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1. CG: Recall

We have introduced Categorial Grammar, a Formal Grammar that differently from
PSG (CFG) has only two grammatical rules (to concatenate strings) and has a
recursively defined language for the categories. Hence, all the job is on assigning
the proper categories (lexical entries) in the lexicon.

Moreover, we have seen there is a mapping between (syntactic) categories and
(semantic) types and therefore a direct link between categories and typed lambda
terms, between syntax and semantics.

The rules are

B/A A

B
(MPr)

A A\B
B

(MPl)

and they correspond to functional application.

B/A : t A : r

B : t(r)
(MPr)

A : r A\B : t

B : t(r)
(MPl)
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2. Logic Grammar

I Aim: To define the logic behind CG.

I How: Considering categories as formulae; \, / as logic connectives.

I Who: Jim Lambek [1958]

I Proof Theory Elimination and Introduction rules [Natural Deduction (ND)
proof format]

I Model Theory (Kripke) Models. (if you don’t what they does not matter and just
think of Models for Prop. Logic)

Proof Theory ND is a proof system, i.e. a system to prove that some premises
φ1, . . . φn derive (`) a conclusion (α). The proof consists of logical rules that do
not consider the “meaning” (truth values) of the formulae involved rather their
form (syntax). E.g. A → B, A ` B

The system is proved to be sound and complete.
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2.1. Natural Deduction

For each connective * there is a rule that says how we can eliminate it from the
premises and how we can introduce it in the conclusion

premises

conclusion
∗

For instance, in Propositional Logic (PL), the elimination and introduction rules of
∧ are:

A ∧B
A

∧Er
A B
A ∧B

∧I

the elimination and introduction rules of → are:

A → B A
B

→ E

[A]i
....
B

A → B → Ii
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2.2. Lambek Calculi

In the Lambek Calculus the connectives are \ and / (that behave like the → of PL
except for their directionality aspect.)

Therefore, in the Lambek Calculus besides the elimination rules of \, / (that we saw
in CG) we have their introduction rules.

B/A A

B
/E

A A\B
B

\E

[A]i
....
B

B/A
/Ii

[A]i
....
B

A\B \Ii

Remark The introduction rules do not give us a way to distinguish the directionality
of the slashes.
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2.3. Alternative Notation (Sequents)

Let A, B, C stand for logic formulae (e.g. np, np\s, (np\s)\(np\s) . . .) i.e. the cate-
gories of CG

Let Γ, Σ, ∆ stand for structures (built recursively from the logical formulae by means
of the ◦ connective) –e.g. np ◦np\s is a structure. STRUCT := CAT, STRUCT ◦ STRUCT
Σ ` A means that (the logic formula) A derives from (the structure) Σ (e.g. np ◦
np\s ` s).

A ` A

∆ ` B/A Γ ` A

∆ ◦ Γ ` B
(/E)

Γ ` A ∆ ` A\B
Γ ◦∆ ` B

(\E)

∆ ◦ A ` B
∆ ` B/A

(/I) A ◦∆ ` B
∆ ` A\B (\I)
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3. Lambek calculus. Elimination rule
np ` np np\s ` np\s

np︸︷︷︸
sara

◦ np\s︸︷︷︸
walks

` s

np ` np

(np\s)/np ` (np\s)/np np ` np

(np\s)/np ◦ np ` np\s
np︸︷︷︸

sara

◦((np\s)/np︸ ︷︷ ︸
knows

◦ np︸︷︷︸
mary

) ` s
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3.1. Lambek calculus. Subject relative pronoun

The student who [[. . .] knows Mary]s︸ ︷︷ ︸
np

left︸︷︷︸
np\s

(n\n)/(np\s) ` (n\n)/(np\s)
(np\s)/np ` (np\s)/np np ` np

(np\s)/np ◦ np ` np\s
(n\n)/(np\s)︸ ︷︷ ︸

who

◦((np\s)/np︸ ︷︷ ︸
knows

◦ np︸︷︷︸
mary

) ` n\n

Exercise: Try to do the same for relative pronoun in object position. e.g. the student
who Mary met (i.e. prove that it is of category np. Which should be the category
for a relative pronoun (e.g. who) that places the role of an object?

Contents First Last Prev Next J



4. Lambek calculus. Introduction rule

Note, below for simplicity, I abbreviate structures with the corresponding linguistic
structures.

The book which [Sara wrote [. . .]]s︸ ︷︷ ︸
np

is interesting︸ ︷︷ ︸
np\s

.

which ` (n\n)/(s/np)

Sara ` np

wrote ` (np\s)/np [np ` np]1

wrote np ` np\s (/E)

Sara wrote np ` s
(\E)

Sara wrote ` s/np
(/I)1

which Sara wrote ` n\n (/E)

Introduction rules accounted for extraction.
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5. Extraction: Right-branch (tree)

s

�
���

HHHH

np

Sara

np\s
�

��
H

HH

(np\s)/np

wrote

np

hyp

s

����
HHHH

np\s
��� HHH

np

Sara

(np\s)/np

wrote

np

hyp

s/np

�
���

H
HHH

s

��
��

HH
HH

np\s
�

��
H

HH

np

Sara

(np\s)/np

wrote

np

hyp

[. . .]

Contents First Last Prev Next J



6. Structural Rules

Notice, to handle discontinuity phenomena we need to make use of structural rewrit-
ing. For instance, “which Sara wrote [. . .]” requires (some form of) associativity.
“which” ∈ (n\n)/(s/np)

(n\n)/(s/np) ` (n\n)/(s/np)

np ` np

(np\s)/np ` (np\s)/np [np ` np]1

(np\s)/np ◦ np ` np\s (/E)

(np ◦ ((np\s)/np ◦ np)) ` s
(\E)

(np ◦ (np\s)/np) ◦ np ` s
(Ass)

np ◦ (np\s)/np ` s/np
(/I)1

(n\n)/(s/np)︸ ︷︷ ︸
which

◦( np︸︷︷︸
sara

◦ (np\s)/np︸ ︷︷ ︸
wrote

) ` n\n (/E)
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6.1. Structural Rules: Formally (Advanced!)

Structural rules are rule governing the structure we built while applying logical rules.
Associativity and Permutativity (or Commutativity) are example of structural rules.

Starting from the a Logic that consists only of the Logical rules we have seen we
can define a family of Logics that differ on their structural properties.

Hence we speak of the Lambek Calculi. The base one consists only of logical rules
(NL).

(Side Remark: Structural rules correspond to model theoretical properties.)

Structural rules. Let us write Γ[∆] for a structure Γ contaning a distinguished
occurrence of the substructure ∆. Adding a structural rule of Associativity [ass] to
NL, one obtains L. By adding commutativity [per] to L one obtains LP, and so on.

For instance,

Γ[∆1 ◦ (∆2 ◦∆3)] ` C

Γ[(∆1 ◦∆2) ◦∆3] ` C
(ass)

Γ[(∆2 ◦∆1)] ` C

Γ[(∆1 ◦∆2)] ` C
(per)
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6.2. Structural Rules and NL

But

I global structural rules are “unsound” when reasoning with natural language.

I.e. The logical grammar will overgenerate proving as grammatical also un-
grammatical sentence.

(Local) Structural Rules have been used to account for cross-linguistics variations.

(be happy if you get the intuitive idea)
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7. Historical Introduction: Syntax-Semantic In-

terface

I Who: van Benthem (1987), Buszkowski (1987)

I Aim: Syntax-Semantic interface

I How: Curry-Howard Correspondence between proofs and terms.

x : A ` x : A

Γ ` t : A/B ∆ ` u : B

Γ ◦∆ ` t(u) : A
(/E)

(Γ ◦ x : B) ` t : A

Γ ` λx.t : A/B
(/I)

∆ ` u : B Γ ` t : B\A
∆ ◦ Γ ` t(u) : A

(\E)
(x : B ◦ Γ) ` t : A

Γ ` λx.t : B\A (\I)
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7.1. Semantics: Examples

The book which Sara wrote

sara ` np : sara

wrote ` (np\s)/np : wrote [z ` np : z]1

wrote z ` np\s : wrote(z)
(/E)

sara wrote z ` s : wrote(z)(sara)
(\E)

sara wrote ` s/np : λz.wrote(z)(sara)
(/I)1

⇓

The introduction rules correspond to λ-abstraction.
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7.2. NP and quantified NP

John and one student left.

We can assign to John the category np and term assignment john and derive the
category and term of quantified np.

john ` np : john [P ` np\s : P ]1

john P ` s : P (john)
(\E)

john ` s/(np\s) : λP.P (john)
(/I)1

We have proved: np ` s/(np\s). This means, we can assign John the category np
(considering it an entity, i.e. a term of type e) and derive from it the higher order
category of quantified NP as it would be necessary for, e.g. coordination of a NP
and a QP.

Exercise What about “Mary saw John and one student”?
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7.3. Remarks

First of all, note how the system assigns a variable to the hypothesis. The latter is
discharged by means of [/I] (or [\I]) which corresponds to the abstraction over the
variable.

Moreover, note that the higher order types in the derivation I gave and the one
you have found with the exercise are different, but they correspond to the same
lambda terms, i.e. the two structures are correctly assigned the same meaning.

Starting from the labelled lexicon, the task for the Lambek derivational engine
is to compute the lambda term representing the meaning assembly for a complex
structure as a by-product of the derivation that establishes its grammaticality.
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8. CTL. Derivational vs. Lexical Meaning

Meaning representation can be computed in two ways.

I Lexical one starts labeling the axioms of a derivation with the actual lambda
terms assigned in the lexicon.

I Derivational one labels the leaves of the derivation with variables, computes
the proof term for the final structure and then replaces the variables by the
actual lambda terms assigned in the lexicon to the basic constituents.
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8.1. Example: Relative Clause

The relative clause examples offer a nice illustration of the division of labor between
lexical and derivational semantics.

Intuitively, a relative pronoun has to compute the intersection of two properties:
the common noun property obtained from the n that is modified, and the property
obtained from the body of the relative clause, a sentence with a np hypothesis
missing.

In the logical form, this would come down to binding two occurrences of a
variable by one λ binder.

On the level of derivational semantics, one cannot obtain this double binding:
the Lambek systems are resource sensitive, which means that every assumption is
used exactly once. (see later Section 9)
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8.2. Relative Clause: Double binding

But on the level of lexical semantics, we can overcome this expressive limitation
(which is syntactically well-justified!) by assigning the relative pronoun a double-
bind term as its lexical meaning recipe:

which ∈ (n\n)/(s/np) : λX.λY.λz.X(z) ∧ Y (z).

In this way, we obtain the proper recipe for the relative clause which Sara wrote,
namely λY.λz.wrote(Sara, z) ∧ Y (z).

Exercise Build the meaning representation of “which sara wrote” by applying la-
belled logical rules.
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8.3. Relative Clause: derivational meaning

which ` (n\n)/(s/np) : X4

Sara ` np : X3

wrote ` (np\s)/np : X1 [x ` np : X2]
1

wrote ◦ x ` np\s : X1X2
(/E)

Sara ◦ (wrote ◦ x) ` s : (X1X2)X3
(\E)

(Sara ◦ wrote) ◦ x ` s : (X1X2)X3
(ass)

Sara ◦ wrote ` s/np : λX3.(X1X2)X3
(/I)1

which ◦ (Sara ◦ wrote) ` n\n : X4(λX3.(X1X2)X3)
(/E)

By replacing the variables X1, . . . , X4 with the corresponding lexical assignments,
and applying the reduction rules, one obtains the proper meaning of the analyzed
structure.

Note, the structural rules do not effect the meaning assembly.
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9. Fragment of Lambda Terms (Advanced!)

The Lambek calculi are fragments of intuitionistic implicational logic.

Consequently, the lambda terms computed by it form a fragment of the full
language of lambda terms.

First of all, since empty antecedents are not allowed and the Lambek calculi are
resource sensitive, viz. each assumption is used exactly once, the system reasons
about lambda terms with specific properties:

(i) each subterm contains a free variable; and

(ii) no multiple occurrences of the same variable are present. The latter could seem
to be too strong constraint when thinking of linguistic applications. However,
this is not the case as we have discuss above by looking at the relative pronoun.

(iii) each occurrence of the λ abstractor in α ∈ TERM binds a variable within its
scope. (resource sensitive!)
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9.1. Curry-Howard Correspondence (Advanced!)

Derivations for the various Lambek calculi are all associated with LP (the associa-
tive and permutative Lambek Calculus) term recipes. Therefore, we move from an
isomorphism to a weaker correspondence.

Theorem 9.1 Given an LP derivation of a sequent A1, . . . , An ` B one can find
a corresponding construction αa ∈ Λ(LP), and conversely. A term αa ∈ Λ(LP) is
called a construction of a sequent A1, . . . , An ` B iff α has exactly the free variable
occurrences x1

type(An), . . . , x
n
type(An).
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9.2. Normal Form (Advanced!)

An important notion of the lambda calculi is “normal form” terms that are obtained
proof theoretically by defining normal form derivations as following.

Definition 9.2 (Normal Form for Natural Deduction Derivations)) A deriva-
tion in natural deduction format is in normal form when there are no detours in
it. A detour is formed when

i. a connective is introduced and immediately eliminated at the next step.
ii. an elimination rule is immediately followed by the introduction of the same

connective.

The rules eliminating these two detours are called reduction rules.

Remark The reductions of the detours in i. and in ii. correspond to β-reduction and
η-reduction, respectively. Moreover, note that the above rewriting rules hold for all
Lambek calculi, regardless of their structural rules.
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9.3. Normal form proof: example (Advanced!)

By means of example, we give the reduction rule corresponding to η-reduction.

[B ` x : B]1

D1....
Γ ` t : B\A

B ◦ Γ ` t(x) : A
(\E)

Γ ` λx.t(x) : B\A (\I)1

rewrites to

D1....
Γ ` t : B\A

in the lambda-calculus the reduction above corresponds to the rewrite rule λx.t(x) ⇒η

t

The correspondence between proofs and lambda terms is completed by the following
theorem.

Theorem 9.3 (Normalization) IfD is a normal form derivation of x1 : A1, . . . xn :
An ` α : C, then α is in β, η normal form.
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10. From CG to NL

I Classical Categorial Grammar consists of (only) function application rules. But,

I Concatenative function application is not enough to analyze natural language.

I We need to compose as well as decompose structures.

By moving from a rule-based approach to a logical system we obtain abstraction, (\I) and
(/I) besides function application, (\E) and (/E). Hence, we obtain

1. derivability relations among types

2. a way to decompose built structures

From CG to NL,

CG NL

Categories Formulas
Category forming operators Logical Operators
Rule schemata Inference Rules
Parsing Deduction
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11. Lambek calculus. Advantages

I Hypothetical reasoning: Having added [\I], [/I] gives the system the right
expressiveness to reason about hypothesis and abstract over them.

I Curry Howard Correspondence: Curry-Howard correspondence holds be-
tween proofs and terms. This means that parsed structures are assigned an
interpretation into a model via the connection ‘categories-terms’.

I Logic: We have moved from a grammar to a logic. Hence its behavior can be
studied. The system is sound, complete and decidable.
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12. Residuation

Interestingly enough, the operators of the Lambek calculi are rather well known
operators. They behave like basic operation of Maths, like :, x. All pair of operators
sharing this property are known as “residuated operators”.

x× y ≤ z iff x ≤ z
y

x× y ≤ z
x ≤ z

y

A ◦B ` C
A ` C/B

Based on this observation (pointed out by Lambek), Michael Moortgat and Natasha
Kurtonina, extended the language of the Lambek Calculi to unary operators
characterized by the same property, namely 3 and � which turned out to be already
known in Logic (see Temporal Logic) and to be able to model the feature checking
mechanism that we have seen is required when analyzing NL, e.g. feature agreement.
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13. Summing up

The main points of today topic to be kept in mind are the following:

1. Linguistic signs are pairs of form and meaning, and composed phrases are
structures rather than strings.

2. When employing a logic to model linguistic phenomena, grammatical deriva-
tions are seen as theorems of the grammatical logic.

3. The correspondence between proofs and natural language models, via the lambda
terms, properly accounts for the natural language syntax semantics inter-
face.

Reference on CG and Lambek Calculi: First chapter of my thesis.
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14. What have we learned?

I We’ve seen we can exploit derivability relations to control composition of types.
(e.g. NP coor QP)

I However, we have not found yet the type for the relative pronoun that grasps its
behavior and its link with the dependent object, properly. For instance, if we modify
the context slightly

“which Sara wrote there” cannot be recognized by NL with the type assigned to
“which”.

I We should still understand how to properly use

. structural rules

. derivability relations,

. unary operators logical rules,

. how to lexically control their application.

Project Study the four points above and build a fragment of CTL covering long-distance
phenomena examples. Literature: Moortgat 02.
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