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Abstract!

We report progress on a new approach to combatting
illiteracy -- getting computers to listen to children read
aloud. We describe a fully automated prototype coach for
oral reading. It displays a story on the screen, listens as a
child reads it, and decides whether and how to intervene.
We report on pilot experiments with low-reading second
graders to test whether these interventions are technically
feasible to automate and pedagogically effective to perform.
By adapting a continuous speech recognizer, we detected
49% of the misread words, with a false alarm rate under
4%. By incorporating the interventions in a simulated
coach, we enabled the children to read and comprehend
material at a reading level 0.6 years higher than what they
could read on their own. We show how the prototype uses
the recognizer to trigger these interventions automatically.

1. Introduction

This paper is about a problem where even a partia
solution would quickly pay back every dollar this nation
has ever invested in artificia intelligence research. The
problem is illiteracy. Its scope is widespread (NCES,
19933, OTA, 1993). Its economic costs exceed $225
billion per year (Herrick, 1990). Its human and social
costs are incalculable. Individuals with low reading
proficiency are much likelier to be unemployed, poor, or
incarcerated (NCES, 1993b).

Although a large body of software exists to teach
reading, it islimited in its ability to listen and/or intervene.
Most systems do not listen at all. Some systemstry to help
children anyway by providing speech output on demand
(Wise et al, 1989, Roth & Beck, 1987, McConkie & Zola,
1987, Reitsma, 1988). This capability is now available in
some commercial educational software, e.g., (Beck et d,
1987, Discis, 1991). However, young readers often fail to
realize when they need such help (McConkie, 1990).
Moreover, these systems cannot tap the unique motivation
that listening to areader can engender (Kantrov, 1991).

Other systems do listen, but use isolated word
recognizers that cannot monitor the ora reading of
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expressed or implied, of the sponsors or of the United States Government.

For a short summary of Project LISTEN, see (Hauptmann et al, 1994).

connected text. Such systems have been used for reading
(Kantrov, 1991, Cowan & Jones, 1991), speech training
(Watson et al, 1989, Umezaki, 1993), and foreign language
learning (Molholt, 1990).

More recently, some systems have used continuous
speech recognition to detect errors in reading (Phillips et
a, 1992, Mostow et al, 1993a) or pronunciation (Bernstein
et a, 1990, Bernstein & Rtischev, 1991). However, the
pedagogical interventions performed by published systems
were either rudimentary or missing altogether.

Project LISTEN is addressing these various limitations
by adapting continuous speech recognition to listen to
children read connected text, automatically triggering
pedagogically appropriate interventions. We present
evidence for the claim that these interventions are both
pedagogically effective to perform, and technically
feasible to automate.

The rest of this paper is organized as follows. Section 2
describes the interventions performed by our prototype
ora reading coach, which we have named after Emily
Latella (a character on Saturday Night Live created by the
late Gilda Radner and known for her difficulties in
distinguishing among words that sound alike). Section 3
describes the speech anaysis required to make Emily
work. Section 4 concludes.

2. Emily’sinterventions

Emily is designed to help a child read and comprehend a
given story. (One can imagine aternative goas, such as
correcting pronunciation or giving explicit instruction in
phonics.) Emily isintended to maintain a fluent, pleasant
reading experience that gives the child practice in reading
connected text, plus enough assistance to be able to
comprehend it. It therefore uses a combination of reading
and listening which we have named "shared reading," in
which the child reads wherever possible, and the coach
helps wherever necessary.

Emily intervenes when the reader misreads one or more
words in the current sentence, gets stuck, or clicks on a
word to get help. We do not treat hesitations, sounding
out, false starts, self-corrections, or other insertions as
misreading; by "misread," we mean "fail to speak the
correct word" (though see Section 3.1). Emily’s current
set of interventions targets two obstacles that interfere with
children’ s reading comprehension (Curtis, 1980).

First, young readers often have trouble identifying
printed words. Some of Emily’s interventions are
therefore primarily intended to assist wor d identification:

o Retry a misread word by highlighting it and
asking the child to reread it. This intervention



prompts the child to attend more carefully to
the word, and signals that the first attempt may
have been incorrect.

e Recue or "jumpstart” the last misread word by
speaking the text that leads up to it, and then
flashing the word to prompt the child to reread
it. The jumpstart serves to put the child back
in the context where the word occurred, which
may help in identifying it. However, this
intervention does not apply if the word occurs
near the beginning of the sentence.

e Speak a word if the child gets stuck on that
word.

e Speak a word if the child clicks the mouse on
it.
e Speak a word after a retry or recue. This

feedback is confirmatory if the child’s second
try was correct, and corrective if it was not.

Second, struggling readers spend so much of their
attention figuring out the words that even when they get
the words right, they may still not comprehend the overall
meaning.  Emily’s other interventions address this
attentional bottleneck:

¢ To avoid disrupting the flow of reading, ignore
amisread word if it ison alist of 52 common
function  words unlikedly to  affect
comprehension.

e Speak the entire sentence if the child misreads
three or more words in it, or misreads a word
after aretry or recue. Either condition means
the child is unlikely to have comprehended the
sentence. Hearing the sentence frees the child
to focus on comprehension (Curtis, 1980).

For both pedagogical and technical reasons, Emily waits
to intervene until the end of the sentence, unless the reader
gets stuck or clicks for help. The pedagogical reasons are
to give the reader a chance to self-correct, and to avoid
disrupting the flow of reading. The technical reasons are
that Emily cannot gracefully interrupt the reader, both
because its speech recognizer lags too far behind to
respond instantaneously, and because it lacks the subtle
nonverbal cues that humans use to interrupt each other.

To finesse the interruption problem, Emily displays the
text incrementally, adding one sentence at a time. When
the reader reaches the end of the sentence, Emily has an
opportunity to intervene without having to interrupt. It
does not display the next sentence until it has completed
any such interventions.

For natural speech quality, Emily normally outputs
predigitized human speech. However, two synthesized
voices (ORATOR™ (Spiegel, 1992) and DecTak™
(DEC, 1985)) are available as alternatives.

To evaluate and refine these interventions while we
were dtill working on the speech analysis, and
independently of recognition accuracy, we developed a

simulated coach that appeared automatic to the subjects,
but was controlled behind the scenes by a human
experimenter, as shown in (Mostow et al, 1993b). To
design the interventions, we used the following
development process:

1. Observe individua reading assistance
provided by human experts.

2. Select the most frequent interventions that
seem feasible to automate.

3. Codify interventions as written instructions
for the human experimenter.

4. Implement interventions as actions the
experimenter selects from a menu.

5. Automate the triggers for the interventions.

At this point, the experimenter’s role consisted of listening
to the reader, following along in the text, and marking each
word as correct or misread. The rest of the simulated
coach was automatic, and used the marking information to
trigger itsinterventions.

2.1. Pedagogical evaluation

We performed a pilot study to test the overall
effectiveness of our interventions. Another purpose of this
experiment was to refine our interventions and
experimental protocols before performing larger scale
studies with more subjects and subtler effects.

Hypothesis: Our hypothesis was that these
interventions would enable struggling readers to read and
comprehend material significantly more advanced than
what they could read on their own. Therefore we selected
as our subjects 12 second graders at an urban public school
in Pittsburgh who had been identified by their reading
teachers as having problems with reading.

Dependent variables. To minimize the effect of inter-
subject variability, we compared three conditions for each
subject. The control condition measured their independent
reading level, that is, the level of material they could read
and comprehend without assistance. The experimental
condition measured their coach-assisted reading level, that
is, the level of material they could read and comprehend by
using the coach. A third condition measured their
"potential” reading level, that is, the level of material they
could comprehend when it was read aloud to them.

Method: To measure these three levels, we adapted
materials and procedures from a widely used test of oral
reading (Spache, 1981). This test includes one-page
passages at carefully calibrated grade levels ranging from
early first grade to mid-seventh-grade. Each passage has
an accompanying list of comprehension questions. For
obvious reasons, once a subject read a passage, it was
"contaminated” and could not be reused for that subject in
the other conditions. Fortunately (Spache, 1981) has two
complete series of passages. Therefore we used one series
to determine each subject’s independent reading level, and
the other to determine his or her assisted reading level. To
measure reading level in a given condition, we presented




successively higher passages until the subject exceeded a
limit on the number of oral reading errors or failed over
40% of the comprehension questions. The subject’s
reading level for that condition was then defined as the
grade level of the previous passage. The subject then
listened to the subsequent passages until his or her
comprehension score dropped below 60%. We defined
potential reading level as the level of the highest passage
successfully comprehended.

To avoid confounding effects, we randomized the order
of the subjects and counterbalanced both the order of the
control and experimental conditions, and the choice of
passage series for each condition. We recorded the
children at their school in November 1993 (month 3 of the
school year), taking them one at atime out of their regular
class to a separate room. Whenever subjects exceeded
their attention span or got restless, we excused them and
continued the session on the next day of school.

Apparatus. The apparatus for the experiment consisted
of a NeXT workstation with two monitors, one for the
subject and the other for the human experimenter. A color
monitor was used to display the text and interventions to
the subject. To avoid unnecessary variability, al the
passages, spoken interventions, and comprehension
questions were digitaly prerecorded in a pleasant female
voice. The experimenter used the keyboard, mouse, and
second monitor to select the passage to display, mark each
word as correct or misread, and administer the
comprehension questions. The subject was given a button
to push for help on the current word. The button simply
operated a flashlight that signalled the human
experimenter, who then selected the appropriate menu
item. This configuration avoided the need to train the
subjects to operate a mouse, and alowed us to run the
experiments on a single workstation.

Data: We digitally recorded the children’s oral reading,
using a Sennheiser noise-cancelling headset microphone to
keep the speaker’s mouth an appropriate distance from the
microphone, and to filter out some of the noise typical of a
school environment. "Event files' captured every action
performed by the experimenter or the system in response
to the subjects’ oral reading. (See Figure 2-1.) We aso
recorded the results of the comprehension tests, including
which specific questions were answered correctly.

Key Resultss The outcome of this experiment
supported our hypothesis. The subjects' assisted reading
level was higher than their independent reading by an
average of 0.6 years (2.7 vs. 2.1). This effect was
statistically significant at the 99% level.

The interventions aso dramatically reduced the
frustration experienced by the children in their effort to
read. When they used the coach, our subjects misread only
2.6% of the words. Without assistance, they misread
12.3% of the words on passages of matched difficulty;
anything over 10% indicates that the reading material is
too difficult (Betts, 1946, Vaccaet al., 1991).

Based on a study (Curtis, 1980) of similar students
reading the same materials, we expected that listening
comprehension would be about two years higher than

#: TIME: EVENT: TEXT WORD:

At time 1179648, measured in samples (16,000 per
second) of the digitized oral reading, the coach displays
" Spotty thought he had caught a black and white kitten™:
78> 1179648 NEXTSEN  Spotty#49
79> 1239040 OK Spotty#49

After hesitating 4 seconds on "thought", the child pushes
the help button.

80> 1306624 SAYWORD 4 thought#50

81> 1314816 OK thought#50
82> 1325056 OK he#51
83> 1337344 OK had#52
The child misreads "caught":
84> 1384448 MARK caught#53

85> 1400832 OK a#54

86> 1417216 OK black#55
87> 1429504 OK and#56
88> 1439744 OK white#57
89> 1458176 OK kitten#58
90> 1458176 START EOS .#58
91> 1458176 NUM_ERRS 1
The coach recues "caught”:
92> 1458176 GOMARK caught#53
93> 1458176 JUMPSTART caught#53
94> 1458176 JUMPEND  caught#53
The child misreadsit again...
95> 1458176 MARK caught#53
... S0 the coach speaksiit:
96> 1458176 THISWORD caught#53
97> 1458176 END EOS

Figure2-1: Annotated excerpt from an event file

independent reading level; instead, we found that it was
dlightly (though not significantly) lower than the coach-
assisted level. We observed that when we asked the
subjects to listen to an entire story, their attention
wandered, perhaps because they lacked a natural visual
focus such as atalking face.

Our analysis of the data suggested how our interventions
might be made more effective. We found that the coach
read fewer sentences to the subjects than it should, because
thanks to the help button they hardly ever misread three or
more words in one sentence. We plan to make the trigger
for thisintervention sensitive to reader hesitations that may
indicate comprehension difficulties.

3. Speech analysis

Unlike conventional speech recognition, whose goal is
to guess what the speaker says, Emily has a discrimination
task, whose godl is to find where the speaker deviates from
the text. It can also be viewed as a classification task,
whose goal is to classify each word of text as correctly
read or not. This task is easier than recognition in that it
does not require identifying what the speaker said instead,
but it is harder in that the speaker’s deviations from the
text may include arbitrary words and non-words.

Thus the interventions in Section 2 reguire the following
speech analysis capabilities:

1. Given a starting point in the text and a



possibly disfluent reading of it, detect which
words of text were misread. The starting
point may be the beginning of a sentence, a
word the reader selected for help, or a word
the reader is asked to reread.

2. Detect when the reader reaches the end of a
given fragment of text. This fragment may
be the current sentence or aword to reread.

3. Detect when the reader gets stuck.

We now describe how Emily implements these
capabilities.

Emily consists of two basic components -- an intervenor
that runs on a color NeXT workstation and interacts with
the reader, and a speech recognizer that runs on a DEC
3000 or HP 735. The intervenor tells the recognizer where
in the text to start listening -- either at the beginning of a
new sentence, after a word spoken by the coach, or at a
word the coach has just prompted the reader to reread.
Four times a second, the recognizer reports the sequence of
words it thinks it has heard so far. Capability 1 is
implemented by aligning the output of the recognizer
against the text. Capability 2 is implemented by checking
if the recognizer has output the last word of the fragment.
Capability 3 isimplemented by atime limit for progressing
to the next word in the text; the intervenor assumes that the
reader is stuck on this word if the time limit is exceeded
without a previously unread word appearing in the
recognizer output. The intervenor isinvoked whenever the
reader reaches the end of a sentence, gets stuck, or clicks
the mouse on aword for help.

The speech recognizer, named Sphinx-11 (Huang et &,
1993), requires three types of knowledge -- phonetic,
lexical, and linguistic -- as well as several parameters that
control its Viterbi beam search for the likeliest
transcription of the input speech signal. The recognizer
evaluates competing sequences of lexical symbols based
on the degree of acoustic match specified by its phonetic
models, the pronunciations specified by its lexicon, and
the a priori probability specified by its language model.
Thus Sphinx-I1's recognition accuracy is limited by how
well these three representations model the speech input.
These representations must approximate the broad range of
speech phenomena contained in disfluent reading, which
include omission, repetition, and hesitation, as well as
substitution and insertion of words, non-words, and non-
speech sounds. These phenomena (especialy words and
non-words outside the vocabulary used in the text)
compound the variability that makes connected speech
recognition so difficult even for fluent speech.

(Mostow et al, 1993a) assumed that phonetic models
trained only on female speakers would work better for
children’s speech because of its high pitch. However, we
found that models trained on combined male and femae
speech seemed to work just about as well. Therefore
Emily uses 7000 phonetic Hidden Markov Models trained
on 7200 sentences read by 84 adult speakers (42 male and
42 female), though we can aso run it on the male-only and

female-only models. To retrain these models from scratch,
we need to collect and transcribe a much larger corpus of
children’s oral reading. In the meantime, we plan to adapt
the adult phonetic models to work better on children’s
speech by using an interpolative training method.

The recognizer’s accuracy at detecting misread words
depends on its ability to model deviations from correct
reading. We model several different phenomena of oral
reading in Emily’s lexicon (illustrated in Figure 3-1) and
language model, which are automatically generated from a
given text, such as"Once upon atimea...."

Subscripts denote word numbers:

Once, W AH N S
Alter nate pronunciations are parenthesi zed:

TRUNCATION, (W) 1

TRUNCATION, (W AH) W AH

upon, AX P AO N

TRUNCATION, (AX) AX

TRUNCATION, (AX P) AX P

ay AX

time, T AY M

TRUNCATION, (T) T

a AX

5
Figure 3-1: Lexicon for "Once upon atimea..."

To model correct reading, we include the text words
themselves in the lexicon, numbering them to distinguish
among multiple occurrences of the same word (e.g., "ag"
vs. "ag"). Each word's pronunciation, represented as a
sequence of k phonemes, is taken from a general English
dictionary. If not found there, it is computed by the
pronunciation component of a speech synthesizer, such as
MITak (Allen et a, 1987) or ORATOR™ (Spiegel,
1992). In our language model, each word w,_; (e.g.,
"Once,") is followed with probability .97 by the correct
next word w; ("upon,”).

To model repetitions and omissions, word w;_, (e.g.,
"Once,") is followed with probability .01/(n-1) by any
word w; of the other n—-1 words in the same sentence. A
non-uniform probability would be more realistic, but can
cause problems, as discussed later. Repetitions and
omissions correspond respectively to jumps backward
(j<i, eg., back to "Once;") and forward (j>i, e.g., to
"asu)_

To model false starts and near misses, we include a
truncation symbol TRUNCATION,; for each text word w..
Besides modelling actual truncations of the word, these
pronunciations approximate many phonetically similar
substitution  errors. The truncation  symbol
TRUNCATION; follows the word w;_; with probability
.02. For the example text in Figure 3-1, this model assigns
a probability of 2% to the prediction that after reading the
word "Once,", the reader will next truncate the word
"upon,.” We give this symbol k-2 alternate
pronunciations, consisting of proper prefixes of the
complete pronunciation, as illustrated in Figure 3-1. We



found that including truncations where only the last phone
is omitted, e.g., "AX P AQ", seemed to cause recognition
errors, especially for speakers of dialects that tend to drop
the last phone.

To model repeated attempts, self-corrections, and
substitution errors, respectively, each truncation symbol
TRUNCATION; is followed with equa probability by
itself, by the complete word wi, or by the following word
Wi, 4. Thatis, after truncating the word "upon,", the reader
is considered equally likely to truncate it again, read it
correctly, or go on to the word "ag."

This language model reflects some lessons from
previous experience. First, although the words in the
lexicon are intended to model correct reading, in practice
words are often used to model deviations. For example,
if the word "elephant” is not in the Iexicon, it isliable to be
recognized as the sequence "and of that." Anyone who
designs a language model for this task without anticipating
this phenomenon is liable to be surprised by the results.

Second, the ability to detect deviations depends on
having a phonetically rich repertoire of symbols for
matching them. The word-only lexicon used in
(Hauptmann et a, 1993) was surprisingly successful
despite its limitations because it included all the words in
an entire passage, which was enough to provide
considerable phonetic variety.

Third, over-constrained search can impede error
recovery. One of our earlier language models tried to
exploit the characteristic structure of disfluent oral reading.
It assigned low or zero probabilities to transitions that
children seldom take, such as long jumps. These
probabilities were estimated from the transcribed oral
reading corpus described in (Mostow et al, 19933). We
expected that this model would produce more accurate
recognition than simpler ones, but we have not (yet)
succeeded in making it do so. We suspect the reason is
that when the recognizer follows a garden path, this more
constrained model makes it difficult to recover. For
example, suppose the reader says "Oncet upon atime,” and
the recognizer recognizes "Oncet" as "Once; ag
TRUNCATION,(T)." To recover from this garden path,
the recognizer must be able to jump to "upon,” without
incurring an excessive penalty (low probability) from the
language model; otherwise it may misrecognize "upon a
time' as "a.." Since Emily’s phonetic models and
lexicon can only crudely approximate the virtually infinite
range of speech sounds produced by disfluent young
readers, it appears impossible to keep the recognizer from
starting down such garden paths. Therefore the language
model must be designed to recover from them as quickly
as possible. That is, since we cannot prevent recognition
errors from occurring at al in these cases, we must instead
try to minimize their extent.

3.1. Accuracy

We evauated Emily’s accuracy off-line on 514
sentences read by 15 second graders as they used the
simulated reading coach described in Section 2. (To avoid

testing on our training data, we were careful in developing
our language model and tuning parameter values to use a
separate set of 457 sentences by 30 second graders from a
different school.) Our test utterances averaged 10 text
words in length and 15 seconds in duration, including 5
seconds of silence due to struggling readers frequent
hesitations. The readers misread only 1.6% of the words
in this corpus; we attribute this low rate partly to the help
button, which they used on 6% of the words, and partly to
how we operationalized "misread."

We relied on the human experimenter to flag misread
words in real-time, causing the simulated coach to record
"MARK" in the event file. (An UNMARK command
allowed self-corrections.) This scheme was faster and
cheaper than conventional detailed transcriptions,
especialy since disfluent reading is difficult to transcribe.
Moreover, it solved the sticky problem of when to consider
a word misread -- we simply told the experimenter to
follow the instructions in (Spache, 1981), which caution
against treating dialect substitutions and minor
mispronunciations (e.g. "axe" for "ask") asreading errors.

Our purpose in evaluation was to measure the ability of
our recognizer to trigger the coach's interventions.
Therefore in computing the list of words Emily treated as
misread, we filtered out the same function words that the
coach ignored. This step substantially reduced the
incidence of false aarms (correct words treated as
misread), since these function words were rarely misread
by the reader but were often misrecognized by the
recognizer. Similarly, we ignored misreadings of words
where readers used the help button, both because the coach
does not require them to echo these words (though they
often do), and because our digital recording apparatus
often failed to record the beginnings of these words, since
it stops recording during the coach’s spoken interventions,
and there isa dight delay before it resumes.

The evaluation results according to this methodology are
shown in Table 3-1. Emily’'s sensitivity in classifying
words as misread or correct is demonstrated by the fact
that its detection rate is significantly (over 10 times)
greater than itsfalse dlarm rate.

For comparison, we reanalyzed the results for Emily’s
predecessor, named Evelyn (Mostow et a, 19933,
Hauptmann et al, 1993). These results were obtained for a
corpus of children’s oral reading that was similar except
that each utterance was an entire Spache passage, read
without assistance. They were computed by averaging the
individual accuracies on each passage, which reduced the
effect of the passages where most of the recognition errors
occurred. Without such averaging, Evelyn's detection rate
was lower than Emily’s. The difference is not significant
with respect to the +2c confidence intervals, which are
wide because so few words were misread. However,
Evelyn's fase aarm rate was significantly (over three
times) worse than Emily’s.

We attribute Emily’s higher accuracy to several factors.
First, Evelyn was evaluated based on a different, more
literal criterion, which treated any word not spoken exactly
correctly as "missed." In contrast, Emily was evaluated



Table 3-1: Comparative Accuracy in Detecting Misread Words

System: Corpus: Definition of Misread Words: Detection Rate: False Alarm Rate:
Evelyn | 99 passages | all substitutions and omissions .370+.093 (40 of 108) | .126 *+.010 (567 of 4516)
Emily | 514 sentences | only pedagogically relevant errors | .488+.110 (40 of 82) | .0366+.0053 (187 of 5106)

Detection rate = (misread words detected) / (words misread); false alarm rate = (false alarms) / (words read correctly)

Confidence intervals shown are + 26, where 6=V

based on the more pedagogically relevant criterion applied
by the experimenter who flagged words as "misread.” We
have now transcribed enough of our corpus to compare
these two schemes. Almost no correctly read words were
erroneously flagged by the experimenter, but for every
word flagged as misread, several minor substitutions (such
as adding or dropping a plura ending) were not flagged.
Treating such near-miss substitutions as reading errors
would erode Emily’s detection rate. However, this
difference in criteria does not account for Emily’s much
lower false alarm rate.

Second, Evelyn was evaluated on a corpus of page-long
passages, and its language model had equiprobable
transitions to any word on the page other than the next
word in the text. In contrast, Emily recognizes one
sentence at a time rather than a complete passage, and its
language model preserves state by avoiding transitions out
of the current sentence.

Third, filtering out function words cut Emily’s false
alarm rate by roughly half.

Fourth, Emily’s richer lexicon enables it to model non-
text-words using truncations, not just sequences of other
words. We plan to further enrich the lexicon based on
analysis of the transcribed oral reading and of Emily’'s
recognition errors. We aso need to optimize both the
heuristic probabilities used in our language model, and the
various input parameters to Sphinx-11.

Emily embodies a somewhat "lenient” tradeoff between
detection and false dlarms. The 97% transition probability
between successive words of the text represents a strong
expectation of correct reading, which can be overcome
only by compelling acoustic evidence. A weaker bias
would improve detection but increase the false alarm rate.
But Emily’s fase aarms aready outnumber misread
words (187 to 82 on our test corpus). The reason is that
even poor readers misread fewer than 10% of the words if
the material is appropriate to their reading level (Betts,
1946, Vacca et a., 1991). To avoid swamping the reader
with unnecessary interventions, we must reduce false
alarms.

To help diagnose Emily’ s recognition errors, we split up
the utterances into four subsets based on whether the
reader pushed the help button (which tended to corrupt the
recording) and/or misread a word (which indicated
disfluency). We found that each of these factors
multiplied the false alarm rate by about 1.5, reaching 6.1%
on utterances with both SAYWORD and MARK events,
compared to 2.8% on utterances with neither. The

P-(

n

1) isthe standard error for rate p, samplesizen

detection rate was insignificantly better on the utterances
with no SAYWORDSs (53% vs. 46%).

It isimportant to point out that speech recognition errors
in this domain are not devastating. Some errors are
masked by the interventions. For example, if Emily
correctly detects that three or more words were misread, it
will reread the sentence to help the reader comprehend it --
even if it is wrong about which words were misread. At
worst, failure to detect a misread word merely loses one
opportunity for corrective feedback. Conversely, false
aarms merely slow down the flow of reading by asking
the student to reread text unnecessarily. In practice, they
encourage clearer enunciation. At worst, they may irritate
the student if they become too frequent.

We have not yet used recorded speech to measure
Emily’s ability to detect when the reader reaches the end
of the sentence or gets stuck. Such a test would need to
determine how often, given the recorded reading, Emily
would have intervened within an acceptable delay.

3.2. Other Improvements

Speed: Emily’'s speech processing consists of some
signal processing performed on a NeXT in close to real
time, plus a beam search performed on a more powerful
machine (DEC 3000 or HP 735). In our off-line
evauation, this search was consistently faster than real
time, averaging roughly 50% times real time. In contrast,
Evelyn's search took 1-2 times rea time on the same
machine (Mostow et al, 1993a). We attribute this two- to
four-fold speedup to Emily’s sentence-based language
model.

Flexibility: The Sphinx-11 recognizer used in (Mostow
et a, 1993a) and (Hauptmann et al, 1993) required a
separate language model for each passage.  This
requirement precluded interrupting the reading before the
end of the passage, because there was no way to tell the
recognizer where to resume listening other than at the
beginning of the passage.

We overcame this limitation by modifying Sphinx-II to
accept a starting point as a parameter. Simply by changing
its starting point, Emily can listen to one sentence at a
time, resume listening in mid-sentence after the reader
clicks on a word, jump back to listen to the reader retry a
misread word after an intervention, or switch to another
story.

We plan to further improve Emily’'s flexibility by
reimplementing its language model to take constant space,
instead of space proportional to (or even quadratic in) the



total amount of text. Eliminating the need to reload
language models for different text could enable Emily to
monitor oral reading of text generated on the fly.

4. Conclusion

Emily improves in measurable ways on previously
published attempts to use connected speech recognition to
monitor and assist oral reading. First and foremost, it
provides meaningful assistance, using interventions that
(when implemented in our simulated coach) enabled
struggling second graders to read material 0.6 years more
advanced than they could on their own, and with much less
frustration. Second, its detection rate for misread words is
higher, its false alarm rate three times lower, and its search
phase two to four times faster, than the system in (M ostow
et al, 1993a).

These results are based on a number of conceptual
contributions. First, Emily’s interventions were derived
from a combination of theory, expertise, and experiment.
They embody an interesting new type of human-machine
interaction -- shared reading -- and express in machine-
applicable form some basic rules for helping children read.
Second, Emily’s language model, sentence-based
processing, and mechanism for multiple starting points
have improved the automated analysis of ora reading.
Third, the development process by which Emily was
designed, with its paralel interacting tracks for the
interventions and the speech analysis required to support
them, may serve as a useful mode for other
multidisciplinary applications.

Finally, the lessons we have learned from this work
reflect the scientific value of the reading assistance task as
acarrier problem for research on two-way continuous
speech communication with machines. Because the
computer knows the text the reader is trying to read, the
speech analysis is tractable enough to study some limited
but natural forms of such interaction now, without waiting
for real time recognition of unconstrained spontaneous
speech to become feasible.

One lesson is the identification of novel criteria for
evaluating speech recognition accuracy. The
conventional off-line evaluation criteria take the endpoint
of each utterance as a given. These criteria do not test the
ability to detect when the reader reaches the end of a
sentence or gets stuck. In general, two-way speech
communication will require a way to decide when the
speaker is done speaking.

Another lesson is that perplexity can be lessimportant
than recovery. Perplexity measures the language model’s
average uncertainty about what the speaker will say next at
any given point. Lower perplexity normally leads to
higher accuracy. But when we tried to reduce perplexity
by modelling patterns of disfluent oral reading, detection
accuracy actualy fell, apparently because the very
constraints that reduced the perplexity of the language
model impeded its ability to recover from garden paths.
Further work is needed to test this hypothesis, define a
formal measure of a language model’s error recovery
ability, and analyze how it affects recognition accuracy.

We are now trying out Emily on children and modifying
its interventions to tolerate errors by the speech recognizer,
asillustrated in our video of Emily in action (Mostow et al,
1994a, Mostow et al, 1994b). We hope to test soon how
well the fully automated coach helps children read. But
our longer-term goal is to scale up the coach to help
children learn to read on their own.
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