
Computational Linguistics: Semantics

Raffaella Bernardi
KRDB, Free University of Bozen-Bolzano

P.zza Domenicani, Room: 2.28, e-mail: bernardi@inf.unibz.it

Contents First Last Prev Next J

Contents

1 Exercise 1: Well formed formula . 3
2 Exercise 2: λ-conversion . 5
3 Exercise 3: λ-calculus and NL. 7
4 Exercise 3: λ-calculus and NL. 13

Contents First Last Prev Next J

1. Exercise 1: Well formed formula

Let j be a constant of type e; M of type e → t; S of type ((e → t) → (e → t)), and
P of type (e → t) → t. Furthermore, x is a variable of type e, and Y a variable of
type (e → t).

Determine which of the following is well-formed, give its type.

1. (λx.M(x))(P).

2. (λx.M(x))(j).

3. λx.M(j).

4. S(λx.M(x)).

5. (λY.Y (j))(M)

6. λx.(M(x) ∧M(j))

7. (λx.M(x)) ∧M(j))

Contents First Last Prev Next J

Solution

1. no (since the function is of type e → t while the argument is of type (e → t) → t
(whereas it should be of type e.

2. yes, t

3. yes, e → t

4. yes, e → t

5. yes, t

6. yes, e → t

7. no. (∧ must connect expressions of type t)

Contents First Last Prev Next J

2. Exercise 2: λ-conversion

Let j be a constant of type e; M of type (e → t), and A of type e → (e → t).
Furthermore, x and y are variables of type e, and Y is a variable of type e → t.
Reduce the following expression as much as possible by means of λ-conversion.

1. λx(M(x))(j)

2. λY (Y (j))(M)

3. λxλY (Y (x))(j)(M)

4. λx∀y(A(x)(y))(j)

5. λx∀y(A(x)(y))(y)

6. λY (Y (j))λx(M(x))

7. λY ∀x(Y (x))λy(A(x)(y))

Contents First Last Prev Next J

Solution:

1. M(j)

2. M(j)

3. M(j)

4. ∀yA(j)(y)

5. ∀z.A(y)(z)

6. M(j) (by replacing first Y with λx(M(x)) and then x with j.

7. ∀z.A(z)(x)

Note, in 5 and 7 you have to rename variables. Direct λ-conversion is not possible:
in 5. y is not free for x in ∀y.(A(x)(y)). Hence you have to rename the y by, e.g.,
z, so to be able λ-conversion. Similarly, in 7, you can rename x by z before apply
λ-conversion.

Contents First Last Prev Next J

3. Exercise 3: λ-calculus and NL

Given,

I new λYe→t.λxe.(Y (x) ∧ new(x))t : adj

I book λxe.(book(x))t : n

I student λxe.student(x))t : n

I a λX(e→t)λY(e→t)(∃xe.X(x) ∧ Y (x)) : det

I john j : np

I read λxe.λye.read(y, x) : tv

I left λye.left(y) : iv

build the meaning representation and the parse tree for

1. John read a book

Contents First Last Prev Next J

2. A new student left

3. John read a new book

4. A student read a book

Use the following CFG to build the parse trees.

s ---> np vp

vp ---> iv

vp ---> tv np

np ---> det n

n ---> adj n

Solution:

1. John read a book

I read u: λy.read(y, u)

I john read u: read(j, u).

Contents First Last Prev Next J

I john read: λz.read(j, z)

I a book: λY.∃x.Book(x) ∧ Y (x)

I john read a book: ∃x.Book(x) ∧ read(j, x)

s

/ \

/ vp

/ / \

/ / np

/ / / \

np tv det n

| | | |

john read a book

2. A new student left

I new student: λy.Student(y) ∧ new(y)

Contents First Last Prev Next J

I a new student: λY.∃x.(Student(x) ∧ new(x)) ∧ Y (x)

I a new student left: ∃x.(Student(x) ∧ new(x)) ∧ left(x)

s

/ \

np \

/ \ \

/ n vp

/ / \ |

det adj n iv

| | | |

a new student left

3. John read a new book

I new book: λy.book(y) ∧ new(y)

I a new student: λY.∃x.(book(x) ∧ new(x)) ∧ Y (x)

Contents First Last Prev Next J

I john read: λu.read(j, u) (as in 1.)

I john read a new book: ∃x.(book(x) ∧ new(x)) ∧ read(j, x)

s

/ \

/ vp

/ / \

/ / np

/ / / \

/ / / n

/ / / / \

np tv det adj n

| | | | |

john read a new book

4. A student read a book

Contents First Last Prev Next J

I u read a book: ∃x.Book(x) ∧Read(u, x) (see above)

I read a book: λu.∃x.Book(x) ∧Read(u, x)

I a student: λZ.∃y.Student(x) ∧ Z(u, y) (see above)

I a student read a book: ∃y.Student(y)∧∃x.Book(x)∧Read(y, x) (which is
equivalent to ∃y.∃x.Student(y) ∧ (Book(x) ∧Read(y, x)))

s

/ \

/ vp

/ / \

np / np

/ \ / / \

det n tv det n

| | | | |

a student read a book

Contents First Last Prev Next J

4. Exercise 3: λ-calculus and NL

You know that e.g.

“Every student left” can be represented as ∀x.Student(x) → Left(x); “No student
left” as ¬∃x.Student(x) → Left(x), John dind’t leave as ¬leave(j). Use them to
give the lambda terms for the words below.

1. every

2. everybody

3. no

4. nobody

5. didn’t

6. did

7. and

8. or

Contents First Last Prev Next J

Solution

1. every: λX.λY.∀z.X(z) → Y (z)

2. everybody: λY.∀z.Y (z)

3. no: λX.λY.¬∃z.X(z) → Y (z)

4. nobody: λY.¬∃z.Y (z)

5. didn’t: λY.¬Y .

6. did: λY.Y .

7. and: λX.λY.Y ∧X

8. or: λX.λY.Y ∨X

Contents First Last Prev Next J

	Exercise 1: Well formed formula
	Exercise 2: -conversion
	Exercise 3: -calculus and NL
	Exercise 3: -calculus and NL

