Background on Vectors

Raffaella Bernardi

University of Trento

November, 2020

Background: Vector and Matrix

Vector Space

A vector space is a mathematical structure formed by a collection of vectors: objects that may be added together and multiplied ("scaled") by numbers, called scalars in this context.

Vector an n-dimensional vector is represented by a column:

$$
\left[\begin{array}{c}
v_{1} \\
\cdots \\
v_{n}
\end{array}\right]
$$

or for short as $\vec{v}=\left(v_{1}, \ldots v_{n}\right)$.

Background: Vectors

Sum and difference

$$
\begin{gathered}
\vec{v}+\vec{w}=\left(v_{1}+w_{1}, \ldots, v_{n}+w_{n}\right) \\
\vec{v}-\vec{w}=\vec{v}+(-\vec{w})=\left(v_{1}-w_{1}, \ldots, v_{n}-w_{n}\right)
\end{gathered}
$$

Background: Vectors

Dot product or inner product

The inner product of two vectors is:

$$
\vec{v} \cdot \vec{w}=\left(v_{1} w_{1}+\ldots+v_{n} w_{n}\right)=\sum_{i=1}^{n} v_{i} w_{i}
$$

dog bark apple home run cat school jump

v	$=$	$(3$,	3,	3,	3,	0,	0,	0,
w	$=$	$(1$,	1,	1,	1,	0,	0,	0,

$$
\vec{v} \cdot \vec{w}==(3 \times 1)+(3 \times 1)+(3 \times 1)+(3 \times 1)=12
$$

Background: Vector

Length

Length $\|\vec{v}\|=\sqrt{\vec{v} \cdot \vec{v}}=\sqrt{\sum_{i=1}^{n} v_{i}^{2}}$
For instance, given the vector:

$$
\vec{d}=(4,4,4,4)
$$

its length is computed as:

$$
|\vec{d}|=\sqrt{\sum_{i=1}^{n} d_{i}^{2}}=\sqrt{16+16+16+16}=\sqrt{64}=8
$$

Background: Vector

Unit vector
Unit vector is a vector whose length equals one.

$$
\vec{u}=\frac{\vec{v}}{\|\vec{v}\|}
$$

is a unit vector in the same direction as \vec{v}. (normalized vector)

$$
\vec{u}=\frac{\vec{v}}{\|\vec{v}\|}=(\cos \alpha, \sin \alpha)
$$

Background: Vector

How close to each other are two vectors?

We want to know how close to each others are two vectors.
The angle δ they form gives us the answer.
The smaller the angle δ, the closer are the two vectors.
How do we compute this angle?

1. we compute the unit vectors (=have the same length, 1)
2. we compute the inner product of their unit vectors. In this way, we obtain the cosine of δ.
3. The bigger is $\cos \delta$, the smaller the angle δ, the closer the two vectors are.

Background: Vector

Cosine and angle

$$
\begin{aligned}
& \operatorname{Cos} \alpha=\frac{O H}{O P} \\
& \text { With } O P=1, \operatorname{Cos} \alpha=O H
\end{aligned}
$$

$\cos \left(0^{\circ}\right)=1$

$\cos \left(90^{\circ}\right)=0$

The angle measure increases, and the cosine measure decreases.

Background: Vector

Cosine formula

Given δ the angle formed by the two unit vectors \vec{u} and $\overrightarrow{u^{\prime}}$, s.t.
$\vec{u}=(\cos \beta, \sin \beta)$ and $\overrightarrow{u^{\prime}}=(\cos \alpha, \sin \alpha)$

$$
\vec{u} \cdot \overrightarrow{u^{\prime}}=(\cos \beta)(\cos \alpha)+(\sin \beta)(\sin \alpha)=\cos (\beta-\alpha)=\cos \delta
$$

Given two arbitrary vectors x and y :

$$
\cos (\vec{x}, \vec{y})=\cos \delta=\frac{\vec{x}}{\|\vec{x}\|} \cdot \frac{\vec{y}}{\|\vec{y}\|}=\frac{\sum_{i=1}^{n} x_{i} \times y_{i}}{\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \times \sqrt{\sum_{i=1}^{n} y_{i}^{2}}}
$$

Background: Vector

Example

$$
\begin{aligned}
& \cos (\vec{x}, \vec{y})=\frac{\sum_{i=1}^{n} x_{i} \times y_{i}}{\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \times \sqrt{\sum_{i=1}^{n} y_{i}^{2}}} \\
& \cos (\vec{v}, \vec{w})=\frac{\vec{w} \cdot \vec{w}}{\|\vec{v}\| \times\|\vec{w}\|}=\frac{(3 \times 1)+(3 \times 1)+(3 \times 1)+(3 \times 1)}{6 \times 2}=\frac{12}{12}=1 \\
& \cos (\vec{v}, \vec{z})=\frac{\vec{v} \cdot \vec{z}}{\|\vec{v}\| \times\|\vec{z}\|}=\frac{0}{6 \times 2}=\frac{0}{12}=0
\end{aligned}
$$

v and w are more similar/are closer.

Background: Vector

Matrix and vector

A matrix is represented by [nr-rows x nr-columns]. Eg. for a 2 x 3 matrix, the notation is:

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]
$$

$a_{i j} i$ stands for the row nr , and j stands for the column nr.

Background: Vector

Function application=Matrix multiplication

The multiplication of two matrices is obtained by
Rows of the 1st matrix x columns of the 2nd.
A matrix with m -columns can be multiplied only by a matrix of m-rows:

$$
[\mathrm{n} \times \mathrm{m}] \times[\mathrm{m} \times \mathrm{k}]=[\mathrm{n} \times \mathrm{k}] .
$$

$$
\begin{aligned}
A \vec{x}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] & =\left[\begin{array}{c}
(1,0) \cdot\left(x_{1}, x_{2}\right) \\
(-1,1) \cdot\left(x_{1}, x_{2}\right)
\end{array}\right]=\left[\begin{array}{c}
1\left(x_{1}\right)+0\left(x_{2}\right) \\
-1\left(x_{1}\right)+1\left(x_{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{l}
x_{1} \\
x_{2}-x_{1}
\end{array}\right]=\vec{b}
\end{aligned}
$$

A is a "difference matrix": the output vector \vec{b} contains differences of the input vector \vec{x} on which "the matrix has acted."

