Computational Linguistics: Crash
Course on Prolog

RAFFAELLA BERNARDI

KRDB, FREE UNIVERSITY OF BOZEN-BOLZANO

P.zzA DOMENICANI, ROOM: 2.28, E-MAIL: BERNARDIQINF.UNIBZ.IT

Contents First Last Prev Next

© 00 O Ui W N~

—_
)

o S O e W e S SO SO S
O J O U i W N

Introduction 3

Knowledge Base. ... 4
A bit of syntax: atoms and variables......................... 6
A Dbit of syntax: complex terms 7
Facts and Queries 8
kb2: a knowledge base of facts and rules 9
Queries to kb2 ... 10
A bit of syntax: Rules 11
Kb3: facts and rules containing variables 12
Rules .. o 13
Queries to kb3 14
ANCESEOTS oot 16
ANCESTOTS ittt e 17
ANCESTOT it 18
LaStS o o e 19
Concatenationiuiir i e 20
SPIt LSt . oo 22
Conclusiont e e 24

Contents First Last Prev Next

<

1. Introduction

Today we will look at how to use PROLOG to store information, namely to store a
knowledge base of facts and how to ask queries.

Contents First Last Prev Next <«

2. Knowledge Base

wizard (harry) .

wizard(ron) .

wizard(hermione) .

muggle (uncle_vernon) .

muggle (aunt_petunia) .
chases(crookshanks, scabbars).

Given this KB, you can ask for instance the following queries

?7- wizard(harry) .

yes

7- muggle (harry) .

no

7- witch(hermione) .

ERROR: Undefined procedure: witch/1

?- chases(X,Y).
X = crookshanks

Contents First Last Prev Next <«

Y = scabbars ;
no

?- chases(X,X).

no

Contents

First

Last

Prev

Next

<

3. A bit of syntax: atoms and variables

Atoms

» All terms that consist of letters, numbers, and the underscore and start with a
non-capital letter are atoms: harry, uncle_vernon, ritaSkeeter, nimbus20C

» All terms that are enclosed in single quotes are atoms: "Professor Dumbledore’,
(@*4 7).

» Certain special symbols are also atoms: +, , , ...

Variables

» All terms that consist of letters, numbers, and the underscore and start with a
capital letter or an underscore are variables: X, Hermione, _ron ...

» _is an anonymous variable: two occurrences of _ are different variables.

Contents First Last Prev Next <«

4. A bit of syntax: complex terms

Complex terms

» Complex terms are of the form: functor(argument, ..., argument).
» Functors have to be atoms.

» Arguments can be any kind of Prolog term, e.g., complex terms. likes(ron,hermio
likes (harry,X) but also f(a,b,g(h(a)),c), ...

Contents First Last Prev Next <«

5. Facts and Queries

Facts Facts are complex terms which are followed by a full stop.

wizard(hermione) .
muggle (uncle vernon).
chases(crookshanks,scabbars) .

Contents First Last Prev Next <«

5. Facts and Queries

Facts Facts are complex terms which are followed by a full stop.

wizard(hermione) .
muggle (uncle vernon).
chases(crookshanks,scabbars) .

Queries Queries are also complex terms which are followed by a full stop.

? - wizard(hermione) .

where, ? - is the prompt provided by the Prolog Interpreter and wizard (hermione) .
is the query.

Contents First Last Prev Next <«

6. kb2: a knowledge base of facts and rules

eating(dudley) .

happy (aunt_petunia) :- happy(dudley) .
happy(uncle_vernon) :- happy(dudley), unhappy(harry).
happy(dudley) :- kicking(dudley,harry).

happy(dudley) :- eating(dudley) .

where,

» - stands for “if ... then ...”: If happy(dudley) is true, then happy(aunt
petunia) is true.

Contents First Last Prev Next <«

6. kb2: a knowledge base of facts and rules

eating(dudley) .

happy (aunt_petunia) :- happy(dudley) .
happy(uncle_vernon) :- happy(dudley), unhappy(harry).
happy(dudley) :- kicking(dudley,harry).

happy(dudley) :- eating(dudley) .

where,

» :- stands for “if ... then ...”: If happy(dudley) is true, then happy(aunt
petunia) is true.

» , stands for “and”: If happy(dudley) is true and unhappy(harry) is true,
then happy(uncle vernon) is true.

Contents First Last Prev Next <«

6. kb2: a knowledge base of facts and rules

eating(dudley) .

happy (aunt_petunia) :- happy(dudley) .
happy(uncle_vernon) :- happy(dudley), unhappy(harry).
happy(dudley) :- kicking(dudley,harry).

happy(dudley) :- eating(dudley) .

where,
» :- stands for “if ... then ...”: If happy(dudley) is true, then happy(aunt
petunia) is true.

» , stands for “and”: If happy(dudley) is true and unhappy(harry) is true,
then happy(uncle vernon) is true.

» “or” is expressed by the last two facts. If kicking(dudley,harry) is true or
if eating(dudley) is true, then happy(dudley) is true.

Contents First Last Prev Next <«

7. Queries to kb2

eating(dudley) .

happy(aunt_petunia) :- happy(dudley).

happy (uncle_vernon) :- happy(dudley), unhappy(harry).
happy(dudley) :- kicking(dudley,harry).

happy(dudley) :- eating(dudley).

Some possible queries to kb2

?- happy(dudley) .

yes
?7- happy(aunt_petunia) .
yes

7- happy(uncle_vernon) .
no

?7- happy (X) .

X = aunt_petunia ;

X = dudley ;

no

Contents First Last Prev Next <«

8. A bit of syntax: Rules

Rules are of the form Head :- Body.

» Like facts and queries, they have to be followed by a full stop.

» Head is a complex term.

» Body is complex term or a sequence of complex terms separated by commas.
happy(aunt_petunia) :- happy(dudley).

happy(uncle_vernon) :- happy(dudley),
unhappy (harry) .

Contents First Last Prev Next <«

9. Kb3: facts and rules containing variables

Let’s take a knowledge base that defines 3 predicates: father/2, mother/2, and
wizard/1.

father(albert, james) .
father(james,harry) .
mother (ruth, james) .
mother (1ili,harry).
wizard(lili).
wizard(ruth) .
wizard(albert) .

wizard(X) :- father(Y,X),
wizard(Y),
mother(Z,X),
wizard(Z) .

Contents First Last Prev Next <«

10. Rules

wizard(X) :- father(Y,X),
wizard(Y),
mother(Z,X),
wizard(Z) .

The rule says:

Forall X,Y, Z, if father (Y,X) is true and wizard (Y) is true and mother (Z,X)
is true and wizard(Z) is true, then wizard(X) is true. l.e., for all X, if
X’s father and mother are wizards, then X is a wizard.

Contents First Last Prev Next <«

11. Queries to kb3

father(albert, james) .
father (james,harry) .
mother (ruth, james) .
mother (1ili,harry).
wizard(1ili).
wizard(ruth) .
wizard(albert).

wizard(X) :- father(Y,X),
wizard(Y),
mother(Z,X),
wizard(Z) .

Some possible queries to kb3

7- wizard(james) .
yes

Contents First Last Prev Next <«

7- wizard(harry) .

yes
?7- wizard(X).

X = 1ili ;

X = ruth ;

X = albert ;

X = james ;

X = harry ;

no

?7- wizard(X), mother(Y,X), wizard(Y).
X = james

Y = ruth ;

X = harry

Y = 1ili ;

no

Contents First Last Prev Next <«

12. Ancestors

Given the KB below, we want to define a predicate grandparent_of (X,Y) which is
true if X is a grandparent of Y.

parent_of (paul,petunia) .
parent_of (helen,petunia) .
parent_of (paul,1ili).
parent_of (helen,1ili).
parent_of (albert, james) .
parent_of (ruth, james) .
parent_of (petunia,dudley) .
parent_of (vernon,dudley) .
parent_of (1ili,harry).
parent_of (james,harry) .

Contents First Last Prev Next <«

12. Ancestors

Given the KB below, we want to define a predicate grandparent_of (X,Y) which is
true if X is a grandparent of Y.

parent_of (paul,petunia) .
parent_of (helen,petunia) .
parent_of (paul,1ili).
parent_of (helen,1ili).
parent_of (albert, james) .
parent_of (ruth, james) .
parent_of (petunia,dudley) .
parent_of (vernon,dudley) .
parent_of (1ili,harry).
parent_of (james,harry) .

grandparent_of (X,Y) :- parent_of(X,Z), parent_of(Z,Y).

Contents First Last Prev Next <«

13. Ancestors

Similarly,

greatgrandparent_of (X,Y) :- parent_of (X,Z),
parent_of (Z,A),
parent_of (A,Y).
greatgreatgrandparent_of (X,Y) :- parent_of(X,Z),
parent_of (Z,A),
parent_of (A,B),
parent_of (B,Y).

Contents First Last Prev Next <«

13. Ancestors

Similarly,

greatgrandparent_of (X,Y) :- parent_of (X,Z),
parent_of (Z,A),
parent_of (A,Y).
greatgreatgrandparent_of (X,Y) :- parent_of(X,Z),
parent_of (Z,A),
parent_of (A,B),
parent_of (B,Y).

This doesn’t work for “ancestor of”; don’t know ’how many parents we have to go
back’.

Contents First Last Prev Next <«

14. Ancestor

ancestor_of (X,Y) :- parent_of(X,Y).

this says that People are ancestors of their children.

Contents First Last Prev Next <«

14. Ancestor

ancestor_of (X,Y) :- parent_of(X,Y).

this says that People are ancestors of their children.

then, we need to say that they are ancestors of anybody that their children may
be ancestors of (i.e., of all the descendants of their children).

Contents First Last Prev Next <«

14. Ancestor

ancestor_of (X,Y) :- parent_of(X,Y).

this says that People are ancestors of their children.

then, we need to say that they are ancestors of anybody that their children may
be ancestors of (i.e., of all the descendants of their children).

ancestor_of (X,Y) :- parent_of(X,Z), ancestor_of(Z,Y).

Contents First Last Prev Next <«

14. Ancestor

ancestor_of (X,Y) :- parent_of(X,Y).

this says that People are ancestors of their children.

then, we need to say that they are ancestors of anybody that their children may
be ancestors of (i.e., of all the descendants of their children).

ancestor_of (X,Y) :- parent_of(X,Z), ancestor_of(Z,Y).

The presence of the same predicate in the head and the body of the rule indicates
we have a recursion.

Contents First Last Prev Next <«

15. Lists

Intuitively: sequences or enumerations of things.

Contents First Last Prev Next <«

15. Lists

Intuitively: sequences or enumerations of things.

In Prolog: a special kind of data structure, i.e., special kinds of Prolog terms.

Contents First Last Prev Next <«

15. Lists

Intuitively: sequences or enumerations of things.

In Prolog: a special kind of data structure, i.e., special kinds of Prolog terms.

[] The empty list
[Head|Tail] is a list if
Head is a term (atom, variable, complex term) and Tail is a list.

Contents First Last Prev Next <«

15. Lists

Intuitively: sequences or enumerations of things.

In Prolog: a special kind of data structure, i.e., special kinds of Prolog terms.
[] The empty list

[Head|Tail] is a list if
Head is a term (atom, variable, complex term) and Tail is a list.

For instance,

[a,b,c] A list with elements a, b and c
[a|Tail] A list with the element a and the elements in the Tail

you can also find eg. [a,b | [c,d]] for the list [a, b, c, d].

Contents First Last Prev Next

16. Concatenation
concatenate/3: a predicate for concatenating two lists. concatenate(X,Y,Z)
should be true if Z is the concatenation of X and Y; for example, concatenating [a]

with [b,c] yields [a,b,c].

Contents First Last Prev Next <«

16. Concatenation

concatenate/3: a predicate for concatenating two lists. concatenate(X,Y,Z)
should be true if Z is the concatenation of X and Y; for example, concatenating [a]
with [b,c] yields [a,b,c].

This predicate concatenate(X,Y,Z) is defined following the ideas below:

» if X is [], then Z=Y is the concatenation of X and Y.

» if X is the list [H|T] then [H|T1] is the concatenation of X and Y if T1 is the
concatenation of T and Y.

Formally,

concatenate([],L,L).
concatenate([Head|Tail],L, [Head|NewTaill]) :-
concatenate(Tail,L,NewTail).

Remark, “append” is an alternative way of calling the predicate “concatenate”.

Contents First Last Prev Next <«

input: [RN+ NSNS
what13is: S N
Resutt:] IS

Contents First Last Prev Next <«

input: [RN+ NSNS
what13is: S N
Resutt:] IS

Contents First Last Prev Next <«

17. Split List

concatenate (or append) can also be used in other ways. For example, to split lists
into two parts.

Contents First Last Prev Next <«

17. Split List

concatenate (or append) can also be used in other ways. For example, to split lists
into two parts.

7- append(X,Y, [a,b,c]).

X =[]

Y = [a,b,c] ;
X = [a]

Y = [b,c] ;
X = [a,b]

Y = [c] ;

X = [a,b,c]
Y=10;

no

Contents First Last Prev Next <«

Contents First Last Prev Next <«

18. Conclusion

Now have fun using Prolog!!

Contents First Last Prev Next <«

	Introduction
	Knowledge Base
	A bit of syntax: atoms and variables
	A bit of syntax: complex terms
	Facts and Queries
	kb2: a knowledge base of facts and rules
	Queries to kb2
	A bit of syntax: Rules
	Kb3: facts and rules containing variables
	Rules
	Queries to kb3
	Ancestors
	Ancestors
	Ancestor
	Lists
	Concatenation
	Split List
	Conclusion

