Computational Linguistics: Parsing

RAFFAELLA BERNARDI

KRDB, FREE UNIVERSITY OF BOZEN-BOLZANO
ViAa DELLA MOSTRA 4, RooMm: 1.06, E-MAIL:

BERNARDIQINF.UNIBZ.IT

Contents First Last Prev Next

W N

EN|

SUIMINATY « « ettt e ettt e e e e e e e e e 5

Parsing ... 6
Ambiguity 7
Kinds of Ambiguities 8
4.1 Structural Ambiguity 9

4.1.1 Global Ambiguity........ o i .. 10

4.1.2 Local Ambiguity.............. 11
4.2 Searcho 12
A good Parser 13
5.1 COITECEIESS .+ v vttt e e e e et e e 14
5.2 Completeness.ot 15
Terminating vs. Complete i, 16
Parse Trees: Example o i 17
Bottom up Parsing 18
8.1 A bit more concretely ... 19
8.2 An Example. ... 20
8.3 Example 22

Contents First Last Prev Next

<

10

11

8.4 EXercise 23

8.5 Remarks on Bottom-up oo il 24
Top down Parsing 25
9.1 A bit more concretely i 26
9.2 Anexampleo 27
9.3 Further choices 28
9.4 Depth first search i 29

9.4.1 Example...... .o i 31
9.5 Reflectionso e 32
9.6 Breadth first search il 33

9.6.1 Anexample i 34
9.7 Comparing Depth first and Breadth first searches 36
9.8 Exercise ... 37
Bottom-up vs. Top-down Parsing 38
10.1 Going wrong with bottom-up 39
10.2 Solution: Bottom up 40
10.3 Going wrong with top-down 41

10.3.1 Solution: Top-Down......................... 42
Using both 43

Contents First Last Prev Next

<

12

13

11.1 Left Cornerof arule 0. 44

11.2 Left Corner parserc.ouuiuiiiininenenanao. 45
11.3 Exampleo 46
11.4 What did we improve and what not? 50
115 Solution i 51
11.6 Commentsoet e 52
11.7 Left Corner Table 53
Overgeneration: Agreement...............coo it .. 55
12.1 Agreement between SUB and Verb 56
12,2 First try ..o 57
12.3 Loss of efficiency o 58
124 Second Try . ..o 59
12.5 Second try (cont’d) i 61
Not done, Projects and Next........ oL, 62

Contents First Last Prev Next

1. Summary
We have seen:
» Formal Grammars. Which one?

» CFG: rewriting rules.

» Recognizer vs. Parser.

Today: basic concepts about parsing natural language strings.

Contents

First

Last

Prev

Next

<

2. Parsing

In the first lecture, we have said that parsing is the process of recognizing an input
string and assigning a structure to it.

Today we will look at syntactic parsing, i.e. the task of recognizing a sentence (or
a constituent) and assigning a syntactic structure to it. We will look at algorithms
(parsers) able to assign context free parse tree to a given input. Better, we shall
consider algorithms which operate on a sequence of words (a potential sentence) and
a context-free grammar (CFG), to build one or more trees.

Contents First Last Prev Next <«

3. Ambiguity

Why a parsing algorithm may create more than one tree?

Because natural languages are often ambiguous.

What does it mean?

In non-technical terms, “ambiguous” means “having more than one meaning”.
When defining precise grammatical concepts, it is necessary to specify more pre-
cisely the different ways in which ambiguity can arise. For the moment (i.e. until
we discuss semantics in later chapters) we will be concerned only with syntactic am-
biguity, whereby a sentence (or part of a sentence) can be structured in different
ways. Such multiple classifications normally lead to multiple meanings, so the term
“ambiguity” is not unreasonable.

Contents First Last Prev Next <«

4. Kinds of Ambiguities

More particularly, in our discussion of parsing we shall be concerned only with two
types of ambiguity.

» Lexical Ambiguity: a single word can have more than one syntactic category;
for example, “smoke” can be a noun or a verb, “her” can be a pronoun or a
possessive determiner.

» Structural Ambiguity: there are a few valid tree forms for a single sequence
of words; for example, which are the possible structures for “old men and
women” ?

It can be grouped either as [[old men] and women]| or [old [men and women]].
Similarly, “John saw the man in the park with the telescope” has several fairly
plausible readings.

Contents First Last Prev Next <«

4.1. Structural Ambiguity

An important distinction must also be made between

» Global (or total) Ambiguity: in which an entire sentence has several gram-
matically allowable analyses.

» Local (or partial) Ambiguity: in which portions of a sentence, viewed in
isolation, may present several possible options, even though the sentence taken
as a whole has only one analysis that fits all its parts.

Contents First Last Prev Next <«

4.1.1. Global Ambiguity Global ambiguity can be resolved only by resorting
to information outside the sentence (the context, etc.) and so cannot be solved by
a purely syntactic parser.

A good parser should, however, ensure that all possible readings can be found, so
that some further disambiguating process could make use of them.

For instance,
John saw the woman in the park with the telescope

He was at home.

Contents First Last Prev Next <«

4.1.2. Local Ambiguity Local ambiguity is essentially what makes the orga-
nization of a parser non-trivial — the parser may find, in some situations, that the
input so far could match more than one of the options that it has (grammatical
rules, lexical items, etc). Even if the sentence is not ambiguous as a whole, it may
not be possible for the parser to resolve (locally and immediately) which of the
possible choices will eventually be correct.

“When Fred eats food gets thrown”

» [When Fred eats food] gets thrown??
» [When Fred eats| [food gets thrown)]

“La vecchia porta ¢ chiusa.”

» [[Lagesvecchiay,]np|[portal,

> [Ladet [[VeCChiaadj port an] n] np-

But then “e chiusa” will disabiguate it.

“La vecchia porta la sbarra.”

Contents First Last Prev Next <«

4.2. Search

Parsing is essentially a search problem (of the kind typically examined in artificial
intelligence):

» the initial state is the input sequence of words
» the desired final state is a complete tree spanning the whole sentence
» the operators available are the grammar rules and

» the choices in the search space consist of selecting which rule to apply to which
constituents.

Contents First Last Prev Next <«

5. A good Parser

A parsing algorithm is provided with a grammar and a string, and it returns possible
analyses of that string. Here are the main criteria for evaluating parsing algorithms:

» Correctness: A parser is correct if all the analyses it returns are indeed valid
analyses for the string, given the grammar provided.

» Completeness: A parsing algorithm is complete if it returns every possible
analysis of every string, given the grammar provided.

» Efficiency: A parsing algorithm should not be unnecessarily complex. For
instance, it should not repeat work that only needs to be done once.

Contents First Last Prev Next <«

5.1. Correctness

A parser is correct if all the analyses it returns are indeed valid analyses for
the string, given the grammar provided.

» In practice, we almost always require correctness.

» In some cases, however, we might allow the parsing algorithm to produce some
analyses that are incorrect, and we would then filter out the bad analyses
subsequently. This might be useful if some of the constraints imposed by the
grammar were very expensive to test while parsing was in progress but very
few possible analyses would actually be rejected by them.

Contents First Last Prev Next <«

5.2. Completeness

A parsing algorithm is complete if it returns every possible analysis of every
string, given the grammar provided.

In some circumstances, completeness may not be desirable. For instance, in some
applications there may not be time to enumerate all analyses and there may be
good heuristics to determine what the “best” analysis is without considering all
possibilities. Nevertheless, we will generally assume that the parsing problem entails
returning all valid analyses.

Contents First Last Prev Next <«

6. Terminating vs. Complete

It is important to realize that there is a distinction between “complete” (i.e. in
principle produces all analyses) and “terminating” (i.e. will stop processing in a
finite amount of time).

A parsing mechanism could be devised which systematically computes every analysis
(i.e. is complete) but if it is given a grammar for which there are an infinite number
of analyses, it will not terminate.

np ———> pn
pn ——> np

Contents First Last Prev Next <«

7. Parse Trees: Example

Given the grammar:

s —-==> np vp tv -—-> shot
np ---> pn pn ---> vincent
vp ---> tv np pn ———> marcellus

we want to build the parse tree corresponding to the sentence “vincent shot mar-
cellus”.

We know that

1. there must be three leaves and they must be the words “vincent”, “marcellus”,
“shot”.

2. the parse tree must have one root, which must be the start symbol s.
We can now use either the input words or the rules of the grammar to drive the

process. Accordingly to the choice we make, we obtain a “bottom up” and “top-
down” parsing, respectively.

Contents First Last Prev Next <«

8. Bottom up Parsing

The basic idea of bottom up parsing and recognition is:

» to begin with the concrete data provided by the input string — that is, the
words we have to parse/recognize — and try to build bigger and bigger pieces
of structure using this information.

» Eventually we hope to put all these pieces of structure together in a way that
shows that we have found a sentence.

Putting it another way, bottom up parsing is about moving from concrete low-level
information to more abstract high-level information.

This is reflected in a very obvious point about any bottom up algorithm: in bottom
up parsing, we use our CFG rules right to left.

Contents First Last Prev Next <«

8.1. A bit more concretely

Consider the CFG rule C' — Py, Ps, Ps.

Working bottom up means that we will try to find a P;, a P, and a P3 in the input
that are right next to each other. If we find them, we will use this information to
conclude that we have found a C'.

That is, in bottom up parsing, the flow of information is from the right hand side
(Py, Py, P3) of the rules to the left hand side of the rules (C).

Let’s look at an example of bottom up parsing/recognition start from a linguistics
input.

Contents First Last Prev Next <«

8.2.
“Vin

1.

An Example

cent shot Marcellus”. Working bottom up, we might do the following.

First we go through the string, systematically looking for strings of length 1 that
we can rewrite by using our CFG rules in a right to left direction.

. Now, we have the rule pn — wvincent, so using this in a right to left direction gives

us: pn shot marcellus.

. But wait: we also have the rule np — pn, so using this right to left we build: np shot

marcellus.

We're still looking for strings of length 1 that we can rewrite using our CFG rules
right to left — but we can’t do anything with np.

. But we can do something with the second symbol, “shot”. We have the rule tv —

shot, and using this right to left yields: np tv marcellus.

Contents First Last Prev Next <«

6. Can we rewrite tv using a CFG rule right to left?

No — so it’s time to move on and see what we can do with the last symbol, “mar-
cellus”.

We have the rule pn — marcellus, and this lets us build: np tv pn

7. We also have the rule np — pn so using this right to left we build: np tv np

8. Are there any more strings of length 1 we can rewrite using our context free rules
right to left?

No — we’ve done them all.

9. So now we start again at the beginning looking for strings of length 2 that we
can rewrite using our CFG rules right to left. And there is one: we have the rule
vp — tv np, and this lets us build: np vp

10. Are there any other strings of length 2 we can rewrite using our CFG rules right to
left? Yes — we can now use: s — np vp, we have built: s

11. And this means we are finished.

Working bottom up we have succeeded in rewriting our original string of symbols into the
symbol s — so we have successfully recognized “Vincent shot Marcellus” as a sentence.

Contents First Last Prev Next <«

8.3. Example

Sara wears the new dress pn — sara

pnwears the new dress np — pn
npwears the new dress tv — wears
np tv the new dress det — the
np tv det new dress adj — new
np tv det adj dress n — dress
np tv det adj n n—adjn
np tv det n np — det n
np tv np vp — tv np
np vp 5 — np vp

S

Contents First Last Prev Next <«

8.4. Exercise

Given the lexicon below, build the CFG rules and use the same strategy described above
to parse the input strings below.

1. “John saw the man with the telescope.”

pn ---> john n ---> telescope
tv -——> saw det ---> the

n ---> park p ——> with

n ---> man p ——> in

How many parse trees do you obtain?

S ——=> np Vp

np -——-> det n

np ---> det n pp
np —--> pn

vp ——=-> tv np

vp -==> tv np pp
pp -==> p np

Contents First Last Prev Next <«

8.5. Remarks on Bottom-up

A couple of points are worth emphasizing. This is just one of many possible ways
of performing a bottom up analysis. All bottom up algorithms use CFG rules right
to left — but there many different ways this can be done.

To give a rather pointless example: we could have designed our algorithm so that
it started reading the input in the middle of the string, and then zig-zagged its way
to the front and back. And there are many much more serious variations — such
as the choice between depth first and breadth first search that we will look at later
today.

In fact, the algorithm that we used above is crude and inefficient. But it does have
one advantage — it is easy to understand and easy to put into Prolog.

Contents First Last Prev Next <«

9. Top down Parsing

As we have seen, in bottom-up parsing/recognition we start at the most concrete
level (the level of words) and try to show that the input string has the abstract
structure we are interested in (this usually means showing that it is a sentence). So
we use our CFG rules right-to-left.

In top-down parsing/recognition we do the reverse.

» We start at the most abstract level (the level of sentences) and work down
to the most concrete level (the level of words).

» So, given an input string, we start out by assuming that it is a sentence, and
then try to prove that it really is one by using the rules left-to-right.

Contents First Last Prev Next <«

9.1. A bit more concretely

That works as follows:

1. If we want to prove that the input is of category s and we have the rule s —
np vp, then we will try next to prove that the input string consists of a noun
phrase followed by a verb phrase.

2. If we furthermore have the rule np — det n, we try to prove that the input
string consists of a determiner followed by a noun and a verb phrase.

That is, we use the rules in a left-to-right fashion to expand the categories that
we want to recognize until we have reached categories that match the preterminal
symbols corresponding to the words of the input sentence.

Contents First Last Prev Next <«

9.2. An example

The left column represents the sequence of categories and words that is arrived at
by replacing one of the categories (identical to the left-hand side of the rule in the
second column) on the line above by the right-hand side of the rule or by a word
that is assigned that category by the lexicon.

s s — np vp
np vp vp — v np
np v np np — det n
np v det n n—adjn
np v det adj n np — Sara
Sara v det adj n v — wears
Sara wears det adj n det — the
Sara wears the adj n adj — new
Sara wears the new n n — dress

Sara wears the new dress

Contents First Last Prev Next <«

9.3. Further choices

Of course there are lots of choices still to be made.

» Do we scan the input string from right-to-left, from left-to-right, or zig-zagging
out from the middle?

» In what order should we scan the rules? More interestingly, do we use depth-
first or breadth-first search?

Contents First Last Prev Next <«

9.4. Depth first search

Depth first search means that whenever there is more than one rule that could be
applied at one point, we explore one possibility and only look at the others
when this one fails. Let’s look at an example.

s ---> np, Vvp.
np --—> pn.
vp ———> 1iv.

vp ———> tv, np.

lex(vincent,pn). %alternative notation for pn ---> vincent
lex(mia,pn) .

lex(died,iv).

lex(loved,tv).

lex(shot,tv).

Contents First Last Prev Next <«

The sentence “Mia loved Vincent” is admitted by this grammar. Let’s see how a
top-down parser using depth first search would go about showing this.

Contents First Last Prev Next <«

9.4.1. Example
State

L. = miei loved vincent
2. np vp migloved vincent
3. pn vp mialoved vincent
4 v loved vincent

3 iv loved vincent

4 Ve loved vincent

5 tv np loved vincent

] ng vincent

7 Pn vincent

Comments
g --=> [np,vp]
np ——-> [pn]

lex (mia,pn)
We've got a match
wp ———> [iv]

We' e doing depth first search. So we ignore
the other vprule for the moment.

Mo applicable rule. Backtrack to the staic in
which we last applied arule. That's stawe 4.
wp ———> [tv]
lex(loved, tvi
Great, we've got match!
np ---> [pn]
lexivincent,pn)

Another match. We're done.

Contents First Last Prev Next

9.5. Reflections

It should be clear why this approach is called top-down: we clearly work from the
abstract to the concrete, and we make use of the CFG rules left-to-right.

Furthermore, it is an example of depth first search because when we were faced with
a choice, we selected one alternative, and worked out its consequences. If the choice
turned out to be wrong, we backtracked.

For example, above we were faced with a choice of which way to try and build a vp
— using an intransitive verb or a transitive verb.

We first tried to do so using an intransitive verb (at state 4) but this didn’t work out
(state 5) so we backtracked and tried a transitive analysis (state 4). This eventually
worked out.

Contents First Last Prev Next <«

9.6. Breadth first search

The big difference between breadth-first and depth-first search is that in breadth-
first search we carry out all possible choices at once, instead of just picking
one.

It is useful to imagine that we are working with a big bag containing all the
possibilities we should look at — so in what follows I have used set-theoretic
braces to indicate this bag. When we start parsing, the bag contains just one item.

Contents First Last Prev Next <«

9.6.1. An example

State Comments

L. {{ s, mia loved vincent) } g —-——>» [np, vpl
2. {{np wvp, mia loved vincent)} np ---> [pn]
3. {{pn vp, mia loved vincent)} Match!
4. {{vp. loved vincent)} vp ---> [iv], vp ---> [tv, np]
5. {{ iv, loved vincent), Mo applicable mle foriv analysis.

{tv np,loved vincent)} lexiloved tv)
6. {{ np, vincent}} np —--> [pn]
7. {{ pn, vincent}} Were done!

The crucial difference occurs at state 5. There we try both ways of building vp at once.
At the next step, the intransitive analysis is discarded, but the transitive analysis remains

Contents First Last Prev Next <«

in the bag, and eventually succeeds.

Contents First Last Prev Next <«

9.7. Comparing Depth first and Breadth first searches

» The advantage of breadth-first search is that it prevents us from zeroing in
on one choice that may turn out to be completely wrong; this often happens
with depth-first search, which causes a lot of backtracking.

» Its disadvantage is that we need to keep track of all the choices — and if the
bag gets big (and it may get very big) we pay a computational price.

So which is better?

There is no general answer. With some grammars breadth-first search, with others
depth-first.

Contents First Last Prev Next <«

9.8. Exercise

Try the two top-down approaches to parse “La vecchia porta sbatte” given the
grammar below.

det ---> la s ——> np vp

adj ---> vecchia vp ——> iv

n ---> vecchia vp --> tv np
n ---> porta np --> det n
tv ---> porta n -->adjn

iv -—-> sbatte

Contents First Last Prev Next <«

10. Bottom-up vs. Top-down Parsing

Each of these two strategies has its own advantages and disadvantages:

1. Trees (not) leading to an s
» The top-down parsing: It never wastes time exploring tree that cannot
result in an s.

» The bottom-up parsing: trees that have no hope of leading to an s are
generated.

2. Trees (not) consistent with the input:

» The top-down parsing: It can waste time generating trees which are not
consistent with the input.

» The bottom-up parsing: It never generates tree which are not locally
grounded in the actual input.

Used parsers usually combine the best features of the two approaches.

Contents First Last Prev Next <«

10.1. Going wrong with bottom-up

Say, we have the following grammar fragment:

s —-—-=> np vp
np ———> det n
vp ———> 1iv

vp ———> tv np
tv ---> plant

iv ---> died
det ---> the
n --—-> plant

Try to parse “the plant died” using a bottom-up parser.

Contents First Last Prev Next <«

10.2. Solution: Bottom up

Note, how “plant” is ambiguous in this grammar: it can be used as a common noun
or as a transitive verb.

1.

If we now try to bottom-up recognize “the plant died”, we would first find that
“the” is a determiner, so that we could rewrite our string to “det plant died”.

Then we would find that “plant” can be a transitive verb giving us “det tv

died”.

. “det” and “tv” cannot be combined by any rule.

. S0, “died” would be rewritten next, yielding “det tv iv” and then “det tv vp”.

Here, it would finally become clear that we took a wrong decision somewhere:
nothing can be done anymore and we have to backtrack.

. Doing so, we would find that “plant” can also be a noun, so that “det plant

died” could also be rewritten as “det n died”, which will eventually lead us to
success.

Contents First Last Prev Next <«

10.3. Going wrong with top-down

Assume we have the following grammar

s —-—-=> np vp

np ———> det n
np ———> pn

vp ———> 1iv

det -—--> the

n —---> robber
pn ---> Vincent
iv ——-> died

try to use it to top-down recognize the string “vincent died”.

Contents First Last Prev Next <«

10.3.1. Solution: Top-Down

-~ W N

Proceeding in a top-down manner, we would first expand s to np vp.
Next we would check what we can do with the np and find the rule np — det n.

We would therefore expand np to det n.

[4

Then we either have to find a lexical rule to relate “vincent” to the category
det, or we have to find a phrase structure rule to expand det.

Neither is possible, so we would backtrack checking whether there are any
alternative decisions somewhere.

Contents First Last Prev Next <«

11. Using both

We have seen that using a pure top-down approach, we are missing some
important information provided by the words of the input string which would
help us to guid our decisions.

However, similarly, using a pure bottom-up approach, we can sometimes end
up in dead ends that could have been avoided had we used some bits of top-down
information about the category that we are trying to build.

The key idea of left-corner parsing is to combine top-down processing with
bottom-up processing in order to avoid going wrong in the ways that we are
prone to go wrong with pure top-down and pure bottom-up techniques.

Contents First Last Prev Next <«

11.1. Left Corner of a rule

The left corner of a rule is the first symbol on the right hand side.
For example,

» np is the left corner of the rule s — np vp, and

» v is the left corner of the rule vp — iv.

» Similarly, we can say that “vincent” is the left corner of the lexical rule pn —
vincent.

Contents First Last Prev Next <«

11.2. Left Corner parser

A left-corner parser starts with a top-down prediction fixing the category that is
to be recognized, like for example s. Next, it takes a bottom-up step and then
alternates bottom-up and top-down steps until it has reached an s.

1. The bottom-up processing steps work as follows. Assuming that the parser has
just recognized a noun phrase, it will in the next step look for a rule that has
an np as its left corner.

2. Let’s say it finds s — np vp. To be able to use this rule, it has to recognize a
vp as the next thing in the input string.

3. This imposes the top-down constraint that what follows in the input string has
to be a verb phrase.

4. The left-corner parser will continue alternating bottom-up steps as described
above and top-down steps until it has managed to recognize this verb phrase,
thereby completing the sentence.

Contents First Last Prev Next <«

11.3. Example

Now, let’s look at how a left-corner recognizer would proceed to recognize “vincent
died”.

1. Input: vincent died. Recognize an s. (Top-down prediction.)

&)

vincent died

2. The category of the first word of the input is pn. (Bottom-up step using a
lexical rule.)

.F'IN
ViR ent dieedl

Contents First Last Prev Next <«

. Select a rule that has pn at its left corner: np — pn. (Bottom-up step using a
phrase structure rule.)

-"'viF
PN
|
vincent died

. Select a rule that has np at its left corner: s — np vp (Bottom-up step.)

5
PN
MNF VF
|
PN
|
vincent died

. Match! The left hand side of the rule matches with , the category we are trying
to recognize.

Contents First Last Prev Next <«

5
N
NP VP

I
PN v
| |

vincent died

. Input: died. Recognize a vp. (Top-down prediction.)
. The category of the first word of the input is iv. (Bottom-up step.)

. Select a rule that has iv at its left corner: vp — iv. (Bottom-up step.)

)
™
."'-.I;P 1r'I'P
Pln"'v' fIV
vincent died

. Match! The left hand side of the rule matches with vp, the category we are
trying to recognize.

Contents First Last Prev Next <«

Make sure that you see how the steps of bottom-up rule application alternate with
top-down predictions in this example. Also note that this is the example that we
used earlier on for illustrating how top-down parsers can go wrong and that, in
contrast to the top-down parser, the left-corner parser doesn’t have to backtrack
with this example.

Contents First Last Prev Next <«

11.4. What did we improve and what not?

This left-corner recognizer handles the example that was problematic for the pure
top down approach much more efficiently.

It finds out what is the category of “vincent” and then doesn’t even try to use the
rule np — det n to analyze this part of the input. Remember that the top-down
recognizer did exactly that.

But there are no improvement on the example that was problematic for the
bottom-up approach. Just like the bottom up recognizer, the left-corner recog-
nizer will first try to analyze “plant” as a transitive verb.

Let’s see step by step what the left-corner recognizer defined above does to process
“the plant died” given the grammar.

Try it first your self.

Contents First Last Prev Next <«

11.5.

Solution

5
3 5
< NP
L) 2)| Det 3) <N
the plant died | Det N
the plant died | i
the plant died
5
5
S NP
NP /N'D\ per” N
, et r
-~ | Det N
)| Der N 3. 6. VP
VP
TV -~ ~ TV NP
I v NP
the plant died 1 w
the plant died 1
the plant died
)
/NP\
Det N
Ve . .
7. Mo way to continne! Backtacking!
TV NP
VP
|
i
|
the plant died
Contents First Last Prev

11.6. Comments

So, just like the bottom-up recognizer, the left-corner recognizer chooses the wrong
category for “plant” and needs a long time to realize its mistake.

However, the left-corner recognizer provides the information that the constituent we
are trying to build at that point is a “noun”. And nouns can never start with
a transitive verb according to the grammar we were using.

If the recognizer uses this information, it would notice immediately that the lexical
rule relating “plant” to the category transitive verb cannot lead to a parse.

Contents First Last Prev Next <«

11.7. Left Corner Table

The solution is to record this information in a table.

This left-corner table stores which constituents can be at the left-corner of
which other constituents

For the little grammar of the problematic example the left-corner table would look
as follows:

S ——=> np vp
np ---> det n
vp ———> 1iv

vp --=> tv np
tv -——> plant

iv ———> died
det ---> the
n -——> plant

Contents First Last Prev Next <«

np
vp
det

iv
tv

np, det, s
det, np
iv, tv, vp
det

n

iv

tv

Contents First Last Prev

Next

<

12.

For instance, can the CFG we have built distinguish the sentences below?

- W b

Overgeneration: Agreement

He hates a red shirt
*He like a red shirt
He hates him
*He hates he

Contents

First

Last

Prev

Next

<

12.1. Agreement between SUB and Verb

When working with agreement a first important fact to be taken into account is
that we use

» a plural VP if and only if we have a plural NP, and

» a singular VP if and only if we have a singular NP.
For instance,

1. “the gangster dies”
2. *“the gangster die”

That is, we have to distinguish between singular and plural VPs and NPs.

Contents First Last Prev Next <«

12.2. First try

One way of doing this would be to invent new non-terminal symbols for plural
and singular NPs and VPs. Our grammar would then look as follows.

We would have two rules for building sentences: one for building a sentence out of a
singular NP (NPsg) and a singular VP (VPsg), and the other one for using a plural
NP (NPpl) with a plural VP (VPpl).

Singular NPs are built out of a determiner and a singular noun (Nsg) and plural
NPs are built out of a determiner and a plural noun (Npl). Note that we don’t have
to distinguish between singular and plural determiners as we are only using “the”
at the moment, which works for both.

Similarly, singular VPs are built out of singular intransitive verbs (IVsg) and plural
VPs out of plural intransitive verbs (IVpl).

Finally, we have singular and plural nouns and verbs in our lexicon.

Contents First Last Prev Next <«

12.3. Loss of efficiency

Now, the grammar does what it should:

1. “the gangster dies” 2. “the gangsters die”
3. *“the gangster die” 4. *“the gangsters dies”.

However, compared to the grammar we started with, it has become huge — we have twice
as many phrase structure rules, now. And we only added the information whether a noun
phrase or a verb phrase is plural or singular.

Imagine we next wanted to add transitive verbs and pronouns. To be able to correctly
accept “he shot him” and reject “him shot he”, we would need case information in our
grammar. And if we also wanted to add the pronouns “I” and “you”, we would further
have to distinguish between first, second and third person.

If we wanted to code all this information in the non-terminal symbols of the grammar, we
would need non-terminal symbols for all combinations of these features. Hence, the size
of the grammar would explode and the rules would probably become very difficult to
read.

Contents First Last Prev Next <«

12.4. Second Try

We use features to represent case (subject, object), gender (female, masculine),
number (singular, plural).

s -=> np(subj), vp.
vp —-=> vt, np(obj).
vp —-> vi.

np(CASE) --> pro(CASE) .
np(_) --> det, n.
np(_) --> pn.
Lexicon

det --> the

n --> whiskey

pn --> bill
pro(subj) --> he
pro(obj) --> him
vi --> fights

vt --> kills

Contents First Last Prev Next <«

Try the second exercise.

Contents First Last Prev Next <«

12.5. Second try (cont’d)

While doing the exercise, you might have noticed that the extra argument — the
feature — is simply passed up the tree by ordinary unification. And, depending
on whether it can correctly unify or not, this feature controls the facts of English
case avoiding duplications of categories.

Summing up,

» features let us get rid of lots of unnecessary rules in a natural way.

» In the lab we will see that PROLOG enables us to implement rules with feature
information in a natural way.

This way of handling features however has some limits, in particular it does not
provide an adequate syntax descriptions of the agreement phenomena in general
terms.

Contents First Last Prev Next <«

13. Not done, Projects and Next

1. Chart

2. Parsing with Feature Structure Unification

Projects If you already know some parsing techniques you could implement an al-
gorithm to be applied on a given grammar and parse some of the sentence it can

generates.

Next So far we have being dealing only with syntax. But sentences have a meaning
too. This is going to be the topic of next week.

Practical Info Change in the schedule: http://www.inf .unibz.it/~bernardi/Courses.
CompLing/09-10.html#handouts

Contents First Last Prev Next <«

http://www.inf.unibz.it/~bernardi/Courses/CompLing/09-10.html#handouts
http://www.inf.unibz.it/~bernardi/Courses/CompLing/09-10.html#handouts

	Summary
	Parsing
	Ambiguity
	Kinds of Ambiguities
	Structural Ambiguity
	Global Ambiguity
	Local Ambiguity

	Search

	A good Parser
	Correctness
	Completeness

	Terminating vs. Complete
	Parse Trees: Example
	Bottom up Parsing
	A bit more concretely
	An Example
	Example
	Exercise
	Remarks on Bottom-up

	Top down Parsing
	A bit more concretely
	An example
	Further choices
	Depth first search
	Example

	Reflections
	Breadth first search
	An example

	Comparing Depth first and Breadth first searches
	Exercise

	Bottom-up vs. Top-down Parsing
	Going wrong with bottom-up
	Solution: Bottom up
	Going wrong with top-down
	Solution: Top-Down

	Using both
	Left Corner of a rule
	Left Corner parser
	Example
	What did we improve and what not?
	Solution
	Comments
	Left Corner Table

	Overgeneration: Agreement
	Agreement between SUB and Verb
	First try
	Loss of efficiency
	Second Try
	Second try (cont'd)

	Not done, Projects and Next

