
Transformation-Based Error-DrivenLearning and Natural LanguageProcessing: A Case Study in Part ofSpeech TaggingEric Brill�The Johns Hopkins UniversityRecently, there has been a rebirth of empiricism in the �eld of natural languageprocessing. Manual encoding of linguistic information is being challenged by automatedcorpus-based learning as a method of providing a natural language processing system withlinguistic knowledge. Although corpus-based approaches have been successful in many dif-ferent areas of natural language processing, it is often the case that these methods capturethe linguistic information they are modelling indirectly in large opaque tables of statis-tics. This can make it di�cult to analyze, understand and improve the ability of theseapproaches to model underlying linguistic behavior. In this paper, we will describe a sim-ple rule-based approach to automated learning of linguistic knowledge. This approach hasbeen shown for a number of tasks to capture information in a clearer and more directfashion without a compromise in performance. We present a detailed case study of thislearning method applied to part of speech tagging.1. IntroductionIt has recently become clear that automatically extracting linguistic information from asample text corpus can be an extremely powerful method for overcoming the linguisticknowledge acquisition bottleneck inhibiting the creation of robust and accurate naturallanguage processing systems. A number of part of speech taggers are readily availableand widely used, all trained and retrainable on text corpora (Church, 1988; Cutting etal., 1992; Brill, 1992; Weischedel et al., 1993). Endemic structural ambiguity, which canlead to such di�culties as trying to cope with the many thousands of possible parsesthat a grammar can assign to a sentence, can be greatly reduced by adding empiricallyderived probabilities to grammar rules (Fujisaki et al., 1989; Sharman, Jelinek, and Mer-� Department of Computer Science, Baltimore, Md. 21218-2694. Email: brill@cs.jhu.edu.c
 1995 Association for Computational Linguistics

Computational Linguistics Volume 21, Number 4cer, 1990; Black et al., 1993) and by computing statistical measures of lexical association(Hindle and Rooth, 1993). Word sense disambiguation, a problem which once seemed outof reach for systems without a great deal of hand crafted linguistic and world knowledge,can now in some cases be done with high accuracy when all information is derived au-tomatically from corpora (Brown, Lai, and Mercer, 1991; Yarowsky, 1992; Gale, Church,and Yarowsky, 1992; Bruce and Wiebe, 1994). An e�ort has recently been undertaken tocreate automated machine translation systems where the linguistic information neededfor translation is extracted automatically from aligned text corpora (Brown et al., 1990).These are just a few of the many recent applications of corpus-based techniques in naturallanguage processing.Along with great research advances, the infrastructure is in place for this line ofresearch to grow even stronger, with on-line corpora, the grist of the corpus-based naturallanguage processing grindstone, getting bigger and better and becoming more readilyavailable. There are a number of e�orts worldwide to manually annotate large corporawith linguistic information, including parts of speech, phrase structure and predicate-argument structure (eg. the Penn Treebank and the British National Corpus (Marcus,Santorini, and Marcinkiewicz, 1993; Leech, Garside, and Bryant, 1994)). A vast amountof on-line text is now available, with much more becoming available in the future. Usefultools, such as large aligned corpora (eg. the aligned Hansards (Gale and Church, 1991))and semantic word hierarchies (eg. Wordnet (Miller, 1990)), have also recently becomeavailable.Corpus-based methods are often able to succeed while ignoring the true complexitiesof language, banking on the fact that complex linguistic phenomena can often be indi-rectly observed through simple epiphenomena. For example, one could accurately assigna part of speech tag to the word race in (1-3) without any reference to phrase structureor constituent movement, simply by realizing that it is usually the case that a word thatis one or two words to the right of a modal is a verb and not a noun, an exception beingwhen the word is also one word to the right of a determiner.2

Eric Brill Transformation-Based Error-Driven Learning(1) He will race/VERB the car.(2) He will not race/VERB the car.(3) When will the race/NOUN end?It is an exciting discovery that simple stochastic n-gram taggers can obtain veryhigh rates of tagging accuracy simply by observing �xed-length word sequences, withoutrecourse to the underlying linguistic structure. However, in order to make progress incorpus-based natural language processing, we must become better aware of just whatcues to linguistic structure are really being captured and where the failings are in theseapproximations to the true underlying phenomena. With many of the current corpus-based approaches to natural language processing, this is a near-impossible task to do.For example, in the part of speech tagging example above, this information about wordsthat follow modals would be hidden deeply in a stochastic n-gram tagger in the thousandsor tens of thousands of contextual probabilities (P (TagijTagi�1Tagi�2)) and the resultof multiplying di�erent combinations of these probabilities together.Below we describe a new approach to corpus-based natural language processing,called transformation-based error-driven learning. This algorithm has been applied toa number of natural language problems, including part of speech tagging, prepositionalphrase attachment disambiguation, and syntactic parsing (Brill, 1992; Brill, 1993a; Brill,1993b; Brill and Resnik, 1994; Brill, 1994). We have also recently begun exploring the useof this technique for letter to sound generation and for building pronunciation networksfor speech recognition. In this approach, the learned linguistic information is representedin a concise and easy to understand form. This property should make transformation-based learning amenable to further exploring linguistic modelling and attempting todiscover ways of more tightly coupling the underlying linguistic systems and our approx-imating models. 3

Computational Linguistics Volume 21, Number 4
UNANNOTATED

TEXT

INITIAL

STATE

ANNOTATED

TEXT
TRUTH

LEARNER RULESFigure 1Transformation-Based Error-Driven Learning.2. Transformation-Based Error-Driven LearningFigure 1 illustrates how transformation-based error-driven learning works. First, unan-notated text is passed through an initial-state annotator. The initial-state annotatorcan range in complexity from assigning random structure to assigning the output ofa sophisticated manually created annotator. In part of speech tagging, various initialstate annotators that have been used include: the output of a stochastic n-gram tagger;labelling all words with their most likely tag as indicated in the training corpus; andnaively labelling all words as nouns. For syntactic parsing, we have explored initial stateannotations ranging from the output of a sophisticated parser to random tree structurewith random nonterminal labels.Once text has been passed through the initial-state annotator, it is then comparedto the truth. A manually annotated corpus is used as our reference for truth. An orderedlist of transformations is learned that can be applied to the output of the initial state4

Eric Brill Transformation-Based Error-Driven Learningannotator to make it better resemble the truth. There are two components to a trans-formation: a rewrite rule and a triggering environment. An example of a rewrite rule forpart of speech tagging is:Change the tag from modal to noun.and an example of a triggering environment is:The preceding word is a determiner.Taken together, the transformation with this rewrite rule and triggering environmentwhen applied to the word can would correctly change the mistagged:The/determiner can/modal rusted/verb ./.to The/determiner can/noun rusted/verb ./.An example bracketing rewrite rule is: change the bracketing of a subtree from:.�� HHA .��HHB Cto .�� HH.��HHA B Cwhere A, B and C can be either teminals or nonterminals. One possible set of triggeringenvironments is any combination of words, part of speech tags, and nonterminal labelswithin and adjacent to the subtree. Using this rewrite rule and the triggering environmentA = the, the bracketing: 5

Computational Linguistics Volume 21, Number 4(the (boy ate))would become: ((the boy) ate)In all of the applications we have examined to date, the following greedy search isapplied for deriving a list of transformations: at each iteration of learning, the transfor-mation is found whose application results in the best score according to the objectivefunction being used; that transformation is then added to the ordered transformationlist and the training corpus is updated by applying the learned transformation. Learningcontinues until no transformation can be found whose application results in an improve-ment to the annotated corpus. Other more sophisticated search techniques could be used,such as simulated annealing or learning with a look-ahead window, but we have not yetexplored these alternatives.Figure 2 shows an example of learning transformations. In this example, we assumethere are only four possible transformations, T1 through T4, and that the objectivefunction is the total number of errors. The unannotated training corpus is processed bythe initial state annotator, and this results in an annotated corpus with 5,100 errors,determined by comparing the output of the initial state annotator with the manuallyderived annotations for this corpus. Next, we apply each of the possible transformationsin turn and score the resulting annotated corpus.1 In this example we see that applyingtransformation T2 results in the largest reduction of errors, and so T2 is learned as the�rst transformation. T2 is then applied to the entire corpus, and learning continues. Atthis stage of learning, transformation T3 results in the largest reduction of error, and soit is learned as the second transformation. After applying the initial state annotator, thenT2 and then T3, we see that no further reduction in errors can be obtained from applyingany of the transformations, and so learning stops. To annotate fresh text, this text is �rst1 In the real implementation, the search is data driven, and therefore all transformations need not beexamined.6

Eric Brill Transformation-Based Error-Driven Learning
Unannotated

Corpus

Initial State

Annotator

Annotated

Corpus

Errors = 5,100Errors = 5,100

Annotated

Annotated

Annotated

Annotated

Annotated

Annotated

Annotated

Annotated

Annotated

Annotated

Annotated

Annotated

Corpus

Corpus

Corpus

Corpus

Corpus

Corpus

Corpus

CorpusCorpus

Corpus

Corpus

CorpusCorpus

Corpus

Errors = 5,100

Errors = 3,145

Errors = 3,910

Errors = 6,300

Errors = 3,310

Errors = 2,110

Errors = 1,231

Errors = 4,255

Errors = 1,410

Errors = 1,251

Errors = 1,231

Errors = 1,231

T1

T3 T3

T4
T4

T2

T4

T1

T1

T2

T2

T3

Figure 2An Example of Transformation-Based Error-Driven Learning.annotated by the initial state annotator, followed by the application of transformationT2 and then by the application of T3.To de�ne a speci�c application of transformation-based learning, one must specifythe following:(1) The initial state annotator.(2) The space of allowable transformations (rewrite rules and triggering environments)(3) The objective function for comparing the corpus to the truth and choosing a trans-formation.In cases where the application of a particular transformation in one environmentcould a�ect its application in another environment, two additional parameters must bespeci�ed: the order in which transformations are applied to a corpus, and whether atransformation is applied immediately or only after the entire corpus has been examined7

Computational Linguistics Volume 21, Number 4for triggering environments. For example, take the sequence:A A A A A Aand the transformation: change the label from A to B if the previous label is A. If thee�ect of the application of a transformation is not written out until the entire �le hasbeen processed for that one transformation, then regardless of the order of processingthe output will be: B B B B B B, since the triggering environment of a transformationis always checked before that transformation is applied to any surrounding objects inthe corpus. If the e�ect of a transformation is recorded immediately, then processing thestring left to right would result in: A B A B A B, whereas processing right to left wouldresult in: B B B B B B.3. A Comparison With Decision TreesThe technique employed by the learner is somewhat similar to that used in decision trees(Breiman et al., 1984; Quinlan, 1986; Quinlan and Rivest, 1989). A decision tree is trainedon a set of preclassi�ed entities and outputs a set of questions that can be asked aboutan entity to determine its proper classi�cation. Decision trees are built by �nding thequestion whose resulting partition is the purest,2 splitting the training data according tothat question, and then recursively reapplying this procedure on each resulting subset.We will �rst show that the set of classi�cations that can be provided via decisiontrees is a proper subset of those that can be provided via transformation lists (an orderedlist of transformation-based rules), given the same set of primitive questions. We thengive some practical di�erences between the two learning methods.2 One possible measure for purity is entropy reduction.8

Eric Brill Transformation-Based Error-Driven Learning3.1 Decision Trees � Transformation ListsWe prove here that for a �xed set of primitive queries, any binary decision tree can beconverted into a transformation list. Extending the proof beyond binary trees is straight-forward.Proof (by induction):Base Case:Given the following primitive decision tree, where the classi�cation is A if the answerto the query X? is yes, and the classi�cation is B if the answer is no:
X?

B A

YESNOthis tree can be converted into the following transformation list:1. Label with S. /* Start State Annotation */2. If X then S ! A3. S ! B /* Empty Tagging Environment { Always Applies To Entities Currently La-belled With S */Induction:Assume that two decision trees T1 and T2 have corresponding transformation lists L1and L2. Assume that the arbitrary label names chosen in constructing L1 are not usedin L2, and that those in L2 are not used in L1. Given a new decision tree T3 constructedfrom from T1 and T2 as follows: 9

Computational Linguistics Volume 21, Number 4
X?

YESNO

T2 T1we construct a new transformation list L3. Assume the �rst transformation in L1 is:Label with S', and the �rst transformation in L2 is: Label with S". The �rst threetransformations in L3 will then be:1. Label with S.2. If X then S ! S'3. S ! S"followed by all of the rules in L1 other than the �rst rule, followed by all of the rules in L2other than the �rst rule. The resulting transformation list will �rst label an item as S' ifX is true, or as S" is X is false. Since S' is the initial-state label for L1, the tranformationsfrom L1 will then be applied if X is true, and likewise the transformations from L2 willbe applied if X is false.3.2 Decision Trees 6= Transformation ListsWe show here that there exist transformation lists for which no equivalent decision treesexist, for a �xed set of primitive queries. The following classi�cation problem is oneexample: given a sequence of characters, classify a character based on whether the positionindex of a character is divisible by 4, querying only using a context of two characters tothe left of the character being classi�ed. Assuming transformations are applied left toright on the sequence, the above classi�cation problem can be solved for arbitrary lengthsequences if the e�ect of a transformation is written out immediately, or for sequencesup to any prespeci�ed length if a transformation is carried out only after all triggering10

Eric Brill Transformation-Based Error-Driven Learningenvironments in the corpus are checked. We present the proof for the former case. Giventhe input sequence:A A A A A A A A A A0 1 2 3 4 5 6 7 8 9the underlined characters should be classi�ed as true because their indices are 0, 4, and8. To see why a decision tree could not perform this classi�cation, regardless of orderof classi�cation, note that both the characters and classi�cation of the two charactersbefore both A3 and A4 are the same, although these two characters should be classi�eddi�erently. Below is a transformation list for performing this classi�cation. Once again, weassume transformations are applied left-to-right and that the result of a transformationis written out immediately, so that the result of applying transformation x to characterai will always be known when applying transformation x to ai+1.1. Label with S.RESULT: A/S A/S A/S A/S A/S A/S A/S A/S A/S A/S A/S2. If there is no previous character then S ! FRESULT: A/F A/S A/S A/S A/S A/S A/S A/S A/S A/S A/S3. If the character two to the left is labelled with F then S ! FRESULT: A/F A/S A/F A/S A/F A/S A/F A/S A/F A/S A/F4. If the character two to the left is labelled with F then F ! SRESULT: A/F A/S A/S A/S A/F A/S A/S A/S A/F A/S A/S5. F ! yes6. S ! noRESULT: A/yes A/no A/no A/no A/yes A/no A/no A/no A/yes A/no A/noThe extra power of transformation lists comes from the fact that intermediate resultsfrom the classi�cation of one object are re
ected in the current label of that object,thereby making this intermediate information available to be used in classifying other11

Computational Linguistics Volume 21, Number 4objects. This is not the case for decision trees, where the outcome of questions asked issaved implicitly by the current location within the tree.3.3 Some Practical Di�erences Between Decision Trees and TransformationListsThere are a number of practical di�erences between transformation-based error-drivenlearning and learning decision trees. One di�erence is that when training a decision tree,each time the depth of the tree is increased, the average amount of training materialavailable per node at that new depth is halved (for a binary tree). In transformation-based learning, the entire training corpus is used for �nding all transformations, andtherefore this method is more resistant to sparse data problems that arise as the depthof the decision tree being learned increases.Transformations are ordered, with later transformations being dependent upon theoutcome of applying earlier transformations. This allows for intermediate results in clas-sifying one object to be available in classifying other objects. For instance, whether theprevious word is tagged as to-in�nitival or to-prepositionmay be a good cue for determin-ing the part of speech of a word.3 If initially the word to is not reliably tagged everywherein the corpus with its proper tag (or not tagged at all), then this cue will be unreliable.The transformation-based learner will delay positing a transformation triggered by thetag of the word to until other transformations have resulted in a more reliable taggingof this word in the corpus. For a decision tree to take advantage of this information, thedecision tree path for a word whose outcome is dependent upon the tagging of to wouldhave to have the entire decision tree structure for properly classifying each occurrenceof to built into the classi�cation for that word. If the classi�cation of to were dependentupon the classi�cation of yet another word, this would have to be built into the decisiontree as well. Unlike decision trees, intermediate classi�cation results in transformation-3 The original tagged Brown Corpus (Francis and Kucera, 1982) makes this distinction; the PennTreebank (Marcus, Santorini, and Marcinkiewicz, 1993) does not.12

Eric Brill Transformation-Based Error-Driven Learningbased learning are available and can be used as classi�cation progresses. Even if decisiontrees are applied to a corpus in a left-to-right fashion, they only are allowed one pass inwhich to properly classify.Since a transformation list is a processor and not a classi�er, it can readily be usedas a postprocessor to any annotation system. In addition to annotating from scratch,rules can be learned to improve the performance of a mature annotation system by usingthe mature system as the initial-state annotator. This can have the added advantagethat the list of transformations learned using a mature annotation system as the startstate annotator provide us with a readable description or classi�cation of the errors themature system makes, thereby aiding in the re�nement of that system. Being a proces-sor gives
exibility beyond the classi�er-based decision tree. For example, in applyingtransformation-based learning to parsing, a rule can apply any structural change to atree. In tagging, a rule such as:Change the tag of the current word to X and of the previous word to Y if Z holdscan easily be handled in the processor-based system, while it would be di�cult to do thisin a classi�cation system.In transformation-based learning, the objective function used in training is the sameas that used for evaluation, whenever this is feasible. In a decision-tree, using systemaccuracy as an objective function for training typically results in poor performance4 andsome measure of node purity, such as entropy reduction, is used instead. The direct corre-lation between rules and performance improvement in transformation-based learning canmake the learned rules more readily interpretable than decision tree rules for increasingpopulation purity.54 For a discussion on why this is the case, see (Breiman et al., 1984), pages 94-98.5 For a discussion of other issues regarding these two learning algorithms, see (Ramshaw and Marcus,1994) 13

Computational Linguistics Volume 21, Number 44. Part of Speech Tagging: A Case Study in Transformation-Based Error-Driven LearningIn this section we describe the practical application of transformation-based learning topart of speech tagging.6 Part of speech tagging is a good application to test the learner fora number of reasons. There are a number of large tagged corpora available, allowing fora variety of experiments to be run. Part of speech tagging is an active area of research,with a great deal of work having been done in this area over the past few years (eg.(Jelinek, 1985; Church, 1988; DeRose, 1988; Hindle, 1989; DeMarcken, 1990; Merialdo,1994; Brill, 1992; Black et al., 1992; Cutting et al., 1992; Kupiec, 1992; Charniak et al.,1993; Weischedel et al., 1993; Schutze and Singer, 1994)).Part of speech tagging is also a very practical application, with uses in many areas,including speech recognition and generation, machine translation, parsing, informationretrieval and lexicography. Insofar as tagging can be seen as a prototypical problem inlexical ambiguity, advances in part of speech tagging could readily translate to progressin other areas of lexical, and perhaps structural, ambiguity, such as word sense disam-biguation and prepositional phrase attachment disambiguation.7 Also, it is possible tocast a number of other useful problems as part of speech tagging problems, such as letterto sound translation (Huang, Son-Bell, and Baggett, 1994) and building pronunciationnetworks for speech recognition. Recently, a method has been proposed for using part ofspeech tagging techniques as a method for parsing with lexicalized grammars (Joshi andSrinivas, 1994).When automated part of speech tagging was initially explored (Klein and Simmons,1963; Harris, 1962), people manually engineered rules for tagging, sometimes with theaid of a corpus. As large corpora became available, it became clear that simple Markov-6 All of the programs described herein are freely available with no restrictions on use orredistribution. For information on obtaining the tagger, contact the author.7 In (Brill and Resnik, 1994), we describe an approach to prepositional phrase attachmentdisambiguation that obtains highly competitive performance compared to other corpus-basedsolutions to this problem. This system was derived in under two hours from thetransformation-based part of speech tagger described in this paper.14

Eric Brill Transformation-Based Error-Driven Learningmodel based stochastic taggers that were automatically trained could achieve high rates oftagging accuracy (Jelinek, 1985). Markov-model based taggers assign to a sentence the tagsequence that maximizes Prob(wordjtag)�Prob(tagjprevious n tags). These probabilitiescan be estimated directly from a manually tagged corpus.8 These stochastic taggershave a number of advantages over the manually built taggers, including obviating theneed for laborious manual rule construction, and possibly capturing useful informationthat may not have been noticed by the human engineer. However, stochastic taggershave the disadvantage that linguistic information is only captured indirectly, in largetables of statistics. Almost all recent work in developing automatically trained part ofspeech taggers has been on further exploring Markov-model based tagging (Jelinek, 1985;Church, 1988; DeRose, 1988; DeMarcken, 1990; Merialdo, 1994; Cutting et al., 1992;Kupiec, 1992; Charniak et al., 1993; Weischedel et al., 1993; Schutze and Singer, 1994).4.1 Transformation-based Error-driven Part of Speech TaggingTransformation-based part of speech tagging works as follows.9 The initial state annotatorassigns each word its most likely tag as indicated in the training corpus. The methodused for initially tagging unknown words will be described in a later section. An orderedlist of transformations is then learned to improve tagging accuracy based on contextualcues. These transformations alter the tagging of a word from X to Y i� either:1. The word was not seen in the training corpus OR2. The word was seen tagged with Y at least once in the training corpus.In taggers based on Markov models, the lexicon consists of probabilities of the some-what counterintuitive but proper form P (WORDjTAG). In the transformation-basedtagger, the lexicon is simply a list of all tags seen for a word in the training corpus, with8 One can also estimate these probabilities without a manually tagged corpus, using a hidden Markovmodel. However, it appears to be the case that directly estimating probabilities from even a verysmall manually tagged corpus gives better results than training a hidden Markov model on a largeuntagged corpus (see (Merialdo, 1994)).9 Earlier versions of this work were reported in (Brill, 1992; Brill, 1994). 15

Computational Linguistics Volume 21, Number 4one tag labelled as the most likely. Below we show a lexical entry for the word half inthe transformation-based tagger. A description of the part of speech tags is provided inAppendix A. half: CD DT JJ NN PDT RB VBThis entry lists the seven tags seen for half in the training corpus, with NN marked asthe most likely. Below are the lexical entries for half in a Markov model tagger, extractedfrom the same corpus: P (half jCD) = 0:000066P (half jDT) = 0:000757P (half jJJ) = 0:000092P (half jNN) = 0:000702P (half jPDT) = 0:039945P (half jRB) = 0:000443P (half jV B) = 0:000027It is di�cult to make much sense of these entries in isolation; they have to be viewed inthe context of the many contextual probabilities.First, we will describe a non-lexicalized version of the tagger, where transformationtemplates do not make reference to speci�c words. In the nonlexicalized tagger, thetransformation templates we use are:Change tag a to tag b when:1. The preceding (following) word is tagged z.2. The word two before (after) is tagged z.3. One of the two preceding (following) words is tagged z.16

Eric Brill Transformation-Based Error-Driven Learning4. One of the three preceding (following) words is tagged z.5. The preceding word is tagged z and the following word is tagged w.6. The preceding (following) word is tagged z and the word two before (after)is tagged w.where a,b,z and w are variables over the set of parts of speech. To learn a transforma-tion, the learner in essence applies every possible transformation,10 counts the numberof tagging errors after that transformation is applied, and chooses that transformationresulting in the greatest error reduction. Learning stops when no transformations can befound whose application reduces errors beyond some prespeci�ed threshold.In the experiments described below, processing was done left to right. For eachtransformation application, all triggering environments are �rst found in the corpus, andthen the transformation triggered by each triggering environment is carried out.The search is data-driven, so only a very small percentage of possible transformationsreally need be examined. In �gure 4.1 we give pseudocode for the learning algorithm inthe case where there is only one transformation template: Change the tag from X to Yif the previous tag is Z. In each learning iteration, the entire training corpus is examinedonce for every pair of tags X and Y, �nding the best transformation whose rewrite changestag X to tag Y. For every word in the corpus whose environment matches the triggeringenvironment, if word has tag X and X is the correct tag, then making this transformationwill result in an additional tagging error, and so we increment the number of errors causedwhen making the transformation given the part of speech tag of the previous word (lines8 and 9). If X is the current tag and Y is the correct tag, then the transformation willresult in one less error, and so we increment the number of improvements caused whenmaking the transformation given the part of speech tag of the previous word (lines 6 and7).10 All possible instantiations of transformation templates. 17

Computational Linguistics Volume 21, Number 4
1. apply initial state annotator to corpus2. while transformations can still be found do3. for from tag = tag1 to tagn4. for to tag = tag1 to tagn5. for corpus position = 1 to corpus size6. if (correct tag(corpus position) == to tag&& current tag(corpus position) == from tag)7. num good transformations(tag(corpus position -1))++8. else if (correct tag(corpus position) == from tag&& current tag(corpus position) == from tag)9. num bad transformations(tag(corpus position-1))++10. �nd maxT (num good transformations(T) - num bad transformations(T))11. if this is the best scoring rule found yet then store as best rule:Change tag from from tag to to tag if previous tag is T12. apply best rule to training corpus13. append best rule to ordered list of transformationsFigure 3Pseudocode for learning transformations.
18

Eric Brill Transformation-Based Error-Driven LearningIn certain cases, a signi�cant speed-up for training the transformation-based taggercan be obtained by indexing in the corpus where di�erent transformations can and doapply. For a description of a fast index-based training algorithm, see (Ramshaw andMarcus, 1994).In �gure 4 we list the �rst twenty transformations learned from training on the PennTreebank Wall Street Journal Corpus (Marcus, Santorini, and Marcinkiewicz, 1993).11The �rst transformation states that a noun should be changed to a verb if the previous tagis TO, as in to/TO con
ict/NN!VB with. The second transformation �xes a taggingsuch as: might/MD vanish/VBP!VB. The third �xes might/MD not reply/NN!VB.The tenth transformation is for the token 's, which is a separate token in the PennTreebank. 's is most frequently used as a possessive ending, but after a personal pronoun,it is a verb (John 's, compared to he 's). The transformations changing IN to WDT arefor tagging the word that, to determine in which environments that is being used as asynonym of which.4.2 Lexicalizing the TaggerIn general, no relationships between words have been directly encoded in stochastic n-gram taggers.12 In the Markov model typically used for stochastic tagging, state transitionprobabilities (P (TagijTagi�1 : : :Tagi�n)) express the likelihood of a tag immediatelyfollowing n other tags, and emit probabilities (P (WordjjTagi)) express the likelihoodof a word given a tag. Many useful relationships, such as that between a word and theprevious word, or between a tag and the following word, are not directly captured byMarkov-model based taggers. The same is true of the non-lexicalized transformation-based tagger, where transformation templates do not make reference to words.To remedy this problem, we extend the transformation-based tagger by adding con-textual transformations that can make reference to words as well as part of speech tags.11 Version 0.5 of the Penn Treebank was used in all experiments reported in this paper.12 In (Kupiec, 1992), a limited amount of lexicalization is introduced by having a stochastic taggerwith word states for the 100 most frequent words in the corpus. 19

Computational Linguistics Volume 21, Number 4
Change Tag# From To Condition1 NN VB Previous tag is TO2 VBP VB One of the previous three tags is MD3 NN VB One of the previous two tags is MD4 VB NN One of the previous two tags is DT5 VBD VBN One of the previous three tags is VBZ6 VBN VBD Previous tag is PRP7 VBN VBD Previous tag is NNP8 VBD VBN Previous tag is VBD9 VBP VB Previous tag is TO10 POS VBZ Previous tag is PRP11 VB VBP Previous tag is NNS12 VBD VBN One of previous three tags is VBP13 IN WDT One of next two tags is VB14 VBD VBN One of previous two tags is VB15 VB VBP Previous tag is PRP16 IN WDT Next tag is VBZ17 IN DT Next tag is NN18 JJ NNP Next tag is NNP19 IN WDT Next tag is VBD20 JJR RBR Next tag is JJFigure 4The �rst 20 non-lexicalized transformations.

20

Eric Brill Transformation-Based Error-Driven LearningThe transformation templates we add are:Change tag a to tag b when:1. The preceding (following) word is w.2. The word two before (after) is w.3. One of the two preceding (following) words is w.4. The current word is w and the preceding (following) word is x.5. The current word is w and the preceding (following) word is tagged z.6. The current word is w.7. The preceding (following) word is w and the preceding (following) tag is t.8. The current word is w, the preceding (following) word is w2 and thepreceding (following) tag is t.where w and x are variables over all words in the training corpus, and z is a variableover all parts of speech. Below we list two lexicalized transformations that were learnedtraining once again on the Wall Street Journal.Change the tag:(12) From IN to RB if the word two positions to the right is as.(16) From VBP to VB if one of the previous two words is n't.13The Penn Treebank tagging style manual speci�es that in the collocation as : : :as,the �rst as is tagged as an adverb and the second is tagged as a preposition. Since asis most frequently tagged as a preposition in the training corpus, the initial state tagger13 In the Penn Treebank, n't is treated as a separate token, so don't becomes do/VBP n't/RB. 21

Computational Linguistics Volume 21, Number 4* RB VBP* RB VBRB * VBPRB * VBFigure 5Trigram Tagger Probability Tables.will mistag the phrase as tall as as:as/IN tall/JJ as/INThe �rst lexicalized transformation corrects this mistagging. Note that a bigram tag-ger trained on our training set would not correctly tag the �rst occurrence of as. Al-though adverbs are more likely than prepositions to follow some verb form tags, the factthat P (asjIN) is much greater than P (asjRB), and P (JJ jIN) is much greater thanP (JJ jRB) lead to as being incorrectly tagged as a preposition by a stochastic tagger. Atrigram tagger will correctly tag this collocation in some instances, due to the fact thatP (IN jRB JJ) is greater than P (IN jIN JJ), but the outcome will be highly dependentupon the context in which this collocation appears.The second transformation arises from the fact that when a verb appears in a contextsuch as We do n't eat or We did n't usually drink, the verb is in base form. A stochastictrigram tagger would have to capture this linguistic information indirectly from frequencycounts of all trigrams of the form shown in �gure 5 (where a star can match any part ofspeech tag) and from the fact that P (n0tjRB) is fairly high.In (Weischedel et al., 1993), results are given when training and testing a Markov-model based tagger on the Penn Treebank Tagged Wall Street Journal Corpus. They citeresults making the closed vocabulary assumption that all possible tags for all words inthe test set are known. When training contextual probabilities on 1 million words, anaccuracy of 96.7% was achieved. Accuracy dropped to 96.3% when contextual probabil-22

Eric Brill Transformation-Based Error-Driven Learningities were trained on 64,000 words. We trained the transformation-based tagger on thesame corpus, making the same closed vocabulary assumption.14 When training contex-tual rules on 600,000 words, an accuracy of 97.2% was achieved on a separate 150,000word test set. When the training set was reduced to 64,000 words, accuracy dropped to96.7%. The transformation-based learner achieved better performance, despite the factthat contextual information was captured in a small number of simple nonstochasticrules, as opposed to 10,000 contextual probabilities that were learned by the stochastictagger. See table 1. When training on 600,000 words, a total of 447 transformations werelearned. However, transformations toward the end of the list contribute very little toaccuracy. So only applying the �rst 200 learned transformations to the test set achievesan accuracy of 97.0%. Applying the �rst 100 gives an accuracy of 96.8%. To match the96.7% accuracy achieved by the stochastic tagger when it was trained on one millionwords, only the �rst 82 transformations are needed.To see whether lexicalized transformations were contributing to the transformation-based tagger accuracy rate, we ran the exact same test using the tagger trained using thenonlexical transformation template subset. Accuracy of that tagger was 97.0%. Addinglexicalized transformations resulted in a 6.7% decrease in the error rate. These resultsare summarized in table 1.15We found it a bit surprising that the addition of lexicalized transformations did notresult in a much greater improvement in performance. When transformations are allowedto make reference to words and word pairs, some relevant information is probably misseddue to sparse data. We are currently exploring the possibility of incorporating wordclasses into the rule-based learner in hopes of overcoming this problem. The idea is quite14 In both (Weischedel et al., 1993) and here, the test set was incorporated into the lexicon, but wasnot used in learning contextual information. Testing with no unknown words might seem like anunrealistic test. We have done so for three reasons (We show results when unknown words areincluded later in the paper): (1) to allow for a comparison with previously quoted results, (2) toisolate known word accuracy from unknown word accuracy, and (3) in some systems, such as aclosed vocabulary speech recognition system, the assumption that all words are known is valid.15 The training we did here was slightly suboptimal, in that we used the contextual rules learned withunknown words (described in the next section), and �lled in the dictionary, rather than training ona corpus without unknown words. 23

Computational Linguistics Volume 21, Number 4
Training # of RulesCorpus or Context. Acc.Method Size (Words) Probs. (%)Stochastic 64 K 6,170 96.3Stochastic 1 Million 10,000 96.7Rule-BasedWith Lex. Rules 64 K 215 96.7Rule-BasedWith Lex. Rules 600 K 447 97.2Rule-Basedw/o Lex. Rules 600 K 378 97.0Table 1Comparison of Tagging Accuracy With No Unknown Words

24

Eric Brill Transformation-Based Error-Driven Learningsimple. Given any source of word class information, such as WordNet (Miller, 1990), thelearner is extended such that a rule is allowed to make reference to parts of speech, words,and word classes, allowing for rules such as Change the tag from X to Y if the followingword belongs to word class Z. This approach has already been successfully applied to asystem for prepositional phrase attachment attachment disambiguation (Brill and Resnik,1994).4.3 Tagging Unknown WordsSo far, we have not addressed the problem of unknown words. As stated above, theinitial state annotator for tagging assigns all words their most likely tag, as indicated ina training corpus. Below we show how a transformation-based approach can be taken fortagging unknown words, by automatically learning cues to predict the most likely tag forwords not seen in the training corpus. If the most likely tag for unknown words can beassigned with high accuracy, then the contextual rules can be used to improve accuracy,as described above.In the transformation-based unknown-word tagger, the initial state annotator naivelylabels the most likely tag for unknown words as proper noun if capitalized and commonnoun otherwise.16Below we list the set of allowable transformations.Change the tag of an unknown word (from X) to Y if:1. Deleting the pre�x (su�x) x, jxj <= 4, results in a word (x is any string oflength 1 to 4).2. The �rst (last) (1,2,3,4) characters of the word are x.3. Adding the character string x as a pre�x (su�x) results in a word(jxj <= 4).16 If we change the tagger to tag all unknown words as common nouns, then a number of rules arelearned of the form: change tag to proper noun if the pre�x is "E", \A", \B", etc., sincethe learner is not provided with the concept of upper case in its set of transformation templates. 25

Computational Linguistics Volume 21, Number 44. Word W ever appears immediately to the left (right) of the word.5. Character Z appears in the word.An unannotated text can be used to check the conditions in all of the above trans-formation templates. Annotated text is necessary in training to measure the e�ect oftransformations on tagging accuracy. Since the goal is to label each lexical entry for newwords as accurately as possible, accuracy is measured on a per type and not a per tokenbasis.Figure 6 shows the �rst 20 transformations learned for tagging unknown words inthe Wall Street Journal corpus. As an example of how rules can correct errors generatedby prior rules, note that applying the �rst transformation will result in the mistaggingof the word actress. The 18th learned rule �xes this problem. This rule states: change atag from plural common noun to singular common noun if the word has su�x ss.Keep in mind that no speci�c a�xes are prespeci�ed. A transformation can makereference to any string of characters up to a bounded length. So while the �rst rulespeci�es the English su�x "s", the rule learner was not constrained from consideringsuch nonsensical rules as: change a tag to adjective if the word has su�x "xhqr". Also,absolutely no English-speci�c information (such as an a�x list) need be prespeci�ed inthe learner.17We then ran the following experiment using 1.1 million words of the Penn TreebankTagged Wall Street Journal Corpus. 950,000 words were used for training and 150,000words were used for testing. Annotations of the test corpus were not used in any wayto train the system. From the 950,000 word training corpus, 350,000 words were used tolearn rules for tagging unknown words, and 600,000 words were used to learn contextualrules. 243 rules were learned for tagging unknown words, and 447 contextual tagging17 This learner has also been applied to tagging Old English. See (Brill, 1993b). Although thetransformations are not English-speci�c, the set of transformation templates would have to beextended to process languages with dramatically di�erent morphology.26

Eric Brill Transformation-Based Error-Driven Learning
Change Tag# From To Condition1 NN NNS Has su�x -s2 NN CD Has character .3 NN JJ Has character -4 NN VBN Has su�x -ed5 NN VBG Has su�x -ing6 ?? RB Has su�x -ly7 ?? JJ Adding su�x -ly results in a word.8 NN CD The word $ can appear to the left.9 NN JJ Has su�x -al10 NN VB The word would can appear to the left.11 NN CD Has character 012 NN JJ The word be can appear to the left.13 NNS JJ Has su�x -us14 NNS VBZ The word it can appear to the left.15 NN JJ Has su�x -ble16 NN JJ Has su�x -ic17 NN CD Has character 118 NNS NN Has su�x -ss19 ?? JJ Deleting the pre�x un- results in a word20 NN JJ Has su�x -iveFigure 6The �rst 20 transformations for unknown words.

27

Computational Linguistics Volume 21, Number 4rules were learned. Unknown word accuracy on the test corpus was 82.2%, and overalltagging accuracy on the test corpus was 96.6%. To our knowledge, this is the highestoverall tagging accuracy ever quoted on the Penn Treebank Corpus when making the openvocabulary assumption. Using the tagger without lexicalized rules, an overall accuracyof 96.3% and an unknown word accuracy of 82.0% is obtained. A graph of accuracy as afunction of transformation number on the test set for lexicalized rules is shown in �gure 7.Before applying any transformations, test set accuracy is 92.4%. So the transformationsreduce the error rate by 50% over the baseline. The high baseline accuracy is somewhatmisleading, as this includes the tagging of unambiguous words. Baseline accuracy whenthe words that are unambiguous in our lexicon are not considered is 86.4%. However, it isdi�cult to compare taggers using this �gure, as then the accuracy of the system dependson the particular lexicon used. For instance, in our training set the word the was taggedwith a number of di�erent tags, and so according to our lexicon the is ambiguous. If weinstead used a lexicon where the is listed unambiguously as a determiner, the baselineaccuracy would be 84.6%.For tagging unknown words, each word is initially assigned a part of speech based onword and word-distribution features. Then, the tag may be changed based on contextualcues, via contextual transformations that are applied to the entire corpus, both knownand unknown words. When the contextual rule learner learns transformations, it doesso in an attempt to maximize overall tagging accuracy, and not unknown word taggingaccuracy. Unknown words account for only a small percentage of the corpus in our ex-periments, typically two to three percent. Since the distributional behavior of unknownwords is quite di�erent from that of known words, and since a transformation that doesnot increase unknown word tagging accuracy can still be bene�cial to overall taggingaccuracy, the contextual transformations learned are not optimal in the sense of leadingto the highest tagging accuracy on unknown words. Better unknown word accuracy maybe possible by training and using two sets of contextual rules, one maximizing knownword accuracy and the other maximizing unknown word accuracy, and then applying the28

Eric Brill Transformation-Based Error-Driven Learning

Transformation Number

T
es

t S
et

 A
cc

ur
ac

y

0 100 200 300 400

93
94

95
96

Transformation Number

T
es

t S
et

 A
cc

ur
ac

y

0 100 200 300 400

93
94

95
96

Figure 7Accuracy vs Transformation Number
29

Computational Linguistics Volume 21, Number 4Corpus AccuracyPenn WSJ 96.6%Penn Brown 96.3%Orig Brown 96.5%Table 2Tagging Accuracy on Di�erent Corporaappropriate transformations to a word when tagging, depending upon whether the wordappears in the lexicon. We are currently experimenting with this idea.In (Weischedel et al., 1993), a statistical approach to tagging unknown words isshown. In this approach, a number of su�xes and important features are prespeci�ed.Then, for unknown words:p(W jT) = p(unknown wordjT)�p(Capitalize-featurejT)�p(suffixes; hyphenationjT)Using this equation for unknown word emit probabilities within the stochastic tagger,an accuracy of 85% was obtained on the Wall Street Journal corpus. This portion of thestochastic model has over 1,000 parameters, with 108 possible unique emit probabilities,as opposed to a small number of simple rules that are learned and used in the rule-basedapproach. In addition, the transformation-based method learns speci�c cues instead ofhaving them prespeci�ed, allowing for the possibility of uncovering cues not apparent tothe human language engineer. We have obtained comparable performance on unknownwords, while capturing the information in a much more concise and perspicuous manner,and without prespecifying any information speci�c to English or to a speci�c corpus.In table 2 we show tagging results obtained on a number of di�erent corpora, in eachcase training on roughly 9.5 x 105 words total and testing on a separate test set of 1.5-2x 105 words. Accuracy is consistent across these corpora and tag sets.In addition to obtaining high rates of accuracy and representing relevant linguisticinformation in a small set of rules, the part of speech tagger can also be made to runextremely fast. (Roche and Schabes, 1995) shows a method for converting a list of tagging30

Eric Brill Transformation-Based Error-Driven Learningtransformations into a deterministic �nite state transducer with one state transition takenper word of input, the result being a transformation-based tagger whose tagging speedis about ten times that of the fastest Markov-model tagger.4.4 K-Best TagsThere are certain circumstances where one is willing to relax the one tag per wordrequirement in order to increase the probability that the correct tag will be assigned toeach word. In (DeMarcken, 1990; Weischedel et al., 1993), k-best tags are assigned withina stochastic tagger by returning all tags within some threshold of probability of beingcorrect for a particular word.We can modify the transformation-based tagger to return multiple tags for a wordby making a simple modi�cation to the contextual transformations described above.The initial-state annotator is the tagging output of the previously described one-besttransformation-based tagger. The allowable transformation templates are the same asthe contextual transformation templates listed above, but with the rewrite rule changetag X to tag Y modi�ed to add tag X to tag Y or add tag X to word W. Instead ofchanging the tagging of a word, transformations now add alternative taggings to a word.When allowing more than one tag per word, there is a trade-o� between accuracyand the average number of tags for each word. Ideally, we would like to achieve as largean increase in accuracy with as few extra tags as possible. Therefore, in training we �ndtransformations that maximize the function:Number of corrected errorsNumber of additional tagsIn table 3 we present results from �rst using the one-tag-per-word transformation-based tagger described in the previous section and then applying the k-best tag transfor-mations. These transformations were learned from a separate 240,000 word corpus. Asa baseline, we did k-best tagging of a test corpus as follows. Each known word in thetest corpus was tagged with all tags seen with that word in the training corpus and the31

Computational Linguistics Volume 21, Number 4# of Rules Accuracy Avg. # of tags per word0 96.5 1.0050 96.9 1.02100 97.4 1.04150 97.9 1.10200 98.4 1.19250 99.1 1.50Table 3Results from k-best tagging.�ve most likely unknown word tags were assigned to all words not seen in the trainingcorpus.18 This resulted in an accuracy of 99.0%, with an average of 2.28 tags per word.The transformation-based tagger obtained the same accuracy with 1.43 tags per word,one third the number of additional tags as the baseline tagger.195. ConclusionsIn this paper, we have described a new transformation-based approach to corpus-basedlearning. We have given details of how this approach has been applied to part of speechtagging and have demonstrated that the transformation-based approach obtains compet-itive performance with stochastic taggers on tagging both unknown and known words.The transformation-based tagger captures linguistic information in a small number ofsimple non-stochastic rules, as opposed to large numbers of lexical and contextual proba-bilities. This learning approach has also been applied to a number of other tasks, includingprepositional phrase attachment disambiguation (Brill and Resnik, 1994), bracketing text(Brill, 1993a) and labeling nonterminal nodes (Brill, 1993c). Recently, we have begun toexplore the possibility of extending these techniques to other problems, including learningpronunciation networks for speech recognition and learning mappings between syntactic18 Thanks to Fred Jelinek and Fernando Pereira for suggesting this baseline experiment.19 Unfortunately, it is di�cult to �nd results to compare these k-best tag results to. In (DeMarcken,1990), the test set is included in the training set, and so it is di�cult to know how this systemwould do on fresh text. In (Weischedel et al., 1993), a k-best tag experiment was run on the WallStreet Journal corpus. They quote the average number of tags per word for various thresholdsettings, but do not provide accuracy results.32

Eric Brill Transformation-Based Error-Driven Learningand semantic representations.A. Penn Treebank Part of Speech Tags (Excluding Punctuation)1. CC Coordinating conjunction2. CD Cardinal number3. DT Determiner4. EX Existential "there"5. FW Foreign word6. IN Preposition or subordinating conjunction7. JJ Adjective8. JJR Adjective, comparative9. JJS Adjective, superlative10. LS List item marker11. MD Modal12. NN Noun, singular or mass13. NNS Noun, plural14. NNP Proper noun, singular15. NNPS Proper noun, plural16. PDT Predeterminer17. POS Possessive ending18. PP Personal pronoun19. PP$ Possessive pronoun20. RB Adverb21. RBR Adverb, comparative22. RBS Adverb, superlative23. RP Particle24. SYM Symbol25. TO "to"26. UH Interjection27. VB Verb, base form28. VBD Verb, past tense29. VBG Verb, gerund or present participle30. VBN Verb, past participle31. VBP Verb, non-3rd person singular present32. VBZ Verb, 3rd person singular present33 WDT Wh-determiner34. WP Wh-pronoun35. WP$ Possessive wh-pronoun36. WRB Wh-adverbAcknowledgmentsThis work was funded in part by NSF grantIRI-9502312. In addition, this work wasdone in part while the author was in the Spoken Language Systems Group atMassachusetts Institute of Technology underARPA grant N00014-89-J-1332, and byDARPA/AFOSR grant AFOSR-90-0066 at33

Computational Linguistics Volume 21, Number 4the University of Pennsylvania. Thanks toMitch Marcus, Mark Villain, and theanonymous reviewers for many usefulcomments on earlier drafts of this paper.ReferencesBlack, Ezra, Fred Jelinek, John La�erty,David Magerman, Robert Mercer, andSalim Roukos. 1993. Towardshistory-based grammars: Using richermodels for probabilistic parsing. InProceedings of the 31st Annual Meeting ofthe Association for ComputationalLinguistics. Columbus, Ohio.Black, Ezra, Fred Jelinek, John La�erty,Robert Mercer, and Salim Roukos. 1992.Decision tree models applied to thelabeling of text with parts-of-speech. InDarpa Workshop on Speech and NaturalLanguage. Harriman, N.Y.Breiman, Leo, Jerome Friedman, RichardOlshen, and Charles Stone. 1984.Classi�cation and regression trees.Wadsworth and Brooks.Brill, Eric. 1992. A simple rule-based partof speech tagger. In Proceedings of theThird Conference on Applied NaturalLanguage Processing, ACL, Trento, Italy.Brill, Eric. 1993a. Automatic grammarinduction and parsing free text: Atransformation-based approach. In

Proceedings of the 31st Meeting of theAssociation of Computational Linguistics,Columbus, Oh.Brill, Eric. 1993b. A Corpus-BasedApproach to Language Learning. Ph.D.thesis, Department of Computer andInformation Science, University ofPennsylvania.Brill, Eric. 1993c. Transformation-basederror-driven parsing. In Proceedings of theThird International Workshop on ParsingTechnologies, Tilburg, The Netherlands.Brill, Eric. 1994. Some advances inrule-based part of speech tagging. InProceedings of the Twelfth NationalConference on Arti�cial Intelligence(AAAI-94), Seattle, Wa.Brill, Eric and Philip Resnik. 1994. Atransformation-based approach toprepositional phrase attachmentdisambiguation. In Proceedings of theFifteenth International Conference onComputational Linguistics(COLING-1994), Kyoto, Japan.Brown, Peter, John Cocke, Stephen DellaPietra, Vincent Della Pietra, Fred Jelinek,John La�erty, Robert Mercer, and PaulRoossin. 1990. A statistical approach tomachine translation. ComputationalLinguistics, 16(2):79{85.34

Eric Brill Transformation-Based Error-Driven LearningBrown, Peter, Jennifer Lai, and RobertMercer. 1991. Word-sense disambiguationusing statistical methods. In Proceedingsof the 29th Annual Meeting of theAssociation for ComputationalLinguistics, Berkeley, Ca.Bruce, Rebecca and Janyce Wiebe. 1994.Word-sense disambiguation usingdecomposable models. In Proceedings ofthe 32nd Annual Meeting of theAssociation for ComputationalLinguistics, Las Cruces, NM.Charniak, Eugene, Curtis Hendrickson, NeilJacobson, and Michael Perkowitz. 1993.Equations for part of speech tagging. InProceedings of the Conference of theAmerican Association for Arti�cialIntelligence (AAAI-93), Washington DC.Church, Kenneth. 1988. A stochastic partsprogram and noun phrase parser forunrestricted text. In Proceedings of theSecond Conference on Applied NaturalLanguage Processing, ACL, Austin, Tx.Cutting, Doug, Julian Kupiec, JanPedersen, and Penelope Sibun. 1992. Apractical part-of-speech tagger. InProceedings of the Third Conference onApplied Natural Language Processing,ACL, Trento, Italy.DeMarcken, Carl. 1990. Parsing the LOB

corpus. In Proceedings of the 1990Conference of the Association forComputational Linguistics, Pittsburgh,Pa.DeRose, Stephen. 1988. Grammaticalcategory disambiguation by statisticaloptimization. Computational Linguistics,14.Francis, Winthrop Nelson and HenryKucera. 1982. Frequency analysis ofEnglish usage: Lexicon and grammar.Houghton Mi�in, Boston.Fujisaki, Tetsu, Fred Jelinek, John Cocke,and Ezra Black. 1989. Probabilisticparsing method for sentencedisambiguation. In Proceedings of theInternational Workshop on ParsingTechnologies.Gale, William and Kenneth Church. 1991.A program for aligning sentences inbilingual corpora. In Proceedings of the29th Annual Meeting of the Associationfor Computational Linguistics, Berkeley,Ca.Gale, William, Kenneth Church, and DavidYarowsky. 1992. A method fordisambiguating word senses in a largecorpus. Computers and the Humanities.Harris, Zellig. 1962. String Analysis ofLanguage Structure. Mouton and Co., 35

Computational Linguistics Volume 21, Number 4The Hague.Hindle, D. and M. Rooth. 1993. Structuralambiguity and lexical relations.Computational Linguistics, 19(1):103{120.Hindle, Donald. 1989. Acquiringdisambiguation rules from text. InProceedings of the 27th Annual Meeting ofthe Association for ComputationalLinguistics, Vancouver, BC.Huang, Caroline, Mark Son-Bell, and DavidBaggett. 1994. Generation ofpronunciations from orthographies usingtransformation-based error-drivenlearning. In International Conference onSpeech and Language Processing (ICSLP),Yokohama, Japan.Jelinek, Fred. 1985. Self-OrganizedLanguage Modelling for SpeechRecognition. Dordrecht. In Impact ofProcessing Techniques onCommunication, J. Skwirzinski, ed.Joshi, Aravind and B. Srinivas. 1994.Disambiguation of super parts of speech(or supertags): Almost parsing. InProceedings of the 15th InternationalConference on Computational Linguistics,Kyoto, Japan.Klein, Sheldon and Robert Simmons. 1963.A computational approach togrammatical coding of English words.

JACM, 10.Kupiec, Julian. 1992. Robust part-of-speechtagging using a hidden Markov model.Computer Speech and Language, 6.Leech, Geo�rey, Roger Garside, and MichaelBryant. 1994. Claws4: The tagging of theBritish National Corpus. In Proceedingsof the 15th International Conference onComputational Linguistics, Kyoto, Japan.Marcus, Mitchell, Beatrice Santorini, andMaryann Marcinkiewicz. 1993. Building alarge annotated corpus of English: thePenn Treebank. ComputationalLinguistics, 19(2).Merialdo, Bernard. 1994. Tagging englishtext with a probabilistic model.Computational Linguistics.Miller, George. 1990. Wordnet: an on-linelexical database. International Journal ofLexicography, 3(4).Quinlan, J. Ross. 1986. Induction ofdecision trees. Machine Learning,1:81{106.Quinlan, J. Ross and Ronald Rivest. 1989.Inferring decision trees using theminimum description length principle.Information and Computation, 80.Ramshaw, Lance and Mitchell Marcus.1994. Exploring the statistical derivationof transformational rule sequences for36

Eric Brill Transformation-Based Error-Driven Learningpart-of-speech tagging. In The BalancingAct: Proceedings of the ACL Workshop onCombining Symbolic and StatisticalApproaches to Language, New MexicoState University.Roche, Emmanuel and Yves Schabes. 1995.Deterministic part of speech tagging with�nite state transducers. ComputationalLinguistics, 21(2).Schutze, Hinrich and Yoram Singer. 1994.Part of speech tagging using a variablememory Markov model. In Proceedings ofthe Association for ComputationalLinguistics, Las Cruces, New Mexico.Sharman, Robert, Fred Jelinek, and RobertMercer. 1990. Generating a grammar forstatistical training. In Proceedings of the1990 Darpa Speech and Natural LanguageWorkshop.Weischedel, Ralph, Marie Meteer, RichardSchwartz, Lance Ramshaw, and Je�Palmucci. 1993. Coping with ambiguityand unknown words through probabilisticmodels. Computational Linguistics.Yarowsky, David. 1992. Word-sensedisambiguation using statistical models ofRoget's categories trained on largecorpora. In Proceedings of COLING-92,pages 454{460, Nantes, France, July. 37

