Computational Linguistics: Semantics II

RAFFAELLA BERNARDI

KRDB, FREE UNIVERSITY OF BOZEN-BOLZANO
ViAa DELLA MOSTRA 4, RooMm: 1.06, E-MAIL:

BERNARDIQINF.UNIBZ.IT

Contents First Last Prev Next



Recall: Formal Semantics Main questions..................... 4

1.1 Building Meaning Representations .................... 5
1.2 Lambda-calculus: Functional Application .............. 6
Extending the lexicon .. ...... ... . i i 7
2.1 Quantified NP ... .. . . 8
2.2 Generalized Quantifiers ........... ... .. ... 9
2.3 Generalized Quantifiers ........ ... ... .. i 10
Determiners ... ...t 11
3.1 Determiners (cont’d) ........ ...l 12
3.2 Determiners (Cont’d)............ ..o 13
Ambiguities . ... 14
4.1 Scope Ambiguities ....... .. i 15
Dependencies . ... ... 16
5.1 Relative Pronouns .......... ... ... . . i i, 17
5.2 Relative Pronoun (Cont’d) ............... ... ... ..., 18
Summing up: Constituents and Assembly .................... 19

Contents First Last Prev Next

<



1. Recall: Formal Semantics Main questions
The main questions are:
1. What does a given sentence mean?

2. How is its meaning built?

3. How do we infer some piece of information out of another?

Contents First Last Prev Next <«



1.1. Building Meaning Representations

To build a meaning representation we need to fulfill three tasks:

Task 1 Specify a reasonable syntax for the natural language fragment of interest.
Task 2 Specify semantic representations for the lexical items.

Task 3 Specify the translation of constituents compositionally. That is, we
need to specify the translation of such expressions in terms of the translation
of their parts, parts here referring to the substructure given to us by the syntax.

Moreover, when interested in Computational Semantics, all three tasks need to be
carried out in a way that leads to computational implementation naturally.

Contents First Last Prev Next <«



1.2. Lambda-calculus: Functional Application
Summing up:

» FA has the form: Functor(Argument). E.g. (Ax.love(x, mary))(john)

» FA triggers a very simple operation: Replace the A-bound variable by the
argument. E.g. (Az.love(x, mary))(john) = love(john, mary)

Exercise 1 and 2.

Contents First Last Prev Next <«



2. Extending the lexicon

Before we have left open the question of what does an expression like “a” contribute
to? FOL does not give us the possibility to express it’s meaning representation. We
will see now that instead lambda terms provide us with the proper expressivity.

Contents First Last Prev Next <«



2.1. Quantified NP

a) Every South African student of the EM in CL attends the Comp Ling course.
b) No South African student of the EM in CL attend the Logic course.

a) means that if Thomas and Ronell constitute the set of the South African students
of the EM in CL, then it is true for both of them that they attend the Comp. Ling
course.

b) means that for none of the individual members of the set of South African students
of the EM in CL it is true that he attends the Logic course.

What is the interpretation of “every South African student” and of “no South
African student”?

Individual constants used to denote specific individuals cannot be used to denote
quantified expressions like “every man”, “no student”, “some friends”.

Quantified-NPs like “every man”, “no student”, “some friends” are called non-
referential.

Contents First Last Prev Next <«



2.2. Generalized Quantifiers

A Generalized Quantifier (GQ) is a set of properties, i.e. a set of sets-of-individuals.

For instance, “every man” denotes the set of properties that every man has. The
property of “walking” is in this set iff every man walks. For instance,

[man] = {a,b,c};
[fat] = {a,b,c,d};
[dog] = {d};

[run] = {a,b};
[[jump]] - {b7 ¢, d},
[laugh] = {b,d};

Which is the interpretation of “every man”?

[every man] = {X|[man] C X} = {{a,b,c},{a,b,c,d}} = {[man], [fat]}

Contents First Last Prev Next <«



2.3. Generalized Quantifiers

[no man] = {X CFE|[man]NnX = 0}.
[some man] = {X CE|[man] N X # 0}.
[every man] = {X C E|[man] C X}.
[man which VP] = [man] N [VP].

Therefore, determiners are as below:
[no NJ = {XCFE|N]NX =0}
[some N] = {XCFE|NNX #0}.
[every N] = {XCE|[N]CX}.
[N which VP] = [N] N [VP].

Generalized quantifiers have attracted the attention of many researchers working on
the interaction between logic and linguistics.

Contents First Last Prev Next <«



3. Determiners

Which is the lambda term representing quantifiers like “nobody”, “everybody”, “a man”or
“every student” or a determiners like “a”, “every” or “no” ?
We know how to represent in FOL the following sentences

» “Nobody left”
—Jdz.left(x)

» “Everybody left”
Vr.left(z)

» “Every student left”
Vz.Student(z) — left(x)

» “A student left”
Jz.Student(x) A left(x)

» “No student left”
—3Jz.Student(z) A left(z)

But how do we reach these meaning representations starting from the lexicon?

Contents First Last Prev Next <«



3.1. Determiners (cont’d)

Let’s start representing “a man” as Jz.man(z). Applying the rules we have seen so
far, we obtain that the representation of “A man loves Mary” is:

love(x.man(x), mary)

which is clearly wrong.

Notice that 3z.man(zx) just isn’t the meaning of “a man”. If anything, it translates
the complete sentence “There is a man”.

Contents First Last Prev Next <«



3.2. Determiners (Cont’d)

Let’s start from what we have, namely “man” and “loves Mary”:
Ay.man(y), Ax.love(z, mary).

Hence, the term representing “a” is:

AXAY 32 X(2) ANY(2)

Try to obtain the meaning representation for “a man”, and the “a man loves Mary”.

By [-conversion twice we obtain that “a man” is \Y.3z.Man(z) A Y(2), and then
Jz.Man(z) A love(z, mary)

Contents First Last Prev Next <«



4. Ambiguities
How many meanings has the sentence “John didn’t read a book.”?

Starting from:

john: j book: Az(book(z))
read: \x.\y.(read(y, z)) didn’t: AX A\y.—X(y)
a: AX Y (3z. X (z) ANY(x))

build the meaning representation for “John didn’t read a book”.

a. Jx.book(z) A —read(j, z) [A > NOT]
b. =3z.B(x) A read(j, x) INOT > A]

» Scope: In a. the quantifier phrase (QP), “a book”, has scope over “didn’t” [A
> NOT], whereas in b. it has narrow scope [NOT > A].

» Binding: the variable z is bound by “a book” in “John didn’t read a book”.

Contents First Last Prev Next <«



4.1. Scope Ambiguities

Can you think of other expressions that may cause scope ambiguity?
John think a student left
Does the student exist or not?

a. Jx.think(j,left(x))

b. think(j, 3z.left(z))

Contents First Last Prev Next <«



5. Dependencies

While studying the syntax of natural language, we have seen that important concepts
to account for are local and long-distance dependencies.

The A-operator gives us (more or less) a way to represent this link semantically.

For instance, in A\x.\y.like(y, x) we express that the dependency of the subject and
object from the verb.
But the calculus gives us also a natural way to handle long-distance dependencies:
eg. relative pronouns.

Contents First Last Prev Next <«



5.1. Relative Pronouns

For instance, “which John read |...|”:

We know how to represent the noun phrase “John” and the verb “read”, namely, as
john and Az.y.read(y, z).

What is the role of “which” in e.g. “the book which John read is read”?

The term representing “which” has to express the fact that it is replacing the role
of a noun phrase in subject (or object position) within a subordinate sentence while
being the subject (object) of the main sentence:

AXAY Az X(2) NY(2)

The double role of “which” is expressed by the double occurrence of z.

Contents First Last Prev Next <«



5.2. Relative Pronoun (Cont’d)

Recall,
AXAY Az X(2) NY(2)

i.  read w: Ay(read(y,u) ii.  John read u: read(j,«)
iii. John read: Au.read(j,u) iv. which John read: AY.A>.read(j,>) AY(z)

» at the syntactic level we said that the relative pronoun “which” plays the role
of the verb’s object and it leaves a gap in the object position.

» Semantically, the gap is represented by the © on which the relative pronoun
forces the abstraction [iii.] before taking its place.

Contents First Last Prev Next <«



6. Summing up: Constituents and Assembly

Let’s go back to the points where FOL fails, i.e. constituent representation and
assembly. The A-calculus succeeds in both:
Constituents: each constituent is represented by a lambda term.

John: j  knows: Azy.(know(z))(y) read john: Ay.know(y, j)

Assembly: function application (a(f)) and abstraction (Az.a[z]) capture compo-
sition and decomposition of meaning representations.

Contents First Last Prev Next <«



	Recall: Formal Semantics Main questions
	Building Meaning Representations
	Lambda-calculus: Functional Application

	Extending the lexicon
	Quantified NP
	Generalized Quantifiers
	Generalized Quantifiers

	Determiners
	Determiners (cont'd)
	Determiners (Cont'd)

	Ambiguities
	Scope Ambiguities

	Dependencies
	Relative Pronouns
	Relative Pronoun (Cont'd)

	Summing up: Constituents and Assembly

