
Computational Linguistics: Categorial
Grammar

Raffaella Bernardi

University of Trento

Contents First Last Prev Next J

1. Last time and today

Last time we have:

I practiced on CFG and

I given an historical overview of FG.

Today, we will look at

I TAG and

I CG

Contents First Last Prev Next J

2. Tree Adjoining Grammar (TAG)

I Who: Aravind Joshi (1969).

I Aim: To build a language recognition device.

I How: Linguistic strings are seen as the result of concatenation obtained by
means of syntactic rules starting from the trees assigned to lexical items. The
grammar is known as Tree Adjoining Grammar (TAG).

I http://www.cis.upenn.edu/~xtag/

Contents First Last Prev Next J

http://www.cis.upenn.edu/~xtag/

2.1. CFG and TAG

CFG:

S --> NP VP NP --> Harry ADV --> passionately

VP --> V NP NP --> peanuts

VP --> VP ADV V --> likes

TAG:

a1 S a2 NP a3 NP

/ \ | |

NP| VP peanuts Harry

/ \

V NP |

|

likes

Contents First Last Prev Next J

Contents First Last Prev Next J

2.2. TAG rules

Contents First Last Prev Next J

2.3. Example

Try to apply the substitution rules to the entries given below:

a1 S a2 NP a3 NP

/ \ | |

NP| VP peanuts Harry

/ \

V NP |

|

likes

Do you think this rule is going to be enough?

Contents First Last Prev Next J

2.4. Example

“Harry thinks Bill likes John”

what’s the entry for “thinks”?

S

/ \

NP| VP

/ \

V S|

|

think

And what about the sentence “Who does Harry think Bill likes?”

Contents First Last Prev Next J

2.5. Example

To account for gaps, new elementary trees are assigned to e.g. TV:

S

/ \

NP(wh)| S

/ \

NP| VP

/ \

V NP|

| |

likes empty

Contents First Last Prev Next J

2.6. Adjunction

Contents First Last Prev Next J

The lexical entries “does” and “think” carry the special marker:

Contents First Last Prev Next J

Contents First Last Prev Next J

3. Categorial Grammar

I Who: Lesniewski (1929), Ajdukiewicz (1935), Bar-Hillel (1953).

I Aim: To build a language recognition device.

I How: Linguistic strings are seen as the result of concatenation obtained by
means of syntactic rules starting from the categories assigned to lexical items.
The grammar is known as Classical Categorial Grammar (CG).

Categories: Given a set of basic categories ATOM, the set of categories CAT is the
smallest set such that:

CAT := ATOM | CAT\CAT | CAT/CAT

Contents First Last Prev Next J

4. CG: Syntactic Rules

Categories can be composed by means of the syntactic rules below

[BA] If α is an expression of category A, and β is an expression of category A\B,
then αβ is an expression of category B.

[FA] If α is an expression of category A, and β is an expression of category B/A,
then βα is an expression of category B.

where [FA] and [BA] stand for Forward and Backward Application, respectively.

[BA] B

A

α

A\B

β

[FA] B

B/A

β

A

α

Contents First Last Prev Next J

5. CG Lexicon: Toy Fragment

Let ATOM be {n, s, np} (for nouns, sentences and noun phrases, respectively) and LEX as
given below. Recall CFG rules: np→ det n, s→ np vp, vp→ v np . . .

Lexicon

Sara np the np/n
student n walks np\s
wrote (np\s)/np

Sara walks ∈ s? ; np︸︷︷︸
Sara

, np\s︸ ︷︷ ︸
walks

∈ s? Yes

simply [BA]

s

np

Sara

np\s

walks

Contents First Last Prev Next J

6. Classical Categorial Grammar

Alternatively the rules can be thought of as Modus Ponens rules and can be written
as below.

B/A,A⇒ B MPr

A,A\B ⇒ B MPl

B/A A

B
(MPr)

A A\B
B

(MPl)

Contents First Last Prev Next J

7. Classical Categorial Grammar. Examples

Given ATOM = {np, s, n}, we can build the following lexicon:

Lexicon

John, Mary ∈ np the ∈ np/n
student ∈ n
walks ∈ np\s
sees ∈ (np\s)/np

Analysis

John walks ∈ s? ; np, np\s⇒ s? Yes

np np\s
s (MPl)

John sees Mary ∈ s? ; np, (np\s)/np, np⇒ s? Yes

np

(np\s)/np np

np\s (MPr)

s (MPl)

Contents First Last Prev Next J

7.1. Relative Pronoun

Question Which would be the syntactic category of a relative pronoun in subject
position? E.g. “the student who knows Lori”

[the [[student]n [who [knows Lori](np\s)]?]n
who knows Lori ∈ n\n? ;

(n\n)/(np\s), (np\s)/np, np⇒ n\n?

who
(n\n)/(np\s)

knows
(np\s)/np

Lori
np

np\s (MPr)

n\n (MPr)

n\n

(n\n)/(np\s)

who

(np\s)

(np\s)/np

knows

np

Lori

Contents First Last Prev Next J

7.2. CFG and CG

Below is an example of a simple CFG and an equivalent CG:

CFG

S --> NP VP

VP --> TV NP

N --> Adj N

Lexicon:

Adj --> poor

NP --> john

TV --> kisses

CG Lexicon:

John: np
kisses: (np\s)/np
poor: n/n

Contents First Last Prev Next J

8. Logic Grammar

I Aim: To define the logic behind CG.

I How: Considering categories as formulae; \, / as logic connectives.

I Who: Jim Lambek [1958]

Contents First Last Prev Next J

8.1. Lambek Calculi

In the Lambek Calculus the connectives are \ and / (that behave like the → of PL
except for their directionality aspect.)

Therefore, in the Lambek Calculus besides the elimination rules of \, / (that we saw
in CG) we have their introduction rules.

B/A A

B
/E

A A\B
B

\E

[A]i
....
B
B/A

/Ii

[A]i
....
B
A\B \I

i

Remark The introduction rules do not give us a way to distinguish the directionality
of the slashes.

Contents First Last Prev Next J

8.2. Alternative Notation (Sequents)

Let A,B,C stand for logic formulae (e.g. np, np\s, (np\s)\(np\s) . . .) i.e. the cate-
gories of CG

Let Γ,Σ,∆ stand for structures (built recursively from the logical formulae by means
of the ◦ connective) –e.g. np ◦np\s is a structure. STRUCT := CAT, STRUCT ◦ STRUCT
Σ ` A means that (the logic formula) A derives from (the structure) Σ (e.g. np ◦
np\s ` s).

A ` A

∆ ` B/A Γ ` A
∆ ◦ Γ ` B (/E)

Γ ` A ∆ ` A\B
Γ ◦∆ ` B (\E)

∆ ◦ A ` B
∆ ` B/A (/I) A ◦∆ ` B

∆ ` A\B (\I)

Contents First Last Prev Next J

9. Lambek calculus. Elimination rule
np ` np np\s ` np\s

np︸︷︷︸
sara

◦ np\s︸︷︷︸
walks

` s

np ` np
(np\s)/np ` (np\s)/np np ` np

(np\s)/np ◦ np ` np\s
np︸︷︷︸

sara

◦((np\s)/np︸ ︷︷ ︸
knows

◦ np︸︷︷︸
mary

) ` s

Contents First Last Prev Next J

9.1. Lambek calculus. Subject relative pronoun

The student who [[. . .] knows Mary]s︸ ︷︷ ︸
np

left︸︷︷︸
np\s

(n\n)/(np\s) ` (n\n)/(np\s)
(np\s)/np ` (np\s)/np np ` np

(np\s)/np ◦ np ` np\s
(n\n)/(np\s)︸ ︷︷ ︸

who

◦((np\s)/np︸ ︷︷ ︸
knows

◦ np︸︷︷︸
mary

) ` n\n

Exercise: Try to do the same for relative pronoun in object position. e.g. the student
who Mary met (i.e. prove that it is of category np. Which should be the category
for a relative pronoun (e.g. who) that plays the role of an object?

Contents First Last Prev Next J

10. Lambek calculus. Introduction rule

Note, below for simplicity, I abbreviate structures with the corresponding linguistic
structures.

The book which [Sara wrote [. . .]]s︸ ︷︷ ︸
np

is interesting︸ ︷︷ ︸
np\s

.

which ` (n\n)/(s/np)

Sara ` np
wrote ` (np\s)/np [np ` np]1

wrote np ` np\s (/E)

Sara wrote np ` s (\E)

Sara wrote ` s/np (/I)1

which Sara wrote ` n\n (/E)

Introduction rules accounted for extraction.

Contents First Last Prev Next J

11. Extraction: Right-branch (tree)

s

np

Sara

np\s

(np\s)/np

wrote

np

hyp

s

np\s

np

Sara

(np\s)/np

wrote

np

hyp

s/np

s

np\s

np

Sara

(np\s)/np

wrote

np

hyp

[. . .]

Contents First Last Prev Next J

12. CCG

A well known version of CG is CCG (Combinatory Categorial Grammar) developed
by Mark Steedman (Edinburgh University).

I CCG Bank

I C&C parser

I C&C parser together with Boxer (MR builder).

Link to some softwares: http://groups.inf.ed.ac.uk/ccg/software.html

Contents First Last Prev Next J

http://groups.inf.ed.ac.uk/ccg/software.html

13. (Recall) Generative Power and Complexity of

FGs

Every (formal) grammar generates a unique language. However, one language can
be generated by several different (formal) grammars.

Formal grammars differ with respect to their generative power:

One grammar is of a greater generative power than another if it can recognize a
language that the other cannot recognize.

Two grammars are said to be

I weakly equivalent if they generate the same string language.

I strongly equivalent if they generate both the same string language and the
same tree language.

Contents First Last Prev Next J

13.1. DG, CG, CTL, CCG, and TAG

I DG: Gross (1964)(p.49) claimed that the dependency languages are exactly
the context-free languages. This claim turned out to be a mistake, and now
there is new interest in DG. (Used in QA)

I CG: Chomsky (1963) conjectured that Lambek calculi were also context-
free. This conjecture was proved by Pentus and Buszkowski in 1997.

I TAG and CCG: have been proved to be Mildly Context Free.

I CTL has been proved to be Mildly Sensitive (Moot), or Context Sensitive
(Moot) or Turing Complete (Carpenter), accordingly to the structural rules
allowed.

Contents First Last Prev Next J

14. Next steps

Next time, we will practice with CG rules

I Wednesday we will practice with CG rules.

I Thu. we will introduce Formal Semantics

I Monday. we will look at Distributional Semantics

I Wed. we will look at Compositional DS

I Thur. we will look at the syntax-semantics interface in CFG and CG.

I Recall: 03.04.2017 SAMPLE EXAM

Contents First Last Prev Next J

	Last time and today
	Tree Adjoining Grammar (TAG)
	CFG and TAG
	TAG rules
	Example
	Example
	Example
	Adjunction

	Categorial Grammar
	CG: Syntactic Rules
	CG Lexicon: Toy Fragment
	Classical Categorial Grammar
	Classical Categorial Grammar. Examples
	Relative Pronoun
	CFG and CG

	Logic Grammar
	Lambek Calculi
	Alternative Notation (Sequents)

	Lambek calculus. Elimination rule
	Lambek calculus. Subject relative pronoun

	Lambek calculus. Introduction rule
	Extraction: Right-branch (tree)
	CCG
	(Recall) Generative Power and Complexity of FGs
	DG, CG, CTL, CCG, and TAG

	Next steps

