Computational Linguistics:
Syntax-Semantics 11

RAFFAELLA BERNARDI

KRDB, FrREe UNIVERSITY OF BOZEN-BOLZANO
P.zzAa DoMENICANT 3, RoOM: 2.19, E-MAIL:

BERNARDIQINF.UNIBZ.IT

Contents First Last Prev Next

Recall: Formal Semantics Main questions..................... 4

1.1 Building Meaning Representations 5
1.2 Lambda-calculus: Functional Application 6
Extending the lexicon i 7
2.1 Quantified NP 8
2.2 Generalized Quantifiers o oL 9
2.3 Generalized Quantifiers oL 10
24 Determiners (Cont’d)......... ... 11
Dependencies 12
3.1 Relative Pronouns 13
3.2 Relative Pronoun (Cont’d) 14
Ambiguities 15
4.1 Scope Ambiguities i 16
Summing up: Constituents and Assembly 17
Syntax-Semantics: Parallel vs. Non-parallel................... 18

6.0.1 Advantagesc. i 19
6.1 Montague Universal Grammar 20
Practical info 21

Contents First Last Prev Next

<

1. Recall: Formal Semantics Main questions
The main questions are:
1. What does a given sentence mean?

2. How is its meaning built?

3. How do we infer some piece of information out of another?

Contents First Last Prev Next <«

1.1. Building Meaning Representations

To build a meaning representation we need to fulfill three tasks:

Task 1 Specify a reasonable syntax for the natural language fragment of interest.
Task 2 Specify semantic representations for the lexical items.

Task 3 Specify the translation of constituents compositionally. That is, we
need to specify the translation of such expressions in terms of the translation
of their parts, parts here referring to the substructure given to us by the syntax.

Moreover, when interested in Computational Semantics, all three tasks need to be
carried out in a way that leads to computational implementation naturally.

Contents First Last Prev Next <«

1.2. Lambda-calculus: Functional Application
Summing up:

» FA has the form: Functor(Argument). E.g. (Ax.love(x, mary))(john)

» FA triggers a very simple operation: Replace the A-bound variable by the
argument. E.g. (Az.love(x, mary))(john) = love(john, mary)

Exercise 1 and 2.

Contents First Last Prev Next <«

2. Extending the lexicon

Before we have left open the question of what does an expression like “a” contribute
to?
FOL does not give us the possibility to express its meaning representation.

We will see now that instead lambda terms provide us with the proper expressivity.

Contents First Last Prev Next <«

2.1. Quantified NP

a) Every female student of the EM in LCT attends the Comp Ling course.
b) No female student of the EM in LCT attend the Logic course.

a) means that if Quynh constitute the set of the female students of the EM in LCT,
then it is true that she attend the Comp. Ling course.

b) means that for none of the individual members of the set of female students of
the EM in LCT it is true that she attends the Logic course.

What is the interpretation of “every female student” and of “no female student”?

Individual constants used to denote specific individuals cannot be used to denote
quantified expressions like “every man”, “no student”, “some friends”.

Quantified-NPs like “every man”, “no student”, “some friends” are called non-
referential.

Contents First Last Prev Next <«

2.2. Generalized Quantifiers

A Generalized Quantifier (GQ) is a set of properties, i.e. a set of sets-of-individuals.

For instance, “every man” denotes the set of properties that every man has. The
property of “walking” is in this set iff every man walks. For instance,

[man] = {a,b,c};
[fat] = {a,b,c,d};
[dog] = {d};

[run] = {a,b};
[[jump]] - {b7 ¢, d},
[laugh] = {b,d};

Which is the interpretation of “every man”?

[every man] = {X|[man] C X} = {{a,b,c},{a,b,c,d}} = {[man], [fat]}

Contents First Last Prev Next <«

2.3. Generalized Quantifiers

[no man] = {X CFE|[man]NnX = 0}.
[some man] = {X CE/|[man] N X # 0}.
[every man] = {X C E|[man] C X}.
[man which VP] = [man] N [VP].

Therefore, determiners are as below:
[no NJ = {(XCFE|N]NnX =0}
[some N] = {XCFE|NNX #0}.
[every N] = {XCE|[N]CX}.
[N which VP] = [N] N [VP].

Generalized quantifiers have attracted the attention of many researchers working on
the interaction between logic and linguistics.

Which is the lambda term representing quantifiers like “nobody”, “everybody”, “a
man”or “every student” or a determiners like “a”, “every” or “no” ?

Contents First Last Prev Next <«

2.4. Determiners (Cont’d)

Let’s start from what we have, namely “man” and “loves Mary”:
Ay.man(y), Ax.love(z, mary).

Hence, the term representing “a” is:

AXAY 32 X(2) ANY(2)

Try to obtain the meaning representation for “a man”, and the “a man loves Mary”.

By [-conversion twice we obtain that “a man” is \Y.3z.Man(z) A Y(2), and then
Jz.Man(z) A love(z, mary)

Contents First Last Prev Next <«

3. Dependencies

While studying the syntax of natural language, we have seen that important concepts
to account for are local and long-distance dependencies.

The A-operator gives us (more or less) a way to represent this link semantically.

For instance, in A\x.\y.like(y, x) we express that the dependency of the subject and
object from the verb.
But the calculus gives us also a natural way to handle long-distance dependencies:
eg. relative pronouns.

Contents First Last Prev Next <«

3.1. Relative Pronouns

For instance, “which John read |...|”:

We know how to represent the noun phrase “John” and the verb “read”, namely, as
john and Az.y.read(y, z).

What is the role of “which” in e.g. “the book which John read is interesting”?

The term representing “which” has to express the fact that it is replacing the role
of a noun phrase in subject (or object position) within a subordinate sentence while
being the subject (object) of the main sentence:

AXAY Az X(2) NY(2)

The double role of “which” is expressed by the double occurrence of z.

Contents First Last Prev Next <«

3.2. Relative Pronoun (Cont’d)

Recall,
AXAY Az X(2) NY(2)

i. read w: Ay(read(y,u) ii. John read u: read(j,)
iii. John read: Au.read(j,u) iv. which John read: AY.A>.read(j,>) AY(z)

» at the syntactic level we said that the relative pronoun “which” plays the role
of the verb’s object and it leaves a gap in the object position.

» Semantically, the gap is represented by the © on which the relative pronoun
forces the abstraction [iii.] before taking its place.

Note, we use another operation of the A-calculus: Abstraction!

Contents First Last Prev Next <«

4. Ambiguities
How many meanings has the sentence “John didn’t read a book.”?

Starting from:

john: j book: Az(book(z))
read: \x.)\y.(read(y,z)) didn’t: AX A\y.—X(y)
a: AXAY (3z. X (z) ANY(x))

build the meaning representation for “John didn’t read a book”.

a. Jx.book(z) A —read(j, z) [A > NOT]
b. =3z.B(x) A read(j, x) INOT > A]

» Scope: In a. the quantifier phrase (QP), “a book”, has scope over “didn’t” [A
> NOT], whereas in b. it has narrow scope [NOT > A].

» Binding: the variable z is bound by “a book” in “John didn’t read a book”.

Contents First Last Prev Next <«

4.1. Scope Ambiguities

Can you think of other expressions that may cause scope ambiguity?
John think a student left

Does the student exist or not?

a. Jx.think(j,left(x))
b. think(j, 3z.left(z))

Every student passed an exam?

Contents First Last Prev Next <«

5. Summing up: Constituents and Assembly

Let’s go back to the points where FOL fails, i.e. constituent representation and
assembly. The A-calculus succeeds in both:
Constituents: each constituent is represented by a lambda term.

John: j knows: Azy.(know(z))(y) read john: Ay.know(y, j)

Assembly: function application (a(f)) and abstraction (Az.a[z]) capture compo-
sition and decomposition of meaning representations.

Contents First Last Prev Next <«

6. Syntax-Semantics: Parallel vs. Non-parallel

We could build the meaning representation of an expression either

(a) in parallel with the construction of its syntactic structure, or

(b) after having built the syntactic analysis.

(a) is the method followed by most formal grammar frameworks as Categorial
Grammar (CG), Head-Driven Phrase Structure Grammar (HPSG), Lexical
Functional Grammar (LFG), Tree-Adjoining Grammar (TAG).

(b) is used by the Government and Binding Theory and the Minimalist Program
(both due to Chomsky).

Contents First Last Prev Next <«

6.0.1. Advantages The reasons for preferring the first approach are the follow-
ing:

Psycholinguistic works suggest that human processing proceeds incrementally
through the simultaneous application of syntactic, semantics, and phonological
constraints to resolve syntactic ambiguity. (Though, note that these systems
are models of linguistic competence rather than performance. Hence, these
results could not provide direct support of either of the approaches.)

Computational approach requires a way to rule out a semantically ill-formed
phrase as soon as it is encountered. Therefore, (a) offers a more efficient archi-
tecture for implementing constraint satisfaction. For instance,

1. The delegates met for an hour.
2. The committee met for an hour.

3. *The woman met for an hour.

The use of “met” as intransitive verb requires a subject denoting a plural entity.

Contents First Last Prev Next <«

6.1. Montague Universal Grammar

The rule-to-rule and lambda techniques are used in the approach to natural language
semantics developed by Richard Montague. In his theory, there are

» syntactic rules which show how constituents maybe combined to form other con-
stituents.

» translation rules (associated with each such syntax rule) which show how the
logical expressions for the constituents have to be joined together to form the logical
form of the whole.

For instance, the syntactic and semantics rule for composing and NP with and IV:

S2: If § € Pry and « € Pyp, then Fy(a,0) € Pg and Fi(«,d) = ad’, where ¢’ is the result
of replacing the main verb in § by its third-person singular present form.

T2: If § € Pry and a € Pyp and 6| — ¢ and o] — o, then Fi(«,d)|— o/ (&').

As grammar, he used Categorial Grammar. We will look at it next time.

Contents First Last Prev Next <«

7. Practical info

Next meetings:

» 28/10/10, 10:30-12:30 Lexical Semantics, with Elena. (watch for the room!)
» 03/11/10, 17:00-18:00 WordNet, with Elena.

» 04/11/10, 10:30-12:30 Textual Entailiment, with Elena. (watch for the room!)
» 10/11/10, 17:00-18:00, Reading group on TE, with Elena.

» 11/11/10, 10:30-12:20, Critiques by students!!!

We will come back to the topics of today on the 17/11/10: Lab on lambda calculus.

Contents First Last Prev Next <«

	Recall: Formal Semantics Main questions
	Building Meaning Representations
	Lambda-calculus: Functional Application

	Extending the lexicon
	Quantified NP
	Generalized Quantifiers
	Generalized Quantifiers
	Determiners (Cont'd)

	Dependencies
	Relative Pronouns
	Relative Pronoun (Cont'd)

	Ambiguities
	Scope Ambiguities

	Summing up: Constituents and Assembly
	Syntax-Semantics: Parallel vs. Non-parallel
	Advantages
	Montague Universal Grammar

	Practical info

