Lambda Terms

Raffaella Bernardi

22-10-2020

1 Exercise 1: From Set to Functional Perspective

Look at the Knowledge Base below.

- 1. Harry is a wizard.
- 2. Hagrid scares Dudley.
- 3. All wizards are magical.
- 4. Uncle Vernon hates anyone who is magical.
- 5. Aunt Petunia hates anyone who is magical and scares Dudley.

Build a model for it by (i) writing your interpretation for *wizards*, *magical*, *scares*, *hates* using the relational interpretation first, and then the functional one.

2 Exercise 2: Well formed formula

Let j be a constant of type e; M of type $e \to t$; S of type $((e \to t) \to (e \to t))$, and P of type $(e \to t) \to t$. Furthermore, x is a variable of type e, and Y a variable of type $(e \to t)$.

Determine which of the following is well-formed, give its type.

- 1. $(\lambda x.M(x))(P)$.
- 2. $(\lambda x.M(x))(j)$.
- 3. $\lambda x.M(j)$.
- 4. $S(\lambda x.M(x))$.
- 5. $(\lambda Y.Y(j))(M)$
- 6. $\lambda x.(M(x) \wedge M(j))$
- 7. $(\lambda x.M(x)) \wedge M(j)$

3 Exercise 3: β -conversion

Let j be a constant of type e; M of type $(e \to t)$, and A of type $e \to (e \to t)$. Furthermore, x and y are variables of type e, and Y is a variable of type $e \to t$. Reduce the following expression as much as possible by means of β -conversion.

- 1. $\lambda x(M(x))(j)$
- 2. $\lambda Y(Y(j))(M)$
- 3. $\lambda x \lambda Y(Y(x))(j)(M)$
- 4. $\lambda x \forall y(A(x)(y))(j)$
- 5. $\lambda x \forall y (A(x)(y))(y)$
- 6. $\lambda Y(Y(j))\lambda x(M(x))$
- 7. $\lambda Y \forall x(Y(x)) \lambda y(A(x)(y))$

4 Solutions

4.1 Exercise 1

$\llbracket wizard \rrbracket$	=	$\{harry\}$	$\{x wizard(x) = 1\}$
$\llbracket magical \rrbracket$	=	$\{harry\}$	$\{x magical(x) = 1\}$
[scares]	=	$\{(hagrid, dudley)\}$	$\{(x,y) (scares (y)) (x)\}$
$\llbracket hates \rrbracket$	=	$\{(vernon, harry)\}$	$\{(x,y) (hates (y)) (x)\}$

4.2 Exercise 2

1. $(\lambda x.M(x))(P)$.	[NWF]
2. $(\lambda x.M(x))(j)$.	[WF]
3. $\lambda x.M(j)$.	[NWF: vacus abstraction]
4. $S(\lambda x.M(x))$.	[WF]
5. $(\lambda Y.Y(j))(M)$	[WF]
6. $\lambda x.(M(x) \wedge M(j))$	[WF]

7. $(\lambda x.M(x)) \wedge M(j))$ [NWF: $\lambda x.M(x)$ and M(j) are of types $e \to t$ and t, resp. \wedge coordinates terms of types t]

4.3 Exercise 3

1. $\lambda x(M(x))(j)$	[M(j)]
2. $\lambda Y(Y(j))(M)$	[M(j)]
3. $\lambda x \lambda Y(Y(x))(j)(M)$	[M(j)]
4. $\lambda x \forall y (A(x)(y))(j)$	$[\forall y.A(j)(y)]$
5. $\lambda x \forall y (A(x)(y))(y)$	$[\forall y.A(z)(y)]$
6. $\lambda Y(Y(j))\lambda x(M(x))$	[M(j)]
7. $\lambda Y \forall x(Y(x)) \lambda y(A(x)(y))$	$[\forall z.A(x)(z)]$