
Applications of Finite-State Transducers in

Natural-Language Processing

Lauri Karttunen

Xerox Research Centre Europe,
6, chemin de Maupertuis, F-38240 Meylan, France

karttunen@xrce.xerox.com http://www.xrce.xerox.com

Abstract. This paper is a review of some of the major applications
of �nite-state transducers in natural-language processing ranging from

morphological analysis to �nite-state parsing. The analysis and gener-

ation of in
ected word forms can be performed e�ciently by means of
lexical transducers. Such transducers can be compiled using an extended

regular-expression calculus with restriction and replacement operators.

These operators facilitate the description of complex linguistic phenom-
ena involving morphological alternations and syntactic patterns. Because

regular languages and relations can be encoded as �nite-automata, new

languages and relations can be derived from them directly by the �nite-

state calculus. This is a fundamental advantage over higher-level linguis-

tic formalisms.

1 Introduction

The last decade has seen a substantial surge in the use of �nite-state methods

in many areas of natural-language processing. This is a remarkable comeback

considering that in the dawn of modern linguistics, �nite-state grammars were

dismissed as fundamentally inadequate. Noam Chomsky's seminal 1957 work,

Syntactic Structures [3], includes a short chapter devoted to \�nite state Markov

processes", devices that we now would call weighted �nite-state automata. In this

section Chomsky demonstrates in a few paragraphs that

English is not a �nite state language. (p. 21)

In any natural language, a sentence may contain discontinuous constituents em-

bedded in the middle of another discontinuous pair as in \If1 . . . either2 . . . or2
. . . then1 . . . " It is impossible to construct a �nite automaton that keeps track

of an unlimited number of such nested dependencies. Any �nite-state machine

for English will accept strings that are not well-formed.

The persuasiveness of Syntactic Structures had the e�ect that, for many

decades to come, computational linguists directed their e�orts towards more

powerful formalisms. Finite-state automata as well as statistical approaches dis-

appeared from the scene for a long time. Today the situation has changed in

a fundamental way: statistical language models are back and so are �nite-state

2 Lauri Karttunen

automata, in particular, �nite-state transducers. One reason is that there is a

certain disillusionment with high-level grammar formalisms. Writing large-scale

grammars even for well-studied languages such as English turned out to be a very

hard task. With easy access to text in electronic form, the lack of robustness and

poor coverage became frustrating. But there are other, more positive reasons for

the renewed interest in �nite-state techniques. In phonology, it was discovered

rather early [6] that the kind of formal descriptions of phonological alternations

used by linguists were, against all appearances, �nite-state models. In syntax, it

became evident that although English as a whole is not a �nite-state language,

there are nevertheless subsets of English for which a �nite-state description is not

only adequate but also easier to construct than an equivalent phrase-structure

grammar. Finally, considerable progress has been made in developing special

�nite-state formalisms that are suited for the description of linguistic phenom-

ena and, along with them, compilers that e�ciently produce automata from such

a description. The automata in current linguistic applications are typically much

too large and complex to be produced by hand.

The following sections will cover these positive developments in more detail.

2 Finite-State Morphology

Morphology is a domain of linguistics that studies the formation of words. It is

traditional to distinguish between surface forms and their analyses, called lem-

mas. The lemma for a surface form such as the English word bigger typically

consists of the traditional dictionary citation form of the word together with

terms that convey the morphological properties of the particular form. For ex-

ample, the lemma for bigger might be represented as big+Adj+Comp to indicate

that bigger is the comparative form of the adjective big.

There are two challenges in modeling natural-language morphology:

1. Morphotactics

Words are typically composed of smaller units of meaning, called morphemes.

The morphemes that make up a word must be combined in a certain order:

piti-less-ness is a word of English but *piti-ness-less is not. Most

languages build words by concatenation but some languages also exhibit

non-concatenative processes such as interdigitation and reduplication [2].

2. Morphological Alternations

The shape of a morpheme often depends on the environment: pity is realized

as piti in the context of less, die as dy in dying.

The basic claim of the �nite-state approach to morphology is that the relation

between the surface forms of a language and their corresponding lemmas can

be described as a regular relation.1 If the relation is regular, it can be de�ned

using the metalanguage of regular expressions; and, with a suitable compiler,

the regular expression source code can be compiled into a �nite-state transducer

that implements the relation computationally.

1 Some writers prefer the term rational relation.

Lecture Notes in Computer Science 3

In the resulting transducer, each path (= sequence of states and arcs) from

the initial state to a �nal state represents a mapping between a surface form

and its lemma, also known as the lexical form. For example, the information

that the comparative of the adjective big is bigger might be represented in

the English lexical transducer by the path in Figure 1 where the zeros represent

epsilon symbols.2

Lexical side:

b

b

i

i

g

g

g

0

0

+Adj

e

0

r

+Comp

Surface side:

Fig. 1. A Path in a Transducer for English

For the sake of clarity, Figure 1 represents the upper and the lower side of the

arc label separately on the opposite sides of the arc. In the rest of the paper,

we use a more compact notation: the upper and the lower symbol are combined

into a single label of the form upper:lower if the symbols are distinct. Identity

pairs, e.g. b:b, are reduced to a single symbol. In standard notation, the path

in Figure 1 is labeled as

b i g 0:g +Adj:0 0:e +Comp:r.

An important characteristic of the �nite-state transducers built at Xerox

is that they are inherently bidirectional: there is no privileged input side. The

path in Figure 1 can be traversed matching either the form bigger to produce

big+Adj+Comp, or vice versa. The same transducer can be used for analysis (sur-

face input, \upward" application) or for generation (lexical input, \downward"

application).

A single surface string can be related to multiple lexical strings. For exam-

ple, a morphological transducer for French applied upward to the surface string

suis may produce the four lexical strings shown in Figure 2. Ambiguity in

the downward direction is also possible, as in the relation of the lexical string

payer+IndP+SG+P1+Verb (\I pay") to the surface strings paie and paye, which

are in fact alternate spellings in standard French orthography.

paie
paye

suivre+Imp+SG+P2+Verb
suivre+IndP+SG+P1+Verb

être+IndP+SG+P1+Verb
suivre+IndP+SG+P2+Verb

payer+IndP+SG+P1+Verb

suis

Lexical Transducer for French

Fig. 2. Morphological Ambiguities

2 The epsilon symbols and their placement in the string are not signi�cant. We will
ignore them whenever it is convenient.

4 Lauri Karttunen

At Xerox, such lexical transducers have been created for a great number of

languages including most of the European languages, Turkish, Arabic, Korean,

and Japanese. The source descriptions are written using notations [12, 9, 1]

that are helpful shorthands for ordinary regular expressions. The construction

is commonly done by creating two separate modules: a lexicon description that

de�nes the morphotactics of the language and a set of rules that de�ne regular

alternations such as the gemination of g and the epenthetical e in the surface

form bigger. Irregular alternations such as être:suis are de�ned explicitly in

the source lexicon. The separately compiled lexicon and rule networks are sub-

sequently composed together as in Figure 3.

Lexical Transducer

(a single FST)
.o.Compiler

Lexicon FST

Regular Expression
Rule FST

Regular Expression

Lexicon

Rules

Fig. 3. Creation of a Lexical Transducer

Lexical transducers may contain hundreds of thousands, even millions, of

states and arcs and an in�nite number of paths in the case of languages such

as German that in principle allow noun compounds of any length. The regular

expressions from which such complex networks are compiled include high-level

operators that have been developed in order to make it possible to describe

constraints and alternations that are commonly found in natural languages in a

convenient and perspicuous way.We will describe them in the following sections.

3 Basic Expression Calculus

The notation used in this section comes from the Xerox �nite-state calculus.

It is described in detail in Chapter 2 of the forthcoming book by Beesley and

Karttunen [1]. We use uppercase letters, A, B, etc., as variables over regular

expressions. Lowercase letters, a, b, etc., stand for symbols. There are two special

symbols: 0, the epsilon symbol, that stands for the empty string and ?, the any

symbol that represents the in�nite set of symbols in some yet unknown alphabet.

The special meaning of 0, ?, and any other symbol can be canceled by enclosing

the symbol in double quotes.

An atomic expression consisting of a symbol pair such as a:b denotes a

relation containing the corresponding strings. An expression consisting of a single

symbol such as a denotes the language consisting of \a" or, alternatively, the

corresponding identity relation. The Xerox implementation intentionally does

not distinguish between a and a:a.

Lecture Notes in Computer Science 5

Complex regular expressions can be built up from simpler ones by means

of regular expression operators. Square brackets, [], are used for grouping ex-

pressions. Because both regular languages and regular relations are closed under

concatenation and union, the following basic operators can be combined with

any kind of regular expression:

A | B Union.

A B Concatenation.

(A) Optionality; equivalent to [A | 0].

A+ Iteration; one or more concatenations of A.

A* Kleene star; equivalent to (A+).

Although regular languages are closed under complementation, subtraction, and

intersection, regular relations are not [8]; thus the following operators can be

combined only with expressions that denote a regular language.

�A Complement

nA Term complement; all single symbol strings not in A.

A & B Intersection

A - B Subtraction (minus)

Regular relations can be constructed by means of two basic operators:

A .x. B Crossproduct

A .o. B Composition

The crossproduct operator, .x., is used only with expressions that denote a

regular language; it constructs a relation between them. [A .x. B] designates

the relation that maps every string of A to every string of B. The notaion a:b is

a convenient shorthand for [a .x. b].

4 Containment, Restriction, Replacement, and Marking

The syntax (though not the descriptive power) of regular expressions can be

extended by de�ning new operators that allow commonly used constructions

to be expressed more concisely. A simple example of a trivial but convenient

extension is the containment operator $.

$A =def [?* A ?*]

For example, $[a | b] denotes all strings that contain at least one \a" or

\b" somewhere.

The addition of new operators can be more than just a notational conve-

nience. A case in point is Koskenniemi's [16] restriction operator =>.

A => L _ R Restriction; A only in the context of L _ R.

6 Lauri Karttunen

Here A, L and R may denote any regular language. This expression designates

the language of strings that have the property that any string of A that occurs in

them is immediately preceded by some string from L and immediately followed

by some string from R. For example, a => b _ c includes all strings that contain

no occurrence of \a", strings like \bac-bac" that completely satisfy the condition,

but no strings like \ab". A special boundary symbol, .#., is used to indicate the

beginning or the end of the string in contexts. For example, a => _ .#. allows

\a" only at the end of a string.

The advantage of the restriction operator is that it encodes in a compact

way a useful condition that is di�cult to express in terms of the more primitive

operators. The de�nition of [A => L _ R] is shown below.

A => L _ R =def [�[[�[?* L] A ?*] | [?* A �[R ?*]]]]

Another example of a useful high-level abstraction is the replace operator

->. As we will see shortly, there are many constructions involving this operator.

The simplest variant is unconstrained, obligatory replacement:

A -> B Replacement of A by B.

Transducers compiled from -> expressions are usually intended to be applied

downward; they can of course be inverted and applied in the other direction.

The component expressions, A and B, must denote regular languages but the

expression as a whole denotes a relation. The [A -> B] relation maps any upper-

language string to itself if the string contains no instance of A. Upper-language

strings that contain instances of A are paired with lower-language strings that

are otherwise identical except that each A segment is replaced by some B string.

The de�nition [10] of simple replacement is shown below.

A -> B =def [[�$[A - 0] [A .x. B]]* �$[A - 0]]

Two replace expressions linked with a comma indicate parallel replacement. For

example,

a -> b, b -> a

yields a transducer that exchanges the two letters mapping \abba" to \baab".

High-level abstractions like A => L _ R and A -> B are conceptually easier

to operate with than the logically equivalent but very complex primitive for-

mulas, just as it is easier to write complex computer programs in a high-level

language rather than in a logically equivalent assembly language.

Instead of replacing the strings of a language by other strings, it is sometimes

useful just to mark them in some special way. In the Xerox calculus, an expression

of the form

A -> B ... C Marking A by B and C.

Lecture Notes in Computer Science 7

yields a transducer that maps any upper-language string to a lower-language

string that is identical to it except that any instance of A is preceded by a string

from B and followed by a string from C. Here A, B and C may denote any regular

language. In practice, however, B and C are usually atomic expressions. For ex-

ample, a | e | i | o | u -> "[" ... "]" yields a transducer that encloses

vowels between square brackets leaving the rest of the text unchanged. The

relation includes pairs such as

i c e c r e a m

[i]c[e]c r[e][a]m

4.1 Constraining Replacement and Marking

Replacement and marking can be constrained in many di�erent ways: by con-

text, by direction of application, by length of the pattern to be replaced or

marked. The basic technique for compiling constrained replacement and mark-

ing transducers was invented in the early 1980's by Kaplan and Kay [7] for

Chomsky-Halle-type rewrite rules [4]. It was also used very early for Kosken-

niemi's two-level rules [16, 14, 12]. The idea was �nally explained in detail in

Kaplan and Kay's 1994 paper [8]. There is now a rich literature on this topic

[10, 17, 5, 11, 15, 18]. The details vary but the basic method involves compos-

ing together a cascade of networks that introduce various auxiliary symbols into

the input string, constrain their distribution, and �nally eliminate the auxiliary

alphabet. As there is no space to explore the compilation issue in a technical

way, we will only explain the syntax of constrained replacement and marking

expressions and give a few examples of the corresponding transducers without

explaining how the expressions are compiled.

The transducers compiled from the simple replacement and marking expres-

sions are in general ambiguous in the sense that a string in the upper language

of the relation is paired with more than one lower-language string. For example,

a | a a -> "[" ... "]" yields a marking transducer than maps the upper-

language string \aaa" into three di�erent lower-language strings:

a a a a a a a a a

- - - - --- --- -

[a][a][a] [a][a a] [a a][a]

The -> operator does not constrain the selection of the alternate substrings for

replacement or marking. In this case, the upper-language string can be factored

or parsed in three di�erent ways.

For many applications, it is useful to de�ne another version of replacement

and marking that in all such cases yields a unique outcome. The longest-match,

left-to-right replace operator, @->, de�ned in [11], imposes a unique factoriza-

tion on every input. The upper-language substrings to be marked or replaced

are selected from left to right, not allowing any overlaps. If there are alternate

candidate strings starting at the same location, only the longest one is chosen.

Thus a | a a @-> "[" ... "]" denotes a relation that unambiguously maps

8 Lauri Karttunen

\aaa" to \[aa][a]". The transducers corresponding to the -> and @-> variant of

this expressions are shown in Figure 4.3

?

]

[
0:[a

]?[0:]

a0:]

?

]

[

0:[

0:]

a

a

0:]

a | a a @-> "[" ... "]"a | a a -> "[" ... "]"

Fig. 4. An Ambiguous and an Unambiguous Marking Transducer

Replacement and marking contexts can be speci�ed using the same notation

as for restriction: L R, where L is the left context, R is the right context, and

marks the site of the upper-language string that is replaced or marked. In

the case of a restriction expression, the interpretation of context is self-evident

because a restriction denotes a set of strings. This is not the case for replacement

and marking. Replacement and marking expressions must specify whether L and

R pertain to the upper or the lower side of the relation. The Xerox calculus

provides speci�c markers ||, //, \\ and \/ to distinguish between the four

possible cases:

|| L _ R L and R both on the upper side

// L _ R L on the lower, R on the upper side

\\ L _ R L on the upper, R on the lower side

\/ L _ R L and R both on the lower side

To see the di�erence between say || and // versions, let us consider two variants

of a phonological rule that shortens a double \aa" in the context of another

double \aa" in the preceding syllable. Here C represents any consonant.

Rule 1. a a -> a || a a C+ _ (Slovak)

Rule 2. a a -> a // a a C+ _ (Gidabal)

Vowel shortening is a very common type of morphological alternation under

many di�erent kinds of context conditions. Interestingly, in some languages such

as Slovak the shortening depends on the lexical (upper-side) context whereas

in languages such as Gidabal (an Australian language), it is conditioned by the

surface side.4 The hypothetical lexical form \baacaadaafaa" would be realized

quite di�erently in these two languages:

b a a c a a d a a f a a b a a c a a d a a f a a

b a a c a d a f a b a a c a d a a f a

3 The symbol ? in an arc label represents an unknown symbol; in this case, any

symbol other than [,], and a. By convention, the leftmost state is the start state,

and �nal states are indicated by double circles.
4 This example is due to Martin Kay (p.c.).

Lecture Notes in Computer Science 9

Rule 1 Rule 2

In a language like Slovak, the last three syllables would all shorten, yielding

\baacadafa", whereas a language like Gidabal would show the alternating pat-

tern \baacadaafa".

The two replacement transducers compiled from Rule 1 and Rule 2 are shown

in Figure 5.

?

C
C

C

a
?

?

?
C

?

a
a a

C

a:0?

C
C

C

a
?

?

a:0
?
C

?

a
a a

C

a a -> a || a a C+ _ a a -> a // a a C+ _

Fig. 5. Two Vowel-Shortening Rules

Contextual constraints may be combined with the directional left-to-right

and longest-match constraints. For example, if C and V stand for consonants

and vowels, respectively, a simple syllabi�cation rule may be expressed in the

following way:

C* V+ C* @-> ... "-" || _ C V

This marking expression yields an unambiguous transducer that inserts a hyphen

after each longest available instance of the C* V+ C* pattern that is followed by

a consonant and a vowel. The relation it encodes consists of pairs of strings such

as

s t r u k t u r a l i s m i

s t r u k - t u - r a - l i s - m i .

In this case, the choice between || and // makes no di�erence but the two other

context markers, \\ and \/ could not be used here.

The syllabi�cation transducer is a simple �nite-state parser: it recognizes and

marks instances of a regular language in a text. In the next section we will show

a more sophisticated example of this kind.

5 Finite-State Syntax

Although the syntax of a natural language cannot in general be described by a

�nite-state, or even a context-free grammar, there are many subsets of natural

language that can be correctly described by very simple means, for example,

names and titles, addresses, prices, dates, etc. In this section, we examine one

such case in detail: a grammar for dates.

For the sake of illustration, let us consider here only one of several common

date formats, expressions such as

10 Lauri Karttunen

Tuesday

July 25 Tuesday, July 25

July 25, 2000 Tuesday, July 25, 2000

In the following we assume that a date expression consists of a day of the

week, a month and a date with or without a year, or a combination of the two.

Note that this description of the syntax of date expressions presents the same

problem we encountered in the a | aa @-> a example in the previous section.

Long date expressions, such as \Tuesday, July 25, 2000", contain smaller well-

formed date expressions, e.g. \July 25", that should be ignored in the context

of a larger date. In order to simplify the presentation, we stipulate that date

expressions are contiguous strings, including the internal spaces and commas.

To facilitate the speci�cation of the date language we �rst de�ne some auxil-

iary terms and then use them to de�ne a language of dates and a parser for the

language. The complete set of de�nitions is shown below:

1To9 = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

0To9 = "0" | 1To9

Day = Monday | Tuesday | | Saturday | Sunday

Month = January | February | | November | December

Date = 1To9 | [1 | 2] 0To9 | 3 ["0" | 1]

Year = 1To9 (0To9 (0To9 (0To9)))

AllDates = Day | (Day ", ") Month " " Date (", " Year)

From these de�nitions we can compile a small �nite-state automaton, AllDates,

with 13 states and 96 arcs that describes a language of about 30 million date

expressions for the period from January 1, 1 to December 31, 9999.

A parser for the language can be compiled from the following simple regular

expression.

AllDates @-> "[" ... "]"

It yields a transducer of 23 states and 321 arcs that marks maximal date expres-

sions in the manner illustrated by the following text:

Today is [Tuesday, July 25, 2000] because yesterday was [Monday]

and it was [July 24] so tomorrow must be [Wednesday, July 26].

Because of the left-to-right, longest-match constraints associated with the @->

operator, the transducer brackets only the maximal date expressions.

However, this regular-expression grammar is not optimal. The AllDates lan-

guage includes a large number of syntactically correct but semantically invalid

date expressions. For example, there is no \April 31, 2000", \February 29, 1900",

or \Sunday, September 29, 1941". April has only 30 days in any year; unlike year

2000, year 1900 was not a leap year; and September 29, 1941 fell on a Monday.

All these three types of imperfections can be corrected within the �nite-

state calculus. For each of these three types of invalid dates we can de�ne a

regular language that excludes such expressions. By intersecting these constraint

languages with the AllDates language, we can de�ne a language that contains

only semantically valid dates. Figure 6 illustrates the idea.

Lecture Notes in Computer Science 11

Dates
Valid

InMonth
MaxDays LeapDays

AllDates

WeekDayDates

Fig. 6. Re�nement by Intersection

We need three constraints:

MaxDaysInMonth Restriction on the distribution of 30 and 31.

LeapDays Restriction on February 29.

WeakDayDate Restrictions on weekdays and dates

In fact, all the constraints can be expressed by means of the restriction operator

=> de�ned in the previous section. For example, to build the leap-day constraint

we �rst need to de�ne the language of leap years, that is the language of all

numbers divisible by four but subtracting centuries such as 1900 that are not

divisible by 400.

Even = "0" | 2 | 4 | 6 | 8

Odd = 1 | 3 | 5 | 7 | 9

N = 1To9 0To9*

Div4 = [((N) Even) ["0" | 4 | 8]] | [(N) Odd [2 | 6]]

LeapYears = Div4 - [[N - Div4] "0" "0"]

Here we �rst de�ne Div4 as the in�nite set of natural numbers that are divisible

by four. This set consists of two parts: numbers that end in 0, 4, or 8 possibly

preceded by an even number and numbers that end in 2 or 6 preceded by an

odd number. Finally, we de�ne LeapYears as the set of numbers divisible by

4 subtracting centuries that are not multiples of 400. Note that the expression

[N - Div4] "0" "0" denotes numbers with two �nal zeros that are preceded

by a number that is not divisible by four. For example, it includes \1900" but

not \2000". Because LeapYears is de�ned as Div4 minus this set, it follows that

the string \2000" is in the language but \1900" is not.

Once the language of leap years is de�ned, the distribution of \February 29"

in date expressions can be constrained with the following simple restriction.

LeapDays = February " " 2 9 ", " => _ LeapYears .#.

In other words: a date expression containing \February 29, " must be followed

by leap year. The context condition, .#., is necessary here in order to rule out

expressions like \February 29, 1969", which would qualify if we were allowed

12 Lauri Karttunen

to take into account only the �rst three digits, 196 being a leap year in the

Gregorian calendar.

The construction of the WeakDayDates constraint is not trivial but not as

di�cult as it might initially seem. See [13] for details. Having constructed the

auxiliary constraint languages we can de�ne the language of valid dates as

ValidDates = AllDates & MaxDaysInMonth & LeapDays & WeekDayDates

The network contains 805 states, 6472 arcs, and about 7 million date expressions.

We could now construct a parser that recognizes only valid dates. But we ac-

tually can do something more interesting, namely, de�ne a parser that recognizes

all date expressions and marks them as valid, \[VD ", or invalid, \[ID ":

ValidDates @-> "[VD " ... "]" ,

[AllDates - ValidDates] @-> "[ID " ... "]"

This parallel replacement expression compiles into a 2699 state, 20439 arc trans-

ducer in about 15 seconds on a Sun workstation. The time includes the com-

pilation of all the auxiliary expressions and constraints discussed above. The

following example illustrates the e�ect of the transducer on a sample text.

The correct date for today is [VD Tuesday, July 25, 2000].

Today is not [ID Tuesday, July 26, 2000].

6 Conclusion

Although regular expressions and the algorithms for converting them into �nite-

state automata have been part of elementary computer science for decades, the

restriction, replacement, and marking expressions we have focused on are rel-

atively recent. They have turned out to be very useful for linguistic applica-

tions, in particular for morphology, tokenization, and shallow parsing. Descrip-

tions consisting of regular expressions can be e�ciently compiled into �nite-state

networks, which in turn can be determinized, minimized, sequentialized, com-

pressed, and optimized in other ways to reduce the size of the network or to

increase the application speed. Many years of engineering e�ort have produced

e�cient runtime algorithms for applying networks to strings.

Regular expressions have a clean, declarative semantics. At the same time

they constitute a kind of high-level programming language for manipulating

strings, languages, and relations. Although regular grammars can cover only

limited subsets of a natural language, there can be an important practical ad-

vantage in describing such sublanguages by means of regular expressions rather

than by some more powerful formalism. Because regular languages and relations

can be encoded as �nite automata, they can be more easily manipulated than

context-free and more complex languages. With regular-expression operators,

new regular languages and relations can be derived directly without rewriting

the grammars for the sets that are being modi�ed. This is a fundamental advan-

tage over higher-level formalisms.

Lecture Notes in Computer Science 13

References

[1] Kenneth R. Beesley and Lauri Karttunen. Finite-state morphology: Xerox tools

and techniques. Cambridge University Press, 2000. To appear.

[2] Kenneth R. Beesley and Lauri Karttunen. Finite-state non-concatenative morpho-

tactics. In Lauri Karttunen Jason Eisner and Alain Th�eriault, editors, SIGPHON-
2000, pages 1{12, August 6 2000. Proceedings of the Fifth Workshop of the ACL

Special Interest Group in Computational Phonology.

[3] N. Chomsky. Syntactic Structures. Mouton, Gravenhage, Netherlands, 1957.
[4] Noam Chomsky and Morris Halle. The Sound Pattern of English. Harper and

Row, New York, 1968.

[5] Edmund Grimley-Evans, George Anton Kiraz, and Stephen G. Pulman. Compil-
ing a partition-based two-level formalism. In Proceedings of the 16th International

Conference on Computational Linguistics, Copenhagen, 1996.

[6] C. Douglas Johnson. Formal Aspects of Phonological Description. Mouton, The
Hague, 1972.

[7] Ronald M. Kaplan and Martin Kay. Phonological rules and �nite-state trans-

ducers. In Linguistic Society of America Meeting Handbook, Fifty-Sixth Annual

Meeting, New York, December 27-30 1981. Abstract.

[8] Ronald M. Kaplan and Martin Kay. Regular models of phonological rule systems.

Computational Linguistics, 20(3):331{378, 1994.
[9] Lauri Karttunen. Finite-state lexicon compiler. Technical Report ISTL-NLTT-

1993-04-02, Xerox Palo Alto Research Center, Palo Alto, CA, April 1993.

[10] Lauri Karttunen. The replace operator. In ACL'95, Cambridge, MA, 1995. cmp-
lg/9504032.

[11] Lauri Karttunen. Directed replacement. In ACL'96, Santa Cruz, CA, 1996. cmp-

lg/9606029.
[12] Lauri Karttunen and Kenneth R. Beesley. Two-level rule compiler. Technical

Report ISTL-92-2, Xerox Palo Alto Research Center, Palo Alto, CA, October

1992.
[13] Lauri Karttunen, Jean-Pierre Chanod, Gregory Grefenstette, and Anne Schiller.

Regular expressions for language engineering. Journal of Natural Language Engi-
neering, 2(4):305{328, 1996.

[14] Lauri Karttunen, Kimmo Koskenniemi, and Ronald M. Kaplan. A compiler for

two-level phonological rules. Technical report, Xerox Palo Alto Research Cen-
ter and Center for the Study of Language and Information, Stanford University,

June 25 1987.

[15] Andr�e Kempe and Lauri Karttunen. Parallel replacement in �nite-state calculus.

In COLING'96, Copenhagen, August 5{9 1996. cmp-lg/9607007.

[16] Kimmo Koskenniemi. Two-level morphology: A general computational model for

word-form recognition and production. Publication 11, University of Helsinki,
Department of General Linguistics, Helsinki, 1983.

[17] Mehryar Mohri and Richard Sproat. An e�cient compiler for weighted rewrite

rules. In ACL'96, Santa Cruz, CA, 1996.
[18] Gertjan van Noord and Dale Gerdemann. An extendible regular expression com-

piler for �nite-state approaches in natural language processing. In O. Boldt,

H. Juergensen, and L. Robbins, editors, Workshop on Implementing Automata;

WIA99 Pre-Proceedings, Potsdam Germany, 1999.

