHAPTER FIVE: INDEX CONSTRUCTION 225

__ Toblo 53 Transposed equivalent o requncy matri of Tabie 52

Number Term Document
1 2 3 4 5 6
1 cold 1 — — 1 — —
2 days - — 1 — — 1
3 hot 1 — - 1 — —
4 in - 1 — — 1 —
5 it — — — 2 1 -
6 like — — - 2 1 —
7 nine — - 1 — — 1
8 old - — 1 — — 1
9 pease 2 1 — — — —
10 porridge 2 1 — — —_ —
1 pot - 1 — — 1 —
12 some — — — 2 1 —
13 the — 1 — - 1 —_—

to be inverted. From Table 3.1, Bible contains 8,965 distinct terms and 31,101 doc-
uments. If a four-byte integer is allowed for each entry in the frequency matrix, the
matrix will occupy 4 x 8,965 x 31,101 bytes of main memory. This is a little over 1
Gbyte, barely manageable even on a large machine. For the bigger TREC collection,
the size of the matrix becomes even more daunting: 4 x 535,346 x 741,856 bytes,
or 1.4 Tbytes (terabytes).

Supposing that one byte is sufficient to record each within-document frequency
Jaz (for TREC it is not adequate) does not help either: the space requirements for
the two collections are 250 Mbytes and 350 Gbytes, respectively, and the algorithm
still is not viable. If only Boolean access is required, then a Boolean matrix is suffi-
cient, and the frequencies can be dispensed with, reducing the sizes to 31 Mbytes and
46 Gbytes, respectively—still an unpleasantly large amount of memory. Of course,
we could use a machine with a large virtual memory and let the operating system
be responsible for paging the array into and out of memory as required. But the
column-by-column access as the matrix is created means that there will probably be
one page fault for each pointer in the eventual index, and about 700,000 page faults
would be required to build the Bible index. At a rate of perhaps 50 page replace-
ments per second, this corresponds to 14,000 seconds, about 4 hours. For TREC,
use of virtual memory to build an explicit frequency matrix results in an inversion
process that takes two nonstop calendar months, which is reminiscent in computer-
based terms of the dedication needed for the manual indexing processes described
in Chapter 1.

116

CHAPTER FIVE: INDEX CONSTRUCTION

For these reasons, more economical methods for constructing and inverting a
frequency matrix must be considered—the main theme of this chapter. The fi-
nal method described has been used to create an augmented inverted index for the
TREC collection (2 Gbytes of text) in under 2 hours on a personal computer, con-
suming just 30 Mbytes of main memory and less than 20 Mbytes of temporary disk
space over and above the space required by the final inverted file. Needless to say,
this final method bears little resemblance to the method sketched in these introduc-
tory paragraphs. The construction of signature files and bitmaps is discussed in this
chapter too. _ '

Chapters 3 and 4 also avoided mention of dynamic collections and concentrated
exclusively on static ones. Such techniques are appropriate if an archive of material
is to be distributed on some read-only medium such as CD-ROM. Then it is accept-
able for a large amount of effort to go into preparing the files that will comprise the
distribution, provided that access to the data is fast. However, in other situations
the collection may be required to be dynamic, with new documents being added,
existing ones being modified, and, sometimes, old ones being deleted. Keeping an
index up-to-date requires file structures that can cope with these operations effi-
ciently without consuming inordinate amounts of extra space. The final section of
this chapter considers the problems posed by dynamic collections and explains how
to compress and index large volumes of text when individual documents are subject
to change and the collection itself is subject to extension.

Before we begin to look at the details of the various index construction meth-
ods, we introduce a benchmark on which their performance will be compared and
preview the panoply of methods that will be presented.

Computational model

In order to assess the efficiency of index construction algorithms, it is useful to have
as a reference point the cost of inverting some typical database. Table 5.4 describes
a hypothetical collection of 5 Gbytes and five million documents. It also gives some
nominal performance figures, which will be used to estimate the overall time re-
quired by each inversion method. Although not specifically derived from the execu-
tion speed of any particular machine, these provide a useful basis for comparing al-
gorithms and capture the relative costs of the various operations involved. When the
first edition of this book was written in 1993, the listed performance roughly cor-
responded to the $30,000 workstation used for our experiments with TREC-sized
document collections; now, in 1999, they somewhat underestimate the performance
of the $5,000 personal computer we use for the same experiments.

Preview of index construction methods

Table 5.5 gives an advance peek at the methods that we will develop for index con-
struction, and their performance on the 5 Gbyte collection of five million docu-
ments in Table 5.4. For example, the standard linked-list inversion algorithm is
summarized in the first entry: it is described in Section 5.1, and pseudocode appears
in Figure 5.1. Although it could invert the sample document collection of Table 5.4

w’ 7

CHAPTER FIVE: INDEX CONSTRUCTION 22]

_ Tablo 54 Typical sizes and performance figures,

Parameter Symbol Assumed value

Total text size B 5 x 10° bytes
Number of documents N 5 x 108
Number of distinct words n 1x 108
Total number of words F 800 x 10°
Number of index pointers f 400 x 108
Final size of compressed inverted file / 400 x 10° bytes
Size of dynamic lexicon structure L 30 x 10° bytes

Disk seek time ts 10 x 1073 sec
Disk transfer time per byte t 0.5 x 10~ sec
Inverted file coding time per byte ty 5x 1075 sec
Time to compare and swap 10-byte records te 10~ % sec
Time to parse, stem, and look up one term tp 20 x 1075 sec
Amount of main memory available M ' 40 x 10° bytes

Table 55 Predicted resource requirements to invert 5 Gbytes.

Method Section Figure Memory Disk Time
(Mbytes) (Mbytes) (hours)
Linked lists (memory) 5.1 5.1 4,000 0 6
Linked lists (disk) 5.1 5.1 30 4,000 1,100
Sort-based 5.2 5.3 40 8,000 20
Sort-based compressed 5.3 — 40 680 26
Sort-based muliway merge 5.3 — 40 540 11
Sort-based multiway in-place 53 58andb9 40 150 11
In-memory compressed 5.4 5.12 420 1 12
Lexicon-based, no extra disk 5.4 — 40 0 79
Lexicon-based, extra disk 5.4 — 40 4,000 12
Text-based partition 5.4 - 40 35 15

n 6 hours, it would consume 4 Gbytes of main memory in doing so. No extra disk
space is required beyond what is needed to store the inverted file. For algorithms
in which a memory limit is enforced, it is assumed that 40 Mbytes of memory is
available to be exploited. The final method is the one used for the 2-hour inversion

118

a.1

CHAPTER FIVE: INDEX CONSTRUCTION

To produce an inverted index for a collection of documents,
1. /* Initialization */
Create an empty dictionary structure .S.

2. /* Phase one—collection of term appearances */
For each document Dy in the collection, 1 < d < N,

(a) Read Dy, parsing it into index terms.
(b) For each index term ¢ € Dy,

i. Let f4, be the frequency in D, of term ¢.
ii. Search S fort.
iii. If £ isnotin S, insert it.
iv. Append a node storing (d, fy) to the list corresponding to
term ¢.
3. /* Phase two—output of inverted file */
Foreachterm 1 <t <mn
(a) Starta new inverted file entry.

(b) For each (d, f,) in the list corresponding to £,
append (d, f; ;) to this inverted file entry.

(¢) If required, compress the inverted file entry.
(d) Append this inverted file entry to the inverted file.

Figure 51 Memory-based inversion algorithm.

of TREC mentioned above, except that the 2-hour inversion was done on a rather
faster machine than that specified in Table 5.4.

All these algorithms will be explained in the sections that follow. Table 5.5 is just
intended as a preview and summary.

Memory-based inversion

Implementing a cross-reference generator is a commonly assigned student project
in “Data Structures and Algorithms” courses. In reality, a cross-reference is just
another name for an inverted index, in which each term of some text (for example,
identifiers in program source code) is listed in alphabetical order, together with a
list of the line numbers in which it appears.

When set as a student exercise, the intended solution is usually that some kind of
dynamic dictionary data structure such as a hash table or binary search tree be used
to record the distinct terms in the collection, with a linked list of nodes storing line
numbers associated with each dictionary entry. Once all documents have been pro-
cessed, the dictionary structure is traversed, and the list of terms and corresponding

5.1 MEMORY-BASED INVERSION 2 2 H

cold g RN EIE e PAFEIN
days =31 J—={6[1[\
hot =01 F—{4[1]\
in 2t s [1 [\
it =42 F—={s[1 [\
LN
1
1

/]

/]

/]

e a2 —{5]1
nine ' =31 F—={6[1 [\
ot S NERR AN
pease =1]2 2[1

porridge =12 211
1

pot 2l F—{s[1[\]

some "F_4 2 511
che = JPANESEHIIN
Search structure S Linked lists storing (d, fy0 pairs J

Figure 5.2 Data structure representing inverted file for text of Table 5.1.

line numbers is written. This process is detailed in Figure 5.1, and the state of the
data structure at the completion of the first phase of processing on the sample text
of Table 5.1 is shown in Figure 5.2. Here the terms are shown stored in sorted order
in the dictionary, but this is not necessary. Any dynamic structure is suitable, but a
hash table is generally the most economical choice in terms of both speed and space.

Now consider the cost of this inversion algorithm. At the assumed rate of 2
Mbytes per second, it takes about 40 minutes to read 5 Gbytes of text. Parsing and
stemming to create index terms, and searching for these terms in the dictionary,
takes much longer, more than 4 hours, at 20 microseconds per word. The second
phase requires each list to be traversed so that the corresponding inverted list can
be encoded and written. The encoding requires 2,000 seconds and the writing 200
seconds, a further 40 minutes.

More generally, the inversion time 7" required by this approach is

T =Bt + Ft, + (read and parse text)
I(tg +t,) (write compressed inverted file)

seconds, where the symbols used are defined in Table 5.4. This simple linked-list
inversion method corresponds to the first line in Table 5.5.

The above analysis predicts an inversion time of about 6 hours for the database
of Table 5.4. This might sound like a long time, but when the enormous volume of

2310

CHAPTER FIVE: INDEX CONSTRUCTION

data being processed is taken into account, it is very fast. For the Bible collection,
for example, the same calculation gives an inversion time under 30 seconds.

There is, however, another resource to be considered: the memory space required
by the algorithm. Each node in each list of document numbers typically requires at
least 10 bytes: 4 for the document number d, 4 for the “next” pointer, and 2 or more
for the frequency count f, ;. For a small collection, this requirtment is modest. But
in the situation described in Table 5.4 there are 400 million such nodes, or 4 Gbytes
of memory, and to require this much main memory is unrealistic, even given the
advances in computing power noted above. Of course, as machine performance in-
creases, so does the amount of memory supported, but it is also true that collection
sizes are likely to grow at the same exponential rate and that memory will never
overtake demand.

It is tempting to move the linked lists of document numbers from memory onto
disk—or, equivalently, to run the program on a machine with a large virtual mem-
ory and a small physical memory—but this is not a viable alternative either. To see
why, consider the steps of the algorithm again but assuming that the linked lists are
stored on disk. '

The sequence of disk accesses during the first phase is sequential, and generation
of the threaded file containing the linked lists is largely unaffected. Each new node
results in a record being appended to a file, so, in the example inversion, a file of
4 Gbyrtes is created in sequential fashion on disk, adding about 30 minutes to the 6
hours already allowed.

Now consider the cost of the second phase, when each list is traversed. The stored
list nodes are interleaved in the same order on disk as they appeared in the text, and
so each node access requires a random seek into the file on disk. At the assumed
rate £, of 10 milliseconds per seek, and with 10 bytes to be read per record, this
corresponds to a phase two time of four million seconds, or 6 weeks. In terms of the
parameters described in Table 5.4, the inversion time is now

T = Bt + Ft, + 10ft, + (read and parse, write file)
fts +10ft, + (trace lists on disk)
Ity +t,) (write compressed inverted file)

seconds, annoyingly slow for practical purposes. Indeed, the use of a similar disk-
based random access inversion to invert an 806 Mbyte text—one-sixth the size con-
sidered in Table 5.4—has been reported to have required more than 13 days of
processing, albeit on a minicomputer less powerful than the machine postulated
here (Harman and Candela 1990). This disk-based linked-list inversion method
corresponds to the second line in Table 5.5.

For the gigabyte collections that this book addresses, the linked-list approach is
inadequate because it requires either too much memory or too much time. It is,
however, an excellent project and the best method for small collections. For the
Bible, an in-memory inversion takes half a minute and requires about 10 Mbytes of
main memory, well within the reach of typical workstations.

Luenin

ow that we have seen what an index contains and how to store it efficiently,

we move on to consider how best to use an index to locate information in

the text it describes. Two types of queries will be examined in this chapter.
The first is a conventional Boolean query; this form was tacitly assumed during the
discussion in Chapter 3. The second is a ranked query; we will discuss what this
means shortly. .

A Boolean query comprises a list of terms—words to be sought in the text—that
are combined using the connectives AND, OR, and NOT. The answers, o1 respomnses,
to the query are those documents that satisfy the stipulated condition. For example,
an appropriate query to search for material relevant to this book is

text AND compression AND retrieval,

All three words (or variants considered equivalent by a stemming algorithm) must
occur somewhere in every answer. They need not be adjacent nor appear in any
particular order. Documents containing phrases like the compression and retrieval
of large amounts of text is an interesting problem will be returned as answers. Also
returned would be a document containing this text describes the fractional distilla-
tion scavenging technique for retrieving argon from compressed air—perhaps not quite
what is sought, but nonetheless a correct answer to the query.

A problem with all retrieval systems is that answers are invariably returned that
are not relevant, and these must be filtered out manually. A difficult choice must
be made between casting a broad query to be sure of retrieving all relevant mate-
rial, even if it is diluted with many irrelevant answers, and posing a narrow one,
which ensures that most documents retrieved are of interest but risks eliminating
others sight unseen because the query is too restrictive. A broad search that iden-
tifies virtually all the relevant documents is said to have high recall, while one in
which virtually all the retrieved documents are relevant has high precision. An en-
during theme in information retrieval is the tension between these two virtues. We

193

1914

CHAPTER FOUR: QUERYING

must choose in any particular application whether to prefer high precision or high
recall and cast the query appropriately—just as a fisherman might choose to use a
hand net to select a single prized catch or to trawl the ocean floor to make sure that
nothing escapes, but in the process catching a great deal of junk as well,

Another problem with Boolean retrieval systems is that small variations in a

retrieval, yet the person 1ssuing these requests probably sees them as very similar. To
be sure of catching all the required documents, users become adept at adding extra
terms and learn to pose queries like

(text OR data OR image) AND
(compression OR compaction OR decompression) AND
(archiving OR retrieval OR storage OR indexing)

Wwhere the parentheses indicate operation order. This, perhaps, is one reason why
librarians guard access to the large international databases. Formulating queries is
an art, and librarians have the necessary insight and linguistic skills to guide a query
toward an acceptable set of answers,

Despite these problems, Boolean retrieval systems were the primary mechanism
used to access online information for more than three decades, in both commer-

text, data, image, compression, compaction, archiving, storage, retrieval, indexing, gigabyte,
megabyte, document, database, searching, information

is, to a person at least, probably a clearer description of the topic than the Boolean
query above.

o
would be just as pointless to use Or connectives since far too many documents will

match and very few are likely to be useful answers,
One solution is to use a ranked query. This involves a heuristic that is applied to
gauge the similarity of each document to the query. Based on this numeric indicator,

7 is large, most of the documents in the collection that are relevant will fall within
the top r—high recall. In practice, low precision invariably accompanies high recall

CHAPTER FOUR: QUERYING] 55

since many irrelevant documents will almost certainly come to light before the last
of the relevant ones appears in the ranking. Conversely, when the precision is high,
recall will probably be low, since precision will be high only near the beginning of
the ranked list of documents, at which point only a few of the total set of relevant
ones will have been encountered.

Great effort has been invested over the years in a quest for similarity measures
and other ranking strategies that succeed in keeping both recall and precision rea-
sonably high. Simple techniques just count the number of query terms that appear
somewhere in the document: this is often called coordinate matching. A document
that contains five of the query terms will be ranked higher than one containing only
three, and documents that match just one query term will be ranked lower still.
An obvious drawback is that long documents are favored over short ones since by
virtue of size alone they are more likely to contain a wider selection of the query
terms. Furthermore, common terms appearing in the query tend to discriminate
unfairly against documents that do not happen to contain them, even ones that
match on highly specific ones. For example, a query concerning the electronic office
might rank a document containing the office garbage can ahead of one that discusses
an electronic workplace. A word such as the in the query should probably not be
given the same importance as electronic.

More sophisticated ranking techniques take into account the length of the doc-
uments and assign a numeric weight to each term. One such technique—the co-
sine measure—is examined in this chapter as an example of a vector space (also
sometimes called statistical) method. Many other schemes have been proposed for
ranking documents, some of which are also surveyed here.

Throughout this book our primary concern is with implementation issues and
resource implications. Nevertheless, results are provided to show how useful the var-
lous ranking methods are. For example, on a set of 50 queries applied to the TREC
collection, the cosine measure achieves an average precision exceeding 40 percent
on the top 100 answers to each query. In other words, when a ranked query is posed
to TREC—which contains nearly three-quarters of a million documents—40 of the
top 100 documents returned for each query will be relevant. Such performance is
difficult to achieve with a Boolean query, and, as will be illustrated below, the queries
formulated from the TREC topics were anything but carefully phrased. Set against
this improved retrieval is the extra expense of ranked queries. More complex index
information is required than for Boolean queries, and processing costs are greater.

Before any of these issues can be tackled, a mechanism must be provided that
locates the query terms in the collection’s lexicon and identifies the addresses of the
corresponding inverted lists. Although this is a simple task for small collections, it
is not easy to do efficiently for large ones. The first section of this chapter deals with
the problem of searching the lexicon to identify query terms.

There is also the possibility that query terms might include wildcard charac-
ters. For example, lab*r might be used to cover both labor (the American spelling)
and labour (the British spelling); economy of typing might prompt the use of si-
perc*fra*exp*do*s when looking for information about the movie Mary Poppins.
The former query would also match labrador, an expansion that probably does

156

4.1

CHAPTER FOUR: QUERYING

. Table 41 Storage requirements for a million-torm lexicon using various data
ostructures: e e e e e e

Method Storage
Fixed-length strings 28 Mbytes
Terminated strings 20 Mbytes
Four-entry blocking 18 Mbytes
Front coding 15.5 Mbytes

Minimal perfect hashing 13 Mbytes

not yield the desired effect, and so even at this leve] of query, there is a ques-
tion of relevance. Methods for handling partially specified terms are considered
in Section 4.2.

Accessing the lexicon

The lexicon for an inverted file index stores both the terms that can be used to search
the collection and the auxiliary information needed to allow queries to be processed.
The minimal information that must be stored for each term ¢ in the lexicon is the
address in the inverted file of I, the corresponding list of document numbers. To
allow inverted lists to be retrieved in order of increasing term frequency, it is usual
to store f;, the number of documents containing the term, as well. The reason for
this is discussed in Section 4.3. Other values, such as compression parameters, are
normally stored as part of the inverted list since they are required only after the list
has been retrieved.

In this section we develop ways to store lexicons. A poor choice of data structure
can waste many megabytes of storage space during query processing, and since the
intention is that query processing will be carried out on a relatively low-powered
machine, this memory might be needed for other purposes. Table 4.1 summarizes
the storage required by the data structures we develop, for a collection with one mil-
lion terms. The first three techniques are very simple; the fourth is more involved,
and the fifth, minimal perfect hashing, is distinctly subtle. In the end we will con-
clude that for querying purposes, the main memory requirement can be eliminated
almost entirely simply by placing the lexicon on disk. However, there are situations,
such as the index construction process described in Chapter 5, when this solution is
inadequate, and minimal perfect hashing becomes the method of choice.

Access structures

A simple structure for the lexicon is to store an array of records, each comprising a
string along with two integer fields. If the lexicon is sorted, a word can be located
by a binary search of the strings, as was suggested in some of the calculations in

4.1 ACCESSING THE LEXICON] 57

jezebel 20| ——e
jezer 3| —4——e
jezerit 1| e
jeziah 1 —_—
jeziel 1 —_—_
jezliah 1 —_—
jezoar 1 —_—
jezrahiah | 1 —_ e
jezreel 39 | ——

Term: f Disk

address
of 1,

Figure 41 Storing a lexicon as an array of records.

Chapter 1, and access is very fast. This structure is shown in Figure 4.1; the words
used are part of the lexicon for the Bible collection.

Storing the strings in this way will consume a great deal of space. The lexicon
for a large collection might contain one million terms. This is not extreme: in the
2 Gbyte TREC collection, for example, there are n = 535,246 distinct terms even
after stemming (many of them are spelling mistakes, but that is unavoidable), and
so one million terms could correspond to a collection of perhaps 5 Gbytes. Stored
as 20-byte strings (and optimistically assuming that none is longer than 20 bytes),
with a 4-byte inverted file address and a 4-byte £, value, the lexicon requires more
than 28 Mbytes.

The space for the strings is reduced if they are all concatenated into one long
contiguous string and an array of 4-byte character pointers is used for access. Then
each term consumes its exact number of characters, plus four for the pointer. This
is likely to result in a net saving since the average length of terms in a large lexicon is
typically about eight characters in English. Note that the average length of terms in
a lexicon is considerably longer than the average length in the corresponding text,
which is usually about four to five characters. For example, the average length in
the 538,000-term TREC lexicon is 7.36 letters, whereas the average length in the
334,000,000-term TREC corpus is 3.86 letters. This difference in average length is
because most of the very common terms are short; they are repeated many times in
the text, but each appears only once in the lexicon.

The string and pointer structure is sketched in Figure 4.2. When every string is
indexed, it is not necessary for a string length field or terminator character to be
stored since the next pointer in the array indicates the end of the string. For the

158

CHAPTER FOUR: QUERYING

| jezebeljezerjezeritjeziahjeziel...
‘I 1} 1} 4

20 —

3

1

1

I —

1

f,/ \

Disk Address

of I,

Figure 4.2 Storing a lexicon as an array of string pointers.

same hypothetical vocabulary of one million words, the memory space is reduced
by 8 Mbytes to 20 Mbytes.

The memory required can be further reduced by eliminating many of the string
pointers. Although it is clear that n inverted file addresses and Jf+ values must be
stored, it is not necessary to use n. pointers to index the array of words. Suppose that
one word in four is indexed, and each stored word is prefixed by a 1-byte length field.
The length field allows the start of the next string to be identified and the block of
strings traversed. In each group of four words, a total of 12 bytes of pointers is saved,
at the cost of including 4 bytes of length information. This structure is illustrated in
Figure 4.3. For the one-million-word lexicon, the space required drops by another
2 Mbytes, and a total of 18 Mbytes suffices. For larger blocks, the savings continue
to accrue but are less dramatic. For example, blocks of eight words rather than four
save a further 0.5 Mbyte; blocks of 16 words, another 0.25 Mbyte; and so on.

Blocking makes the searching process somewhat more complex. To look up a
term, the array of string pointers is first binary-searched to locate the correct block
of words. This block is then scanned in a linear fashion to find the term, and its or-
dinal term number is inferred from the combination of block number and position
within block. Once the ordinal term number has been calculated, the f; array and
the vector of inverted file addresses can be accessed in the usual way.

Best of all, using blocks of four words has only a very small effect on the cost of
searching. This is because a linear search on the last three words within the block,
should it be necessary, requires, on average, two string comparisons. This is only

4.1 ACCESSING THE LEXICON] 59

E..l’?jezebelSjezer?jezeritESjeziah 6jezie1.2|
4
k |
k+1
Address
of term 20 4k
L= ak 3 4k + 1
1 4k + 2
1 4k + 3
1 4k + 1)
1
f, Disk
address
of 1,

Figure 43 Storing a lexicon with one word in four indexed.

slightly more than the average of 1.7 comparisons spent if all strings are indexed
and the binary search continued through to completion.

Front coding

Front coding is a further worthwhile improvement. It utilizes the fact that consec-
utive words in a sorted list are likely to share a common prefix. Two integers are
stored with each word: one to indicate how many prefix characters are the same as
the previous word and the other to record how many suffix characters remain when
the prefix is removed. The two integers are followed by the stipulated number of
suffix characters. Table 4.2 shows part of the lexicon of the Bible text. The first col-
umn gives the words in full, each one prefixed by its length in bytes. Allowing 1 byte
for each length field, the storage required by this set of strings is 96 bytes.

The second column of Table 4.2 shows the front-coded version of Figure4.1. The
amount of saving depends on the lexicon, but typically an average of three to five
prefix characters will match, at the cost of 1 extra byte to store the second integer.
For the set of words shown, which were extracted from a relatively small lexicon, the
average net saving is 2.5 bytes per word. The larger the lexicon, the more matching
prefix characters there are, simply because more strings are forced into the same
range of possible characters. To see this, recall that uppercase characters are folded

CHAPTER FOUR: QUERYING

__ Table 42 Front coding (the word hefore jezebel was jezaniah).

Word Complete Partial “3-in-4"
front coding front coding

7, jezebel 3, 4, ebel , 1, jezebel

5, jezer 41,r 4,1,r

1, jezerit 5,2, it 5,2, it

6, jeziah 3,3, iah 3, ,iah

6, jeziel 4,2, el , 6, jeziel

7, jezliah 3, 4, liah 3,4, liah

6, jezoar 3,3, oar 3,3, oar

9, jezrahiah 3, 6, rahiah 3, ,rahiah

7, jezreel 4,3, eel . 1, jezreel
11, jezreelites 7,4, ites 7,4, ites

6, jibsam 1,5, ibsam 1,5, ibsam

7, jidlaph 2,5, dlaph 2, ,dlaph

to lowercase, leaving 10 digits and 26 letters, and imagine each alphanumeric string
to be a radix-36 fractional number between zero and one. Character 0 is interpreted
as digit 0, 1 as digit 1, and so on; characters a to z are interpreted as digits 10 through
35, respectively.

Further, assume a radix-36 point immediately to the left of the first digit. That
is, instead of the ordinary radix-10 representation of numbers in which 10 digits are
used, suppose that a number system with 36 digits is used. For example, the string
01 is represented by the decimal number 0.00077 = 0x 36! +1 x 36~7; the string a
corresponds to the decimal number 0.27777 = 10 x 36™!; the word bed corresponds
t00.31664 = 11 X 367" + 14 X 36™% + 13 X 36~ and 2222z . . . is, for all practical
purposes, equivalent to 1.0. If a lexicon has n strings, the average gap between
strings interpreted in this way must be less than 1/n, and if one string in the sorted
lexicon corresponds to the value z, the next one will, on average, correspond to the
value z + 1/n. For any random value z in [0, 1), the expected number of matching
radix-k digits between and 2 +1/n is log, n— 1 for all but small values of k. Thus,
for the text Bible, the average prefix match length must be at least log, 9,020 —
1 = 1.5, and for the hypothetical lexicon of n = 1,000,000 strings, it is at least
log,, 1,000,000 — 1 = 2.9.

Of course, the strings are not random. In any dictionary, some prefixes are used
extensively, while others never appear. This means that the actual saving reaped
from front coding considerably exceeds the amount just calculated. In Bible, the
average prefix length is 3.6 characters, and the average string length is 6.1. This
amounts to a net saving of 2.6 bytes out of each 7.1 bytes of string storage. On the

4.1 ACCESSING THE LEXICON] H]

TREC lexicon, the corresponding values are 4.8 and 7.3, amounting to a net saving
of 3.8 bytes per 8.3 bytes. As a general rule of thumb:

Front coding yields a net saving of about 40 percent of the space required for string
storage in a typical lexicon for the English language.

The problem with the “Complete front coding” column of Table 4.2 is that bi-
nary search is no longer possible. Even if a string pointer leads directly to the entry
3, 4, ebel, it is impossible to know what the word is. The third column shows a good
strategy to use in practice. Here, every fourth word—the one indexed by the block
pointer—is stored without front coding, so that binary search can proceed. Just
one integer field—the length—need accompany these indexed words, as Table 4.2
shows. However, they might be stored with a prefix length of zero, introducing
a small amount of redundancy for the sake of consistency. Similarly, the second
suffix-length integer is omitted from the last string of each block since it can be
inferred from the next string pointer.

On a large lexicon, a 3-in-4 front-coding strategy can be expected to save about
4 bytes on each of three words, at the cost of 2 extra bytes of prefix-length infor-
mation—a net gain of 10 bytes per four-word block. This reduces the storage re-
quired for the hypothetical lexicon by a further 2.5 Mbytes, bringing the total to
15.5 Mbytes.

Each entry in the three arrays can be squeezed into less space. For example,
[log V| bits is sufficient for each f, value, where N is the number of documents
in the collection; similarly, the inverted file pointer and string pointer can be stored
as minimal binary codes in their respective ranges. The calculations above assumed
four bytes for each f; value and inverted file pointer, but coded in this way they
will occupy perhaps 28 bits each, saving a further 1 Mbyte. The prefix- and suffix-
length fields in the list of strings can be extracted and stored in their own parallel
arrays, the former occupying perhaps three or four bits and the latter five or six bits.
Placing a limit of 8 or 16 on the maximum prefix match length is not restrictive.
If more characters match, a prefix length of too few characters can nevertheless be
coded: this just means that a few extra bytes must be stored, an insignificant penalty
compared to the saving of four or five bits for every word in the lexicon.

These efforts to reduce the size of the lexicon data structure are prompted by a
desire to store the index entry address and f; value in main memory. It seems that
the only remaining mechanism to reduce the storage space would be to dispense
with the strings entirely. Incredible as it may sound, this is exactly what we do next.

Minimal perfect hashing

A hash function h is a mechanism for mapping a set L of n keys z; into a set of
integer values A(z;) in the range 0 < h(z;) < m — 1, with duplicates allowed. This
is a standard method for implementing a lookup table and provides fast average-
case behavior. When the data consists of n integer keys, for example, a common

167

CHAPTER FOUR: QUERYING

hash function is to take A(z) = z mod m for some value m > n/co, where « is
the loading, the ratio of records to available addresses, and 7 is usually chosen to
be a prime number. Thus, if asked to provide a hash function for 1,000 integer keys,
a programmer might suggest something like A(z) = z mod 1,399 to give a load
factor of & = 0.7 in a table declared to have 1,399 locations.

The smaller the value of c, the less likely it is that two of the keys collide at the
same hash value. Nevertheless, collisions are almost impossible to avoid. This fact
is somewhat surprising when first encountered and is demonstrated by the well-
known birthday paradox, which asks, “Given that there are 365 days in the year, how
many people must be collected together before the probability that two people share
a birthday exceeds 0.5?” In other words, given 365 hash slots, how many keys can
be randomly assigned before the probability of collision exceeds 0.52 The initial
reaction is usually to say that lots of people are needed. In fact, the answer is just 23,
and the chance that a hash function of realistic size is collision-free is insignificant.!
For example, with 1,000 keys and 1,399 randomly selected slots, the probability of
there being no collisions at all is 2.35 x 10~217, (The derivation of this probability
can be found in the next subsection: it is given by Equation 4.1 with m = 1,399
and n = 1,000.) The inevitability of collisions has led to a large body of literature
on how best to handle them. Here, however, we seek instead those one-in-a-million
hash functions that do manage to avoid all collisions.

If the hash function has the additional property that, for x; and z; in L, h(x;) =
h(z;) if and only if 4 = j, it is a perfect hash function. In this case, no collisions
arise when hashing the set of keys L.

[f a hash function A is both perfect and maps into the range m = n, each of the
n keys hashes to a unique integer between 1 and n and the table loading is o = 1.0.
Then h is a minimal perfect hash function, or MPHE. An MPHE provides guaranteed
one-probe access to a set of keys, and the table contains no unused slots.

Finally, if a hash function has the property that if z; < x; then h(z;) < h(z;),
it is order preserving. Given an order-preserving minimal perfect hash function (ab-
breviated OPMPHF and pronounced “oomph!”), keys are located in constant time
without any space overhead and can be processed in sorted order should that be
necessary. An OPMPHEF simply returns the sequence number of a key directly.

Of course, an MPHF or OPMPHE A for one set I will not be perfect for another
set of keys, and so it is nothing more than a precalculated lookup function for a
single set. Nevertheless, there are occasions when the precalculation is warranted,
and the space saving can be great.

[t is always interesting to try this experiment with groups of people. Having tried this exper-
iment many times with students while teaching them about hash tables, there is one impor-
tant tip that we would like to pass on: the participants should be asked to write down their
birthday (or any other date) before the collation process is commenced, so that the tempta-
tion for mysterious negative feedback is eliminated. In our experience, unless this is done,
it can sometimes take 366 students before the first collision. Perhaps there is a psychology
paradox here too.

4.1 ACCESSING THE LEXICON] 53

 Table 43 Tables for a minimal perfect hash function: (a) terms and hash functions;

(a) Termt¢ lt) hy(t) hlz) (b) x glx)
jezebel 5 9 0 0 0
jezer 5 7 1 1 4
jezerit 10 12 2 2 0
jeziah 6 10 3 3 7
jeziel 13 7 4 4 6
jezliah 13 11 5 5 0
jezoar 4 2 6 6 1
jezrahiah 0 3 7 7 1
jezreel 6 3 8 8 3
jezreelites 8 9 9 0
jibsam 9 14 10 10 2
jidlaph 3 1 1 1 2

12 0
13 3
14 10

As an example, Table 4.3 gives an OPMPHEF for the same set of 12 keys that was
used earlier. The methodology leading to this hash function is described in the next
section. The construction presumes the existence of two normal hash functions
hi(t) and h,(¢) that map strings into integers in the range 0...m — 1 for some
value m > n, with duplicates permitted. One way to define these is to take the
numeric value for each character of a string radix 36, as before, and compute a
weighted sum for some set of weights w;,

el
hy(t) = (Zt[z‘] X wj[?:]) mod m,

=1

where 2[1] is the radix-36 value of the 4th character of term ¢ and |¢] is the length
in characters of term ¢. Then two different sets of weights wy [¢] and w,[7] for 1 <
i < [t| yield two different functions h,(¢) and hy(t). As well as these two functions,
a rather special array g is needed that maps numbers 0...m — 1 into the range
0...n — 1; this is shown in Table 4.3b,.

To evaluate the OPMPHE A(t) for some string ¢, calculate

h(t) = g(hi(2)) +n g(ha(2)),

I'14
4.3

CHAPTER FOUR: QUERYING

Boolean query processing

The simplest type of query is the Boolean query, in which terms are combined with
the connectives AND, OR, and NOT. It is relatively straightforward to process such
a query using an inverted file index. The lexicon is searched for each term; each in-
verted list is retrieved and decoded; and the lists are merged, taking the intersection,
union, or complement, as appropriate. Finally, the documents so indexed are re-
trieved and displayed to the user as the list of answers. For a typical query of 5 to 10
terms, a second or so is spent reading and decoding inverted lists; then—depending
on the number of answers—accessing, decoding, and writing the documents takes
anything from tenths of a second to hundreds of seconds.

Conjunctive queries

Let us examine this process in detail. In the next few pages we suppose that the
query is a conjunction, consisting of terms connected with AND operations such as

text AND compression AND retrieval.

Although this is not the only form of Boolean query, it is sufficiently common to
warrant special discussion. '

Suppose a conjunctive query of 7 terms is being processed. First, each term is
stemmed and then located in the lexicon. As discussed in Section 4.1, the lexicon
might be resident in memory, if space is available, or on disk. In the latter case, one
disk access per term is required. The next step is to sort the terms by increasing fre-
quency; all subsequent processing is carried out in this order. This is one reason why
we stipulated earlier that the lexicon should hold, for each term ¢, its frequency of
appearance f;. If this information were held with the inverted list instead, it would
not be possible to process terms in increasing frequency order without fetching and
buffering all the inverted lists. Processing the least frequent term first is not essential,
but it makes retrieval significantly more efficient.

Next, the inverted list for the least frequent term is read into memory. This list
establishes a set of candidates, documents that have not yet been eliminated and
might be answers to the query. All remaining inverted lists are processed against this
set of candidates, in increasing order of term frequency. This strategy is described in
Figure 4.8, where C' is the set of candidate document numbers and I; the inverted
list for term ¢.

In a conjunctive query, a candidate cannot be an answer unless it appears in all in-
verted lists; if it is omitted from any list, it can be discarded at once. This means that
the size of the set of candidates is nonincreasing. To process a term, each document
in the set is checked and removed if it does not appear in the term’s inverted list.
From this perspective, the dominant operation when processing conjunctive queries
is not so much merging as “looking up” since the set of candidates is never larger
than the inverted lists and shrinks as more terms are processed and the inverted lists
grow longer.

4.3 BOOLEAN QUERY PROCESSING] 75

To evaluate a conjunctive Boolean query,
1. For each query term ¢,
(a) Stem t.
(b) Search the lexicon.
(¢c) Record f; and the address of 1;, the inverted file entry for ¢.
2. Identify the query term ¢ with the smallest f;.

3. Read the corresponding inverted file entry I,.
Set C' « I;. C'is the list of candidates.

4. For each remaining term ¢,
(a) Read the inverted file entry, ;.
(b) Foreachd e C,
ifd & I, then
set C' < C — {d}.
(c) If|C| =0,
return, there are no answers.
5. Foreachd € C,
(a) Look up the address of document d.
(b) Retrieve document d and present it to the user.

Figure 48 Evaluating conjunctive Boolean queries.

When all inverted lists have been processed, the remaining candidates, if there
are any, are the desired answers,

Term processing order

There are two reasons to select the least frequent term to initialize the set of can-
didates. The first is to minimize the amount of temporary memory space required
during query processing. Since the size of the set is nonincreasing, it is largest when
it is initialized, so the memory required is minimized by selecting the shortest in-
verted list first. Processing the remaining terms in increasing frequency order does
not affect the peak memory space required. It is still a good idea, though, because
it may quickly reduce the number of candidates, perhaps even to zero. Obviously,
if the candidate set becomes empty, no further terms need be considered at all. A
query that returns no answers is not particularly informative; nevertheless, a sur-
prising fraction of actual queries have just this result. Such queries are, of course,
typically followed by broader queries formed by removing one or more query terms.

The second reason to process terms in order of frequency is that it is faster be-
cause each inverted list involves a sequence of lookup operations rather than a merge

176

CHAPTER FOUR: QUERYING

operation. Merging takes time proportional to the sum of the sizes of the two sets. If
there are |C'| candidates and f; pointers in the inverted list, then a linear merge takes
|C| + f; steps. This is unnecessarily expensive if |C| is much smaller than f;. For
example, suppose that |C| = 60 and f; = 60,000—not unreasonable figures with a
large collection like TREC. Then merging will take 60,060 steps, or 1,000 steps per
candidate.

Since the list of document numbers in any inverted list is sorted, instead of a
linear merge the inverted list can be binary-searched for each of the candidates. This
is not possible if the list is stored compressed, but we will continue the calculation
just to see what might be achieved. Each binary search will take log 60,000 ~ 16
computation steps, and the entire inverted list can be processed with just 1,000 steps.

Each inverted list must be read from disk, so the elapsed time to process term
t remains proportional to f;. Still, much less processor time is needed—if a bi-
nary search can be used. But a binary search is possible only when the document
numbers are in sorted order within list I, and if they can be accessed randomly.
Unfortunately, the use of compression destroys random access capabilities since it
is impossible to index into the middle of a compressed inverted list and decode a’
document number. Thus, if the inverted file is compressed, not only must a linear
merge be used irrespective of the length of the inverted list, but each inverted list
must be fully decompressed in order to perform the merge. The cost is still linear,
but the constant of proportionality is large. At face value, then, the use of compres-
sion saves a great deal of space in the inverted file but imposes a substantial time
penalty during conjunctive query processing.

Random access and fast lookup

What is needed is some provision for random access into the inverted list to sup-
port faster searching. This is the problem of synchronization and was discussed in
Section 2.7. Suppose that the compressed inverted list for some term t is partially
indexed itself, and that every b,th pointer is duplicated into an index array. For ex-
ample, if b; = 4, every fourth pointer in the inverted file is indexed, and both the
bit address within the inverted file of that pointer and the document number it cor-
responds to are stored in some auxiliary structure. If a document number z is to
be looked up, it is first sought in the auxiliary index. The result tells which block of
the inverted file that document number appears in, if it does appear, and also gives
the bit address in the inverted file at which decoding should commence to access
it. This is much the same structure as was described in Section 4.1 for disk-based
storage of the lexicon, except that here both components are read from disk when
required, and the purpose of indexing is to save decompression time rather than
IMemory space.

Several issues must be resolved. The first is the storage mechanism used for the
index. The second is a suitable value for b;, the blocking constant for term . The
third concerns the trade-off of time for space—how much time is saved and at what
cost in space.

Querying and Ranking

1810

4.4

CHAPTER FOUR: QUERYING

Nonconjunctive queries _

So far we have considered only conjunctive queries. Another common form is a con-
junction of disjunctions, where several alternatives are specified for each component
of what is basically a conjunctive query:

(text OR data OR image) AND
(compression OR compaction) AND
(retrieval OR indexing OR archiving).

In this case, the terms comprising each conjunct can be processed simultaneously,
candidates remaining in the set if they appear in any member of the OR group. The
set of candidates should be initialized to the union of the members of the smallest
conjunct. As a pessimistic approximation, the size of each conjunct can be estimated
by summing the f; values for its constituent terms, ignoring the possibility of over-
lap in the OR component. This strategy should allow time savings similar to those
described above to be achieved.
Even more general queries, such as

(information AND (retrieval OR indexing)) OR
((text OR data) AND (compression OR compaction)),

can be transformed into a conjunction of disjunctions by the query processing sys-
tem, although this may cause terms to be duplicated. The above example could be
recast as

(information OR text OR data) AND

(retrieval OR indexing OR text OR data) AND
(information OR compression OR compaction) AND
(retrieval OR indexing OR compression OR compaction).

When a Boolean query expression becomes as complex as this, it is time to consider
changing tack entirely and using another information retrieval paradigm—informal
or ranked queries.

Ranking and information retrieval

Boolean queries are not the only method of searching for information. If some
exact subset of the document being sought is known, then they are certainly ap-
propriate, which is why they have been so successful in areas such as commercial
databases and bibliographic retrieval systems. Often, however, the information re-
quirement is less precisely known. For this reason, it is sometimes useful to be able
to specify a list of terms that give a good indication of which documents are rele-
vant, though they will not necessarily all be present in the documents sought. The
system should rank the entire collection with respect to the query, so that the top
100, say, ranked documents can be examined for relevance and those that constitute
the answer set extracted. In this section we study how to assign a similarity measure
to each document that indicates how closely it matches a query.

4.4 RANKING AND INFORMATION RETRIEVAL] H1

__Tablo 6 A small document collection: six documents over 0terms.

d Document Dy

Pease porridge hot, pease porridge cold,
Pease porridge in the pot,

Nine days old.

In the pot cold, in the pot hot,

Pease porridge, pease porridge,

Eatthe lot.

(=2 ISy B = O T (N

Coordinate matching

One way to provide more flexibility than a simple binary yes-or-no answer is to
count the number of query terms that appear in each document. The more terms
that appear, the more likely it is that the document is relevant. This approach is
called coordinate matching. The query becomes a hybrid, intermediate between a
conjunctive AND query and a disjunctive OR query: a document that contains any
of the terms is viewed as a potential answer, but preference is given to documents
that contain all or most of them. All necessary information is in the inverted file,
and it is relatively straightforward to implement this strategy.

Consider, for example, the six documents shown in Table 4.6—a revision of the
doggerel already used as an example in Chapter 3. For the query eat, it is clear that
document 6 is the best (and only) answer. But what about the query hot porridge?
In a conjunctive Boolean sense, document 1 is the only answer. But three other
documents might also be relevant, and coordinate matching yields a ranking D; >
D, = Dy = Ds > D3 = D¢ = 0. Documents containing only one of the terms are
available as answers, should the user wish to inspect them.

Inner product similarity
This process can be formalized as an inner product of a query vector with a set
of document vectors. Table 4.7a shows the same collection, with a set of binary
document vectors represented by n components, n being the number of distinct
terms in the collection. For convenience the terms are abbreviated to three letters,
and to keep the example manageable it is assumed that the terms in and the are
stopped. The two example queries can also be represented as n-dimensional vectors
and are shown in Table 4.7b.

Using this formulation, the similarity measure of query Q with document D, is
expressed as

M(Q,Dq) =Q - Dy

CHAPTER FOUR: QUERYING

c vVectors

(a) d Document vectors (wy,)
col day eat hot Jot nin old pea por pot

1 1 0 0 1 0 0 0 1 1 0
2 0 0 0 0 0 0 0 1 1 1
3 0 1 0 0 0 1 1 0 0 0
4 1 0 0 1 0 0 0 0" 0 1
5 0 0 0 0 0 0 0 1 1 0
6 0 0 1 0 1 0 0 0 0 0

(h) eat 0 0 1 0 0 0 0 0 0 0

hot porridge 0 0 0 1 0 0 0 0 1

where the operation - is inner product multiplication. The inner product of two
n-vectors X = (z;) and Y = (y;) is defined to be

X .Y = anﬂfgyi.
i=1

For example,
M (hot porridge, D;) = (0,0,0,1,0,0,0,0,1,0)-(1,0,0,1,0,0,0,1,1,0) = 2.

Despite the additional power introduced by the notion of ranking, this simple
coordinate-matching approach has three drawbacks. First, it takes no account of
term frequency. In Table 4.6, porridge appears twice in document 1 and only once
in document 2, yet on the query porridge the two documents are ranked equally.
Second—and this may seem the same point, but it is not—the formula takes no
account of term scarcity. Since eat appears in only one document, it is, at face
value at least, a more important term than porridge, which appears in three of the
documents. Third, long documents with many terms will automatically be favored
by the ranking process because they are likely to contain more of any given list of
query terms merely by virtue of the diversity of text present in a long document.

The first problem can be tackled by replacing the binary “present” or “not present”
judgment with an integer indicating how many times the term appears in the doc-
ument. This occurrence count is called the within-document frequency of the term
and is denoted f;;. When the inner product is calculated, the f;, values are then
taken into account. For example, the similarity calculation for the sample query
would become

M (hot porridge, Dy) = (0,0,0,1,0,0,0,0,1,0)(1,0,0,1,0,0,0,2,2,0) = 3

4.4 RANKING AND INFORMATION RETRIEVAL] HH

since document [, contains hot once and porridge twice. More generally, term
¢ in document d can be assigned a document-term weight, denoted Wq,t, and an-
other weight w, ; in the query vector. The similarity measure is the inner product
of these two—the sum of the products of the weights of the query terms and the
corresponding document terms:

M(Q,Dg)=Q-Dyg= wy;wa

t=1

It is normal to assign w,; = 0 if ¢ does not appear in @, so the measure can be
stated as

M(Q,Da) = > wey - way.
teq@

This suggests an evaluation mechanism based on inverted files. However, before dis-
cussing implementation options, let us explore the other two problems mentioned
above.

The second problem is that no emphasis is given to scarce terms. Indeed, a docu-
ment with enough appearances of a common term will always be ranked first if the
query contains that term, irrespective of other words. The solution is for the term
weights to be reduced for terms that appear in many documents, so that a single
appearance of the counts far less than a single appearance of, say, Jezebel. This can
be done by weighting terms according to their inverse document frequency, often ab-
breviated to IDF. This suggestion is consistent with the observations of George Zipf,
who published a remarkable book about naturally occurring distributions called
Human Behavior and the Principle of Least Effort (Zipf 1949). Zipf observed that the
frequency of an item tends to be inversely proportional to its rank. That is, if rank
can be regarded as a measure of importance, then the weight w; of a term ¢ might
be calculated as

where, as before, f; is the number of documents that contain term ¢.

The term weight can then be used in three different ways. First, and most obvi-
ous, it can be multiplied by a relative term frequency value, denoted 744, to generate
the document-term weight wg ;, where T4,¢ itself can be calculated in several differ-
ent ways and is discussed further below. Second, the term weight can be combined
multiplicatively with r, ; to yield a query-term weight w, ;. Third, it can be used in
calculating both wg; and w4, that is, applied twice. Nor is the formulation above
the only possibility for w;, the IDF component. Others that have appeared in the

CHAPTER FOUR: QUERYING

N
wy = log, (1+ }c“):
i

w; = log, (1+ %) ,

N“‘fz
fe

where IV is the number of documents in the collection and f™ is the largest faz
value in the collection. The first of these three is now regarded as being the “usual”
mechanism, with the logarithm included to prevent a term for which f; = 1 from
being regarded as twice as important as a term for which f; = 2.

Similarly, the relative term frequency component 74 ; can be calculated in several
different ways as a function of f,;, the within-document frequency:

literature include

and

w; = log,

Td,t = 1:
Tdt = fd,h
‘rd’g =1+ loge fd}h

Ta: = (K+ (1— K)—de—) ,

max; f d,i

and so on. The third formula uses a logarithm to give diminishing returns as term
frequencies increase. No explicit upper bound is enforced, but a term must be very
frequent indeed to have a term frequency contribution of greater than four. In the
fourth formula, the first appearance of a term in a document contributes much
more than the second and subsequent occurrences, with the constant 0 <K <1
controlling the balance between initial and later appearances. This is quite plausi-
ble, in that the first appearance of a term should contribute more of the available
similarity than, say, the fifth. The factor max; f,; is the maximum frequency of any
term in document d and is introduced to keep the term frequency multiplier from
becoming greater than one.
The document vectors are then calculated as either

Wyt = Tdt

or
Wt = Tdg Wy (TF x IDF).

The latter method for assigning document-term weights is called the TFxIDF rule:
term frequency times inverse document frequency. Note that neither the TF nor the
IDF components should be interpreted literally as being the functions that their
names suggest. A similarity heuristic is called “TFxIDF” whenever it uses the
term frequency f4; in a monotonically increasing way, and the term’s document
frequency f; in a monotonically decreasing way.

4.4 RANKING AND INFORMATION RETRIEVAL] 85

The query-term weights w,; are calculated similarly. The within-query fre-
quency f,, may or may not be taken into account, and the term weight w; may
or may not be taken into account.

There is no particular magic in any of several hundred similarity formulas al-
lowed by these various expressions, and no single combination of them outper-
forms any of the others over a range of different queries—2Zobel and Moffat (1998)
have evaluated a large number of them against the TREC data. Furthermore, the
above lists are certainly not exhaustive—there are plenty of other formulations for
both w; and 74 that have been proposed. What is worthy of note is that all of the
suggestions comply with two straightforward monotonicity constraints:

A term that appears in many documents should not be regarded as being more im-
portantthan a term that appears in a few, and a document with many occurrences of
a term should not be regarded as being less important than a document that has just
a few.

Beyond that, which is used in any particular situation tends to be a subjective choice
rather than an objective one.

It is, however, helpful to assume a particular formulation in the development
of the next section, and for the sake of concreteness, it will be supposed that the
document and query vectors are described by

wy =log, (1+ N/ f)
= l+log, fay 7rer = 1 (4.2)

wd,t = Td,t wq,i = Tq,t'wt

Tdz

Whatever the weighting rule, all inner product methods are vulnerable to the
third effect described above: long documents are favored over short ones since they
contain more terms and so the value of the inner product increases.

For this reason, it is also common to introduce a normalization factor to discount
the contribution of long documents. Hence another variation of the inner product
rule is to measure similarity by

ZtEQ w%: ’ wd,t
| D4l

where [Dg| = 3. fa; is the length of document D, obtained by counting the
number of indexed terms. Another proposal is to use the square root of this length.

Fortunately, there is a simple way to understand these various rules using vector
space models.

M(Q, Dy) =

Vector space models

Whatever term weights w; and relative term and document frequencies r4; and r ;
are assigned, and whatever document-term weights wg ¢ and query-term weights

186

CHAPTER FOUR: QUERYING

Wg,; arise from these assignments, the result is the same—each document is repre-
sented by a vector in n-dimensional space, and the query is also represented as an
n-dimensional vector.

One obvious similarity measure for a pair of vectors is the familiar Euclidean
distance:

M(Q,Da) = | D lwge — wal?

t=1

This is actually a dissimilarity measure since a large numeric value indicates that
the vectors are very different; to turn it into a similarity measure, the reciprocal is
taken. This measure suffers from the opposite fault to the inner product—because
the query is usually much shorter than the documents, it discriminates against long
documents. :

What is really of interest is the direction indicated by the two vectors, or, more
precisely, the difference in direction, irrespective of length. Moreover, difference in
direction is a well-understood concept in geometry—it is the angle between the two
vectors.

Simple vector algebra yields an elegant method for determining similarity. If
X and Y are two n-dimensional vectors (z;) and (y;), the angle 6 between them
satisfies

XY =|X||Y]|cos 8

where X - Y is the vector inner product defined above and

is the Euclidean length of X. The angle can be calculated from

XY i1 Tili
XYL VI eiVEL v

This has two implications. First, it justifies the normalization that was described
at the end of the previous section. The normalization factor is the Euclidean length
of the document—that s, the length in n-space of the set of document-term weights
describing the document. Second, this formula provides a clear visualization of
what the ranking rule accomplishes. Imagine the set of documents being points in
the positive region of n-dimensional space, with short documents close to the ori-
gin and long ones farther away from it. A query can be imagined as a ray emanating
from the origin, piercing this space in some desired direction. Within this frame-
work, the task of the ranking method is to select those documents lying closest to
this ray in an angular sense. Since cosf = 1 when § = 0 and cos§ = 0 when the
vectors are orthogonal, the similarity measure can be taken as the cosine of the an-

cosf =

4.4 RANKING AND INFORMATION RETRIEVAL] H]

gle between the document and query vector—the larger this cosine, the greater the

similarity.
These considerations lead to the cosine rule for ranking:
: Q- Dy
cosine(Q), Dy) = ——— =
|QI| D4
1 T
- W, Wy, tzz; Wait " Wat
where

1s the weight of the query.

This rule can be used with any of the term-weighting methods described above.
Suppose, for example, that the variant described in Equation 4.2 is used. The
similarity calculation is then described by

1 N
cosine(Q, Dy) = W Z (1+1log, far) -log, (1 o T) . (4.3)

? teQnDy

Indeed, there is no need to factor in W, since it is constant for any given query, and
while it affects the numeric similarity scores, the document ordering is unaffected.

Table 4.8 applies the cosine measure to the collection of N = 6 documents and
7 = 10 terms given in Table 4.6. Table 4.8a shows the corresponding document
vectors, where the entry for row d and column % is wWg ¢, the weight of term ¢ in
d. Also recorded are f;, the number of documents containing ¢, and wy, calculated
using the inverse document frequency rule w; = log (1 + N/ f,).

Table 4.8b shows four queries @ and the resulting values of cosine(Q, D). For
the single-term query eat, the ranking is simple since it appears in only one doc-
ument. Not so straightforward is the second query, porridge—document 5 beats
document 1 because it is shorter. The final query—eat nine day old porridge—is
best matched by line 3, despite the fact that it does not contain the word eat, il-
lustrating the power (and perhaps also a drawback) of ranked queries. Someone
looking for this doggerel in a retrieval system would almost certainly find it with the
last query.

188

4.5

CHAPTER FOUR: QUERYING

Tablo 43 Application ofthe cosine measure: (a) ter frequencies . and dacument
_ weights; (b) cosine similarities for queries.

(a d Document vectors (wy,) Wy
col day eat hot ot nin old pea por pot

1 1.0 00 00 1.0 00 00 00 1.7 1.7 00 278
2 00 00 00 00 00 00 00 1.0 1.0 1.0 173
3 00 10 00 00 00 10 1.0 00 0.0 00 173
4 1.0 00 0.0 1.0 00 00 00 00 00 1.7 221
5
6

00 00 00 00 00 00 00 1.7 1.7 00 239
00 00 1.0 00 10 00 00 00 00 00 141
fe 2 1 1 2 1 1 1 3 3 2
we 1339 185 195 139 195 195 195 110 1.10 1.39

(b) d Query
eat porridge hot porridge 5?’; gg:%ggg
W, =1.95 W = 1.10 Wy =177 W, = 3.5
1 0.00 0.61 0.66 0.19
2 0.00 0.58 0.36 0.18
3 0.00 0.00 0.00 0.63
4 0.00 0.00 0.36 0.00
5 0.00 0.71 0.44 0.22
6 0.7 0.00 0.00 0.39
Top 6 5 1 3

Evaluating retrieval effectiveness

There are many variations on these ranking rules, some of which were described
above. In order to compare them, we need some way to quantify their performance.
A ranking rule’s performance should be based on the total ranking it imposes on the
collection with respect to a query. A number of methods have been suggested for
this. None are entirely satisfactory, but this is a natural consequence of attempting
to represent multidimensional behavior with a single representative value. First we
define two important measures of effectiveness: recall and precision.

Recall and precision

The most common way to describe retrieval performance is to calculate how many
of the relevant documents have been retrieved and how early in the ranking they
were listed. This leads to the following definitions.

