
Computational Linguistics: Syntax II

Raffaella Bernardi
KRDB, Free University of Bozen-Bolzano

Via della Mostra, Room: 1.06, e-mail: bernardi@inf.unibz.it

Contents First Last Prev Next J

Contents

1 Summary. 5
2 Next Steps . 6
3 Undergeneration and Overgeneration . 7
4 Undergeneration . 8

4.1 Undergeneration (Cont’d) . 9
5 Trasformational Grammar (Kordoni’s slides) 10

5.1 Relative clauses . 13
6 Computational Grammar Formalisms . 14
7 Overgeneration: Agreement . 15

7.1 Agreement between SUB and Verb . 16
7.2 First try . 17
7.3 Loss of efficiency . 18
7.4 Second Try . 19
7.5 Second try (cont’d) . 21
7.6 Feature Pergolation . 22
7.7 Set of properties . 23

8 Beyond CFGs, how? . 24

Contents First Last Prev Next J

9 Constraint Based Grammars . 25
10 Feature Structures . 26
11 Agreement Feature . 28
12 Feature Path . 29

12.1 Directed Graphs . 30
12.2 Reentrancy . 31
12.3 Reentrancy as Coindexing . 36
12.4 FS: Subsumption . 39
12.5 Examples . 42
12.6 Exercise . 43
12.7 Exercise: (Cont’d) . 44

13 Operations on FS . 45
13.1 Unification of FS . 46

13.1.1 Partial Operation . 47
13.1.2 Unification: Formal Definition 48

14 Augmenting CFG with FS . 49
15 Augmenting CFG wiht FS (cont’d) . 50

15.1 Exercise . 51
15.2 Head Features and Subcategorization 52

Contents First Last Prev Next J

15.3 Schema . 54
15.4 Example . 54

16 Conclusion . 55
17 Practical Info . 56

Contents First Last Prev Next J

1. Summary

The main issues of last lecture were:

I Syntax: Constituents; Head; Dependencies.

I NL Syntax cannot be formalized by RL.

I CFG can be used to recognize NL syntax, but

I In NL, there are evidences of cross-dependencies

Contents First Last Prev Next J

2. Next Steps

We said that to examine how the syntax of a sentence can be computed, we must
consider two things:

1. The grammar: A formal specification of the structures allowable in the lan-
guage. [Data structures]

2. The parsing technique: The method of analyzing a sentence to determine
its structure according to the grammar. [Algorithm]

Today we will speak about the problems “the grammar” has to face, next week we
will move to speak about the “parsing techniques”.

Contents First Last Prev Next J

3. Undergeneration and Overgeneration

We would like the Formal Grammar we have built to be able to recognize/generate
all and only the grammatical sentences.

I Undergeration: If the FG does not generate some sentences which are actu-
ally grammatical, we say that it undergenerates.

I Overgeneration: If the FG generates as grammatical also sentences which
are not grammatical, we say that it overgenerates.

Try exercises 1. a)-b)

Contents First Last Prev Next J

4. Undergeneration

Context free rules work locally. For example, the rule

s → np vp

tells us how an s can be decomposed into two parts, an np and a vp.

But we have seen that certain aspects of natural language seem to work in a non-
local, long-distance way. Indeed, for a long time it was thought that such phe-
nomena meant that grammar-based analyses had to be replaced by very powerful
new mechanisms

Contents First Last Prev Next J

4.1. Undergeneration (Cont’d)

Consider these two English np. First, an np with an object relative clause:

“The witch who Harry likes”.

Next, an np with a subject relative clause:

“Harry, who likes the witch.”

What is their syntax? That is, how do we build them?

Today we will briefly see a fairly traditional explanation in terms of movement,
gaps, extraction, and so on. In the second part of the course, we will look into more
modern approaches.

Contents First Last Prev Next J

5. Trasformational Grammar (Kordoni’s slides)

Roughly speaking, transformational syntax (GB –Government and Binding– P&P
– Principles and Parameters– . . .) has focused on the following:

I Explanatory adequacy: the data must fit with a deeper model, that of universal
grammar

I Psychological: does the grammar make sense in light of what we know of how
the mind works?

I Theory-driven: data should ideally fit with a theory already in place (often
based on English)

I Universality: generalisations must be applicable to all languages

I Transformations: (surface) sentences are derived from underlying other sen-
tences, e.g., passives are derived from active sentences

Contents First Last Prev Next J

Contents First Last Prev Next J

Contents First Last Prev Next J

5.1. Relative clauses

The traditional explanation basically goes like this. We have the following sentence:

Harry likes the witch

We can think of the np with the object relative clause as follows.

| |

the witch who Harry likes GAP(np)

That is, we have

1. extracted the np “the witch” from the object position, leaving behind an np-
gap,

2. moved it to the front, and

3. placed the relative pronoun “who” between it and the gap-containing sentence.

Contents First Last Prev Next J

6. Computational Grammar Formalisms

But Trasformational Grammar does not lend itself well to computational applica-
tions.

Computational Grammar formalisms share several properties:

I Descriptive adequacy

I Precise encodings (implementable)

I Constrained mathematical formalism

I Monostratalism

I (Usually) high lexicalism

Contents First Last Prev Next J

7. Overgeneration: Agreement

For instance, can the CFG we have built distinguish the sentences below?

1. He hates a red shirt

2. *He like a red shirt

3. He hates him

4. *He hates he

Contents First Last Prev Next J

7.1. Agreement between SUB and Verb

When working with agreement a first important fact to be taken into account is
that we use

I a plural VP if and only if we have a plural NP, and

I a singular VP if and only if we have a singular NP.

For instance,

1. “the gangster dies”

2. *“the gangster die”

That is, we have to distinguish between singular and plural VPs and NPs.

Contents First Last Prev Next J

7.2. First try

One way of doing this would be to invent new non-terminal symbols for plural
and singular NPs and VPs. Our grammar would then look as follows.

We would have two rules for building sentences: one for building a sentence out of a
singular NP (NPsg) and a singular VP (VPsg), and the other one for using a plural
NP (NPpl) with a plural VP (VPpl).

Singular NPs are built out of a determiner and a singular noun (Nsg) and plural
NPs are built out of a determiner and a plural noun (Npl). Note that we don’t have
to distinguish between singular and plural determiners as we are only using “the”
at the moment, which works for both.

Similarly, singular VPs are built out of singular intransitive verbs (IVsg) and plural
VPs out of plural intransitive verbs (IVpl).

Finally, we have singular and plural nouns and verbs in our lexicon.

Contents First Last Prev Next J

7.3. Loss of efficiency

Now, the grammar does what it should:

1. “the gangster dies” 2. “the gangsters die”
3. *“the gangster die” 4. *“the gangsters dies”.

However, compared to the grammar we started with, it has become huge – we have twice
as many phrase structure rules, now. And we only added the information whether a noun
phrase or a verb phrase is plural or singular.

Imagine we next wanted to add transitive verbs and pronouns. To be able to correctly
accept “he shot him” and reject “him shot he”, we would need case information in our
grammar. And if we also wanted to add the pronouns “I” and “you”, we would further
have to distinguish between first, second and third person.

If we wanted to code all this information in the non-terminal symbols of the grammar, we
would need non-terminal symbols for all combinations of these features. Hence, the size
of the grammar would explode and the rules would probably become very difficult to
read.

Contents First Last Prev Next J

7.4. Second Try

We use features to represent case (subject, object), gender (female, masculine),
number (singular, plural).

s --> np(subj), vp.
vp --> vt, np(obj).
vp --> vi.
np(CASE) --> pro(CASE).
np(_) --> det, n.
np(_) --> pn.
Lexicon
det --> the
n --> whiskey
pn --> bill
pro(subj) --> he
pro(obj) --> him
vi --> fights
vt --> kills

Contents First Last Prev Next J

Try the second exercise.

Contents First Last Prev Next J

7.5. Second try (cont’d)

While doing the exercise, you might have noticed that the extra argument — the
feature — is simply passed up the tree by ordinary unification. And, depending
on whether it can correctly unify or not, this feature controls the facts of English
case avoiding duplications of categories.

Summing up,

I features let us get rid of lots of unnecessary rules in a natural way.

I In the lab we will see that PROLOG enables us to implement rules with feature
information in a natural way.

This way of handling features however has some limits, in particular it does not
provide an adequate syntax descriptions of the agreement phenomena in general
terms.

Contents First Last Prev Next J

7.6. Feature Pergolation

Last time we have spoken of the head of the phrase as the word characterizing the
phrase itself. E.g. the head of a noun phrase is the noun, the head of a verb phrase
is the verb, the head of a prepositional phrase is the preposition, etc.

Notice that its the head of a phrase that provides the features of the phrase.
E.g. in the noun phrase “this cat”, it’s the noun (“cat”) that characterizes the np
as singular.

Note, this also means that the noun requires the article to match its features.

Contents First Last Prev Next J

7.7. Set of properties

This can be captured in an elegant way, if we say that our non-terminals are no
longer atomic category symbols, but a set of properties, such as type of category,
number, person, case

Certain rules can then impose constraints on the individual properties that a
category involved in that rule may have.

These constraints can force a certain property to have some specific value, but
can also just say that two properties must have the same value, no matter what
that value is. Using this idea, we could specify our grammar like this:

s ---> np vp : number of np= number of vp
np ---> Det n : number of np= number of n
vp ---> iv
Det ---> the
n ---> gangster : number of n= singular
n ---> gangsters : number of n= plural
iv ---> dies: number of iv = singular
iv ---> die : number of iv = plural

Contents First Last Prev Next J

8. Beyond CFGs, how?

Move beyond CFGs, but stay “mathematical”:

1. Extend the basic model of CFGs with, for instance, complex categories, func-
tional structure, feature structures, ...

2. Eliminate CFG model (or derive it some other way)

Today we speak of 1., in the second part of the course we will look at 2. and we will
have an invited lecture by Valia Kordoni on the issue.

Contents First Last Prev Next J

9. Constraint Based Grammars

In computational linguistics such sets of properties are commonly represented as
feature structures.

The grammars that use them are known as constraint-based grammars, i.e. gram-
mars that can express constrains on the properties of the categories to be com-
bined by means of its rules. Roughly, a rule would have to say

s → np vp

only if the number of the np is equal to the number of the vp.

The most well known Constraint Based Grammars are Lexical Functional Grammar
(LFG, Bresnan ’82), Generalized Phrase Structure Grammar (GPSG, Gazdar et al.
’85), Head-driven Phrase Structure Grammar (HPSG, Pollard and Sag, ’87), Tree
Adjoining Grammar (TAG, Joshi et al. ’91).

Contents First Last Prev Next J

10. Feature Structures

Constraints-Based Grammars usually encode properties by means of Feature Structures
(FS). They are simply sets of feature-value pairs, where features are unalayzable atomic
symbols drown from some finite set, and values are either atomic symbols or feature
structures.

They are traditionally illustrated with the following kind of matrix-like diagram, called
attribute-value matrix (AVM) (It is common practice to refer to AVMs as “feature
structures” although strictly speaking they are feature structure descriptions.)

Feature1 Value1

Feature2 Value2

.
Featuren Valuen


For instance, the number features sg (singular) and pl plural, are represented as below.[

NUM sg
] [

NUM pl
]

Contents First Last Prev Next J

Similarly, the slightly more complex feature 3rd singular person is represented as[
NUM sg
PERS 3

]
Next, if we include also the category we obtain, e.g. CAT np

NUM sg
PERS 3


which would be the proper representation for “Raffaella” and would differ from the
FS assigned to “they” only with respect to (w.r.t.) the number.

Note that, the order of rows is unimportant, and within a single AVM, an attribute
can only take one value.

FS give a way to encode the information we need to take into consideration in order
to deal with agreement. In particular, we obtain a way to encode the constraints
we have seen before.

Contents First Last Prev Next J

11. Agreement Feature

In the above example all feature values are atomic, but they can also be feature
structures again. This makes it possible to group features of a common type to-
gether.

For instance, the two important values to be considered for agreement are NUM

and PERS, hence we can group them together in one AGR feature obtaining a more
compact and efficient representation of the same information we expressed above. CAT np

AGR

[
NUM sg
PERS 3

] 
Given this kind of arrangement, we can test for the equality of the values for both
NUM and PERS features of two constituents by testing for the equality of their AGR

features.

Contents First Last Prev Next J

12. Feature Path

A Feature Path is a list of features through a FS leading to a particular value. For
instance, in the FS below  CAT np

AGR

[
NUM sg
PERS 3

] 
the 〈AGR NUM〉 path leads to the value sg, while the 〈AGR PERS〉 path leads to the
value 3.

This notion of paths brings us to an alternative graphical way of illustrating FS,
namely directed graphs.

Contents First Last Prev Next J

12.1. Directed Graphs

Another common way of representing feature structures is to use directed graphs. In this
case, values (no matter whether atomic or not) are represented as nodes in the graph, and
features as edge labels. Here is an example. The attribute value matrix CAT np

AGR

[
NUM sg
PERS 3

] 
can also be represented by the following directed graph.

Paths in this graph correspond to sequences of features that lead through the feature
structure to some value. The path carrying the labels AGR and NUM corresponds to the
sequence of features 〈AGR, NUM〉 and leads to the value sg.

Contents First Last Prev Next J

12.2. Reentrancy

The graph that we have just looked at had a tree structure, i.e., there was no node
that had more than one incoming edge. This need not always be the case. Look at
the following example:

Here, the paths 〈Head, AGR 〉 and 〈Head, SUBJ, AGR 〉 both lead to the same node,
i.e., they lead to the same value and share that value. This property of feature
structures that several features can share one value is called reentrancy. It is one
of the reasons why feature structures are so useful for computational linguistics.

Contents First Last Prev Next J

Contents First Last Prev Next J

Contents First Last Prev Next J

Contents First Last Prev Next J

Contents First Last Prev Next J

12.3. Reentrancy as Coindexing

In other words, in AVM, reentrancy is commonly expressed by coindexing the values
which are shared. Written in the matrix notation the graph from above looks as
follows. The boxed 1 indicates that the two features sequences leading to it share
the value.

Contents First Last Prev Next J

Contents First Last Prev Next J

Contents First Last Prev Next J

12.4. FS: Subsumption

We have said that feature structures are essentially sets of properties. Given two
different sets of properties an obvious thing to do is to compare the information
they contain.

A particularly important concept for comparing two feature structures is subsump-
tion.

A feature structure F1 subsumes (v) another feature structure F2 iff all the infor-
mation that is contained in F1 is also contained in F2.

Notice that subsumption is reflexive, transitive and anti-symmetric.

The minimum element w.r.t. the subsumption ordering is the feature structure that
specifies no information at all (no attributes, no values). It is called the “top” and is
written T or []. Top subsumes every other AVM, because every other AVM contains
at least as much information as top.

Contents First Last Prev Next J

Contents First Last Prev Next J

Contents First Last Prev Next J

12.5. Examples

The following two feature structures for instance subsume each other.

[
NUM sg
PERS 3

] [
PERS 3
NUM sg

]
They both contain exactly the same information, since the order in which the fea-
tures are listed in the matrix is not important.

Contents First Last Prev Next J

12.6. Exercise

And how about the following two feature structures?

[
NUM sg

] [
PERS 3
NUM sg

]
Well, the first one subsumes the second, but not vice versa. Every piece of informa-
tion that is contained in the first feature structure is also contained in the second,
but the second feature structure contains additional information.

Contents First Last Prev Next J

12.7. Exercise: (Cont’d)

Do the following feature structures subsume each other?[
NUM sg
GENDER masc

] [
PERS 3
NUM sg

]
The first one doesn’t subsume the second, because it contains information that the
second doesn’t contain, namely GENDER masc.

But, the second one doesn’t subsume the first one either, as it contains PERS 3

which is not part of the first feature structure.

Contents First Last Prev Next J

13. Operations on FS

The two principal operations we need to perform of FS are merging the infor-
mation content of two structures and rejecting the merger of structures that are
incompatible.

A single computational technique, namely unification, suffices for both of the pur-
poses.

Unification is implemented as a binary operator that accepts two FS as arguments
and returs a FS when it succeeds.

Contents First Last Prev Next J

13.1. Unification of FS

Unification is a (partial) operation on feature structures. Intuitively, it is the opera-
tion of combining two feature structures such that the new feature structure contains
all the information of the original two, and nothing more. For example, let
F1 be the feature structure [

CAT np
AGR

[
NUM sg

]]
and let F2 be the feature structure[

CAT np
AGR

[
PERS 3

]]
Then, what is F1 t F2, the unification of these two feature structures? CAT np

AGR

[
NUM sg
PERS 3

] 
Contents First Last Prev Next J

13.1.1. Partial Operation Why did we call unification a partial operation?
Why didn’t we just say that it was an operation on feature structures?

The point is that unification is not guaranteed to return a result. For example,
let F3 be the feature structure

[
CAT np

]
and let F4 be the feature structure

[
CAT vp

]
Then F3 t F4 does not exist. There is no feature structure that contains all the
information in F3 and F4, because the information in these two feature structures
is contradictory. So, the value of this unification is undefined. (It’s result is marked
by ⊥, i.e. an improper AVM that cannot describe any object (the opposite of T).)

Contents First Last Prev Next J

13.1.2. Unification: Formal Definition Those are the basic intuitions about
unification, so let’s now give a precise definition. This is easy to do if we make use
of the idea of subsumption, which we discussed above.

The unification of two feature structures F and G (if it exists) is the smallest feature
structure that is subsumed by both F and G. That is, (if it exists) F t G is the feature
structure with the following three properties:

1. F v F t G (F t G is subsumed by F)

2. G v F t G (F t G is subsumed by G)

3. If H is a feature structure such that F v H and G v H, then F t G v H (F t G is
the smallest feature structure fulfilling the first two properties. That is, there
is no other feature structure that also has properties 1 and 2 and subsumes F

t G.)

If there is no smallest feature structure that is subsumed by both F and G, then we
say that the unification of F and G is undefined.

Contents First Last Prev Next J

14. Augmenting CFG with FS

We have seen that agreement is necessary, for instance, between the np and vp: they
have to agree in number in order to form a sentence.

The basic idea is that non-terminal symbols no longer are atomic, but are feature
structures, which specify what properties the constituent in question has to have.

So, instead of writing the (atomic) non-terminal symbols s, vp, np , we use feature
structures CAT where the value of the attribute is s, vp , np . The rule becomes

[CAT s] → [CAT np] [CAT vp]

That doesn’t look so exciting, yet.

Contents First Last Prev Next J

15. Augmenting CFG wiht FS (cont’d)

But what we can do now is to add further information to the feature structures
representing the non-terminal symbols. We can, e.g., add the information that the
np must have nominative case:

[CAT s] →
[
CAT np
CASE nom

]
[CAT vp]

Further, we can add an attribute called NUM to the np and the vp and require that
the values be shared. Note how we express this requirement by co-indexing the
values.

[CAT s] →

 CAT np
CASE nom
NUM 1

 [CAT vp
NUM 1

]
See course web site for a project on this. Parsing with Feature Structures (PATR).

Contents First Last Prev Next J

15.1. Exercise

Try to build a feature based grammar for the (tiny) fragment of English below.

Lexicon

det --> a
det --> the
n --> bride
n --> whiskey
pn --> bill
pn --> gogo
pro(subj) --> he
pro(subj) --> she
pro(obj) --> him
pro(obj) --> her
vi --> whistles
vi --> fights
vt --> drinks
vt --> kills

Contents First Last Prev Next J

15.2. Head Features and Subcategorization

We have seen that to “put together” words to form constituents two important no-
tions are the “head” of the constituent and its dependents (also called the arguments
the head subcategorize for).

In some constraints based grammars, e.g. HPSG, besides indicating the category of
a phrase, FS are used also to sign the head of a phrase and its arguments.

In these grammars, the CAT (category) value is an object of sort category (cat) and
it contains the two attributes HEAD (head) and SUBCAT (subcategory).

Head Recall, the features are percolated from one of the children to the parent. The
child that provides the features is called the head of the phrase, and the features
copied are referred to as head features. Therefore, the HEAD value of any sign is
always unified with that of its phrasal projections.

Contents First Last Prev Next J

Subcategorization The notion of subcategorization, or valence, was originally de-
signed for verbs but many other kinds of words exhibit form of valence-like behav-
ior. This notion expresses the fact that such words determine which patterns of
argument they must/can occur with. They are used to express dependencies.

For instance,

1. an intransitive verb subcategorizes (requires) a subject.

2. a transitive verb requires two arguments, an object and a subject.

3. . . .

Other verbs

I want [to see a girl called Evelyn]Sto

I asked [him]NP [whether he could make it]Sif

Contents First Last Prev Next J

15.3. Schema

Schematically the subcategorization is represented as below.

 ORTH word
CAT category
HEAD

[
SUBCAT 〈1st required argument, 2nd required argument, . . .〉

]


15.4. Example

For instance, the verb “want” would be represented as following
ORTH want
CAT verb

HEAD

[
SUBCAT 〈[CAT np] ,

[
CAT vp
HEAD [VFORM INFINITIV E]

]
〉
]


We will hear more on this by Valia Kordoni.

Contents First Last Prev Next J

16. Conclusion

The model of subcategorization we have described so far helps us solving the over-
generation problem described last time. However, we still have to see how to deal
with long-distance dependencies.

We will return to this in May.

Not done on FS:

1. Implementing Unification

2. Parsing with Unification Constraints

3. Types and Inheritance

Projects 1, and 2 are possible topics for projects. Another possible project on today
topic is to build a Constraint Based Grammar for a fragment of a language of your
choice.

Next week, we will look at parsing techniques. Then we move to semantics and
discourse.

Contents First Last Prev Next J

17. Practical Info

Topics for projects so far:

I PoS Tagging.

I Formal Grammars: present some FGs not discussed in class,

I Formal Grammars: CFG+FS implementation: (programming languages?).

I Parsing techniques.

I Semantics: extending CFG with lambda calculus (Prolog).

I Semantics: underspecification.

I Projects within any of our research projects topic.

Suggestion: Make up your mind by the 30th of April –when we have covered all
these topics already – and you have one month to work on it (while doing all the
other studies).

Have you got a mail by me this morning?

Contents First Last Prev Next J

	Summary
	Next Steps
	Undergeneration and Overgeneration
	Undergeneration
	Undergeneration (Cont'd)

	Trasformational Grammar (Kordoni's slides)
	Relative clauses

	Computational Grammar Formalisms
	Overgeneration: Agreement
	Agreement between SUB and Verb
	First try
	Loss of efficiency
	Second Try
	Second try (cont'd)
	Feature Pergolation
	Set of properties

	Beyond CFGs, how?
	Constraint Based Grammars
	Feature Structures
	Agreement Feature
	Feature Path
	Directed Graphs
	Reentrancy
	Reentrancy as Coindexing
	FS: Subsumption
	Examples
	Exercise
	Exercise: (Cont'd)

	Operations on FS
	Unification of FS
	Partial Operation
	Unification: Formal Definition

	Augmenting CFG with FS
	Augmenting CFG wiht FS (cont'd)
	Exercise
	Head Features and Subcategorization
	Schema
	Example

	Conclusion
	Practical Info

