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1. Exercise 1: Well formed formula

Let j be a constant of type e; M of type e → t; S of type ((e → t) → (e → t)), and
P of type (e → t) → t. Furthermore, x is a variable of type e, and Y a variable of
type (e → t).

Determine which of the following is well-formed, give its type.

1. (λx.M(x))(P ).

2. (λx.M(x))(j).

3. λx.M(j).

4. S(λx.M(x)).

5. (λY.Y (j))(M)

6. λx.(M(x) ∧M(j))

7. (λx.M(x)) ∧M(j))
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Solution

1. no (since the function is of type e → t while the argument is of type (e → t) → t
(whereas it should be of type e.

2. yes, t

3. yes, e → t

4. yes, e → t

5. yes, t

6. yes, e → t

7. no. (∧ must connect expressions of type t)
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2. Exercise 2: λ-conversion

Let j be a constant of type e; M of type (e → t), and A of type e → (e → t).
Furthermore, x and y are variables of type e, and Y is a variable of type e → t.
Reduce the following expression as much as possible by means of λ-conversion.

1. λx(M(x))(j)

2. λY (Y (j))(M)

3. λxλY (Y (x))(j)(M)

4. λx∀y(A(x)(y))(j)

5. λx∀y(A(x)(y))(y)

6. λY (Y (j))λx(M(x))

7. λY ∀x(Y (x))λy(A(x)(y))
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Solution:

1. M(j)

2. M(j)

3. M(j)

4. ∀yA(j)(y)

5. ∀z.A(y)(z)

6. M(j) (by replacing first Y with λx(M(x)) and then x with j.

7. ∀z.A(z)(x)

Note, in 5 and 7 you have to rename variables. Direct λ-conversion is not possible:
in 5. y is not free for x in ∀y.(A(x)(y)). Hence you have to rename the y by, e.g.,
z, so to be able λ-conversion. Similarly, in 7, you can rename x by z before apply
λ-conversion.
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3. Exercise 3: λ-calculus and NL

Given,

I new λYe→t.λxe.(Y (x) ∧ new(x))t : adj

I book λxe.(book(x))t : n

I student λxe.student(x))t : n

I a λX(e→t)λY(e→t)(∃xe.X(x) ∧ Y (x)) : det

I john j : np

I read λxe.λye.read(y, x) : tv

I left λye.left(y) : iv

build the meaning representation and the parse tree for

1. John read a book
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2. A new student left

3. John read a new book

4. A student read a book

Use the following CFG to build the parse trees.

s ---> np vp

vp ---> iv

vp ---> tv np

np ---> det n

n ---> adj n

Solution:

1. John read a book

I read u: λy.read(y, u)

I john read u: read(j, u).
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I john read: λz.read(j, z)

I a book: λY.∃x.Book(x) ∧ Y (x)

I john read a book: ∃x.Book(x) ∧ read(j, x)

s

/ \

/ vp

/ / \

/ / np

/ / / \

np tv det n

| | | |

john read a book

2. A new student left

I new student: λy.Student(y) ∧ new(y)
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I a new student: λY.∃x.(Student(x) ∧ new(x)) ∧ Y (x)

I a new student left: ∃x.(Student(x) ∧ new(x)) ∧ left(x)

s

/ \

np \

/ \ \

/ n vp

/ / \ |

det adj n iv

| | | |

a new student left

3. John read a new book

I new book: λy.book(y) ∧ new(y)

I a new student: λY.∃x.(book(x) ∧ new(x)) ∧ Y (x)
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I john read: λu.read(j, u) (as in 1.)

I john read a new book: ∃x.(book(x) ∧ new(x)) ∧ read(j, x)

s

/ \

/ vp

/ / \

/ / np

/ / / \

/ / / n

/ / / / \

np tv det adj n

| | | | |

john read a new book

4. A student read a book
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I u read a book: ∃x.Book(x) ∧Read(u, x) (see above)

I read a book: λu.∃x.Book(x) ∧Read(u, x)

I a student: λZ.∃y.Student(x) ∧ Z(u, y) (see above)

I a student read a book: ∃y.Student(y)∧∃x.Book(x)∧Read(y, x) (which is
equivalent to ∃y.∃x.Student(y) ∧ (Book(x) ∧Read(y, x)))

s

/ \

/ vp

/ / \

np / np

/ \ / / \

det n tv det n

| | | | |

a student read a book
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4. Exercise 3: λ-calculus and NL

You know that e.g.

“Every student left” can be represented as ∀x.Student(x) → Left(x); “No student
left” as ¬∃x.Student(x) → Left(x), John dind’t leave as ¬leave(j). Use them to
give the lambda terms for the words below.

1. every

2. everybody

3. no

4. nobody

5. didn’t

6. did

7. and

8. or
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Solution

1. every: λX.λY.∀z.X(z) → Y (z)

2. everybody: λY.∀z.Y (z)

3. no: λX.λY.¬∃z.X(z) → Y (z)

4. nobody: λY.¬∃z.Y (z)

5. didn’t: λY.¬Y .

6. did: λY.Y .

7. and: λX.λY.Y ∧X

8. or: λX.λY.Y ∨X
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